Agronomy and Horticulture Department


Date of this Version



Mol Breeding (2012) 30:1163–1179


Soybean [Glycine max (L.) Merr.] is an important crop which contributes approximately 58% of the world’s oilseed production. Palmitic and stearic acids are the two main saturated fatty acids in soybean oil. Different levels of saturated fatty acids are desired depending on the uses of the soybean oil. Vegetable oil low in saturated fatty acids is preferred for human consumption, while for industrial applications, soybean oil with higher levels of saturated fatty acids is more suitable. The objectives of this study were to identify quantitative trait loci (QTL) for saturated fatty acids, analyze the genetic effects of single QTL and QTL combinations, and discuss the potential of marker-assisted selection in soybean breeding for modified saturated fatty acid profiles.Apopulation of recombinant inbred lines derived from the cross of SD02-4- 59 X A02-381100 was grown in five environments and the seed samples from each environment were evaluated for fatty acid content. Genotyping of the population was performed with 516 polymorphic single nucleotide polymorphism markers and 298 polymorphic simple sequence repeat markers. Eight QTL for palmitic acid, five QTL for stearic acid and nine QTL for total saturated fatty acids were detected by composite interval mapping and/or interval mapping, with a high level of consistency or repeatability in multiple environments. Most of these QTL have not been reported previously, with the exception of qPAL-A1 which confirmed the result of a previous study. Significant QTL X QTL interactions were not detected. However, significant QTL X environment interactions were detected in most cases. Comparisons of two-locus and three-locus combinations indicated that cumulative effects of QTL were significant for both palmitic and stearic acids. QTL pyramiding by molecular marker-assisted selection would be an appropriate strategy for improvement of saturated fatty acids in soybean.