Biological Systems Engineering



Richard K. Perrin

Date of this Version



Published in Environment 52:4 (July/August 2010), pp. 9–22. Copyright © 2010 Taylor & Francis. Used by permission.


Military operations are major industrial activities that use massive amounts of fuel and materials that significantly contribute to climate change. In this article, we assert that military activity to protect international oil trade is a direct production component for importing foreign oil— as necessary for imports as are pipelines and supertankers—and therefore the greenhouse gas (GHG) emissions from that military activity are relevant to U.S. fuel policies related to climate change. Military security for protection of global maritime petroleum distribution is part of the acquisition process, but in addition, recent Middle Eastern wars may also be related to securing petroleum reserves.

A component of U.S. motor fuel policy has been to encourage the development of biofuels as substitutes for petroleum, both to reduce dependence on foreign oil and to reduce GHG emissions. To qualify for this substitution under the U.S. Energy Independence and Security Act of 2007 (EISA), specific biofuel types must reduce GHG emissions by set amounts from 20 to 60 percent compared with gasoline. The EISA legislation demands evaluation of not only direct life cycle emissions from biofuels, but also all potentially significant indirect emissions. Yet the gasoline emissions against which this is compared consist only of direct life cycle emissions, which to this point have not included emissions due to the military component of transporting foreign oil to the United States. These military emissions are analyzed here to determine their contribution to the life cycle GHG emissions from gasoline production. This analysis builds on a recent estimate that emissions from military security raised the GHG intensity of U.S. gasoline derived from Middle Eastern imports by twofold compared with direct emissions.