Biological Systems Engineering

 

Date of this Version

3-2009

Comments

Published in Industrial Crops and Products 29:2-3 (March 2009), pp. 473-479; doi: 10.1016/j.indcrop.2008.09.004 Copyright © 2008 Elsevier B.V. Used by permission.

Abstract

The demand for diesel fuel far exceeds the current and future biodiesel production capabilities of the vegetable oil and animal fat industries. New oilseed crops that do not compete with traditional food crop are needed to meet existing energy demands. Hybrid hazelnut oil is just such an attractive raw material for production of biodiesel. Hazelnut oil was extracted from hybrid hazelnuts and the crude oil was refined. Hazelnut oil-based biodiesel was prepared via the transesterification of the refined hazelnut oil with excess methanol using an alkaline catalyst. The effects of reaction temperature, time and catalyst concentration on the yield of diesel were examined, and selected physical and chemical properties of the biodiesel were evaluated. The biodiesel yield increased with increasing temperature from 25 to 65 °C and with increasing catalyst concentration from 0.1 to 0.7 wt%. The increase in yield with reaction time was nonlinear and characterized by an initial faster rate, followed by a slow rate. Hazelnut oil-based biodiesel had an average viscosity of 8.82 cP at 25 °C, which was slightly higher than that of the commercial soy-based diesel (7.92 cP at 25 °C). An approximate 12 °C higher onset oxidative temperature and a 10 °C lower cloud point of hazelnut oil biodiesel than those of its commercial soy counterpart indicated a better oxidative stability and flowability at low temperature. The average heat of combustion of hazelnut oil biodiesel was 40.23 kJ/g, and accounted for approximately 88% of energy content of diesel fuel. The fatty acid composition of hazelnut oil-based biodiesel was the same as the nature oil.

Share

COinS