Animal Science Department

 

Date of this Version

2004

Comments

Published in J. Dairy Sci. (2004) 87:637–644 © 2004 Journal of Dairy Science Used by Permission

Abstract

Total mixed rations containing conventional forage sorghum, brown midrib (bmr)-6 forage sorghum, bmr- 18 forage sorghum, or corn silage were fed to Holstein dairy cows to determine the effect on lactation, ruminal fermentation, and total tract nutrient digestion. Sixteen multiparous cows (4 ruminally fistulated; 124 d in milk) were assigned to 1 of 4 diets in a replicated Latin square design with 4-wk periods (21-d adaptation and 7 d of collection). Diets consisted of 40% test silage, 10% alfalfa silage, and 50% concentrate mix (dry basis). Acid detergent lignin concentration was reduced by 21 and 13%, respectively, for the bmr-6 and bmr-18 sorghum silages when compared with the conventional sorghum. Dry matter intake was not affected by diet. Production of 4% fat-corrected milk was greatest for cows fed bmr- 6 (33.7 kg/d) and corn silage (33.3 kg/d), was least for cows fed the conventional sorghum (29.1 kg/d), and was intermediate for cows fed the bmr-18 sorghum (31.2 kg/ d), which did not differ from any other diet. Total tract neutral detergent fiber (NDF) digestibility was greatest for the bmr-6 sorghum (54.4%) and corn silage (54.1%) diets and was lower for the conventional (40.8%) and bmr-18 sorghum (47.9%) diets. In situ extent of NDF digestion was greatest for the bmr-6 sorghum (76.4%) and corn silage (79.0%) diets, least for the conventional sorghum diet (70.4%), and intermediate for the bmr-18 sorghum silage diet (73.1%), which was not different from the other diets. Results of this study indicate that the bmr-6 sorghum hybrid outperformed the conventional sorghum hybrid; the bmr-18 sorghum was intermediate between conventional and bmr-6 in most cases. Additionally, the bmr-6 hybrid resulted in lactational performance equivalent to the corn hybrid used in this study. There are important compositional differences among bmr forage sorghum hybrids that need to be characterized to predict animal response accurately.

Share

COinS