August 2005

Xenophilic mating preferences among populations of the jumping spider *Habronattus pugillis* Griswold

Eileen Hebets
University of Nebraska - Lincoln, ehebets2@unl.edu

Wayne P. Maddison
University of British Columbia, Vancouver, British Columbia, Canada

Follow this and additional works at: http://digitalcommons.unl.edu/bioscihebets

Part of the [Behavior and Ethology Commons](http://digitalcommons.unl.edu/bioscihebets)

http://digitalcommons.unl.edu/bioscihebets/1

This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eileen Hebets Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Xenophilic mating preferences among populations of the jumping spider *Habronattus pugillis* Griswold

Eileen A. Hebets\(^{a,b}\) and Wayne P. Maddison\(^{c}\)

\(^{a}\)Department of Environmental Science, Policy and Management: Division of Insect Biology, University of California at Berkeley, Berkeley, CA 94720, USA, \(^{b}\)School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA, and \(^{c}\)Departments of Zoology and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

Sexual selection is thought to have driven the diversification of courtship behavior and associated ornamentation between geographically isolated populations of the jumping spider *Habronattus pugillis* Griswold. In an attempt to understand the pathways of sexual selection during this diversification, we conducted reciprocal mating trials between two populations of *H. pugillis* (Santa Rita [SR] and Atascosa [AT]) that differ in both male courtship display and secondary sexual ornamentation. Observations of mating frequencies show a xenophilic mating preference in which SR females have a stronger response to AT males than to SR males, while AT females show no difference in mating frequency. These results are not consistent with a coevolutionary process in which male traits and female preferences evolve in concert, positively reinforcing each other. We discuss alternative pathways of sexual selection that may have acted in this system, including the possibility that female preferences and male traits have evolved antagonistically. In addition, we found that SR females spent a higher proportion of time prior to copulation visually attentive to AT males versus SR males. This difference in visual attention prior to copulation was not seen in AT females and may provide insights into our observations of xenophilic mating preference. *Key words:* antagonistic coevolution, attention, diversification, jumping spiders, sexual selection, speciation. [Behav Ecol 16:981–988 (2005)]

Understanding the mechanisms underlying patterns of diversification of evolutionary lineages poses a considerable challenge to evolutionary biology because the explanations attempt to cross many levels of organization, translating processes operating among individuals within species into large-scale phylogenetic patterns. Sexual selection driving within-lineage change is one process that has been implicated as an important force in between-lineage diversification. A theoretical basis for this proposal can be seen in models of the evolution of prezygotic isolation, where sexual selection often plays a role (for review see Kirkpatrick and Ravigne, 2002). For example, a Fisherian runaway process of sexual selection can be important in generating trait divergence between closely related populations (Pomiankowski and Iwasa, 1998). Empirical support comes through taxa whose impressive diversifications have been attributed at least in part to sexual selection, including haplochromine cichlids (Seehausen, 2002), birds of paradise (Mitra et al., 1996), and *Laupala* crickets of Hawaii (Mendelson and Shaw, 2005). However, at least some broader compilations of data cast doubt on whether there is a general correlation between clade diversity and sexual selection (Burbrakough et al., 1995; Morrow et al., 2003). Further exploration of the relationship between sexual selection and diversification will require both population-level studies of mechanism and studies of a broader range of clades.

One clade promising for studies of sexual selection and diversification is the jumping spider group *Habronattus* (Griswold, 1987; Maddison and Hedin, 2003), consisting of approximately 100 species with strikingly diverse and complex male courtship ornaments and behaviors (Cutler, 1988; Elias et al., 2003; Elias DO, Hebets EA, Hoy RR, Maddison WP, Mason AC, in preparation; Griswold, 1977, 1987; Maddison and Stratton, 1988; Peckham G and Peckham E, 1889, 1890; Richman, 1977, 1982). The *Habronattus pugillis* complex in particular has apparently undergone a highly localized and possibly rapid diversification among mountain ranges isolated by intervening deserts in the southwestern US and northwestern Mexico (Maddison and McMahon, 2000). Males of *H. pugillis* are characterized by a high degree of phenotypic uniformity within mountain ranges and a high level of differentiation in courtship behavior and sexual ornamentation among mountain ranges (Maddison and McMahon, 2000). Masta and Maddison (2002) showed that rates of divergence in male phenotype exceeded expectations based on a neutral genetic marker, indicating that the divergence is due to selection. The fact that phenotypic differentiation is most pronounced in male secondary sexual ornaments suggests a primary role for sexual selection (Maddison and McMahon, 2000; Masta and Maddison, 2002). Due to the types of population differences, the small spatial scale, and the potentially small temporal scale of this diversification (Maddison and McMahon, 2000), it seems likely that this system is driven by a rapidly diversifying process of sexual selection.

In exploring the diversification of *H. pugillis*, our approach has been to focus our attention on an intermediate level of organization, at the intersection between mechanistic (individual and population) and comparative studies. Comparative approaches for examining processes of sexual selection have been applied to a variety of systems including spiders (Hebets and Uetz, 1999; McClintock and Uetz, 1996), mites (Proctor, 1992), swordtail fish (Basolo, 1990, 1996; Ryan and Wagner, 1987), guppies (Endler and Houde, 1995; Houde and Endler, 1990), frogs (Cocroft and Ryan, 1995; Ryan, 1991; Ryan and...
dently derived populations can offer insights into sexual experimental approach using animals sampled from independent traits (Hebets and Uetz, 2000; McClintock and Uetz, 1996), artificial males might be created bearing inferred ancestral it is difficult or impossible to confirm that all relevant traits itation and the ease with which spiders could be collected.

Because any single model of sexual selection can yield a broad range of possible predictions (Pizzari and Snook, 2005; Rowe et al., 2003) and because different mechanisms of sexual selection can be acting simultaneously and consecutively in the same system, it appears unlikely that data on interpopulation interactions will be able to distinguish alternative models. Nonetheless, such data can reveal aspects of the pathway that sexual selection takes, such as whether evolution of a male trait is accompanied by increasing the female preference for it. Determining whether or not this positive coevolution has taken place would not necessarily confirm which model of sexual selection has operated. However, it would impose specific constraints on any explanation by sexual selection and would provide insights into the relationship between sexual selection and speciation.

The purpose of this study is to use comparative techniques to explore the evolution of female responses to males in the jumping spider H. pugillis. We chose two divergent populations of H. pugillis that differ extensively in both male courtship behavior and male secondary sexual morphology. We allowed reciprocal mating opportunities for individuals from both populations and analyzed mating frequencies in order to better understand the nature of sexual selection and the female responses it has generated. In particular, we test whether male traits and female preferences have positively coevolved in the diversification of this species.

MATERIALS AND METHODS

Following a study of 16 populations of H. pugillis in southeastern Arizona (Maddison and McMahon, 2000), we chose as our focal groups two divergent populations on nearby mountain ranges, the Santa Rita (SR) and the Atascosa (AT) mountains, based on their having notably distinct behaviors and ornamentation and the ease with which spiders could be collected. Because all H. pugillis populations are contemporaneous—none is ancestral—it was not possible to compare ancestral and descendant populations, which would provide better insights into the process of sexual selection. Instead of an actual ancestor, we might seek instead a population with only ancestral traits, but none such has been found in H. pugillis (Maddison and McMahon, 2000). Even if the traits of a population match the inferred ancestral traits in many characters, it is difficult or impossible to confirm that all relevant traits are ancestral, especially for traits of female choice. While artificial males might be created bearing inferred ancestral traits (Hebets and Uetz, 2000; McClintock and Uetz, 1996), a considerably more difficult feat would be to invent artificial females with ancestral patterns of choice. Nonetheless, an experimental approach using animals sampled from independently derived populations can offer insights into sexual selection. Indeed, some of the more intriguing possibilities (e.g., reciprocal susceptibility to independently evolved exploitative traits) may be most likely when both populations show derived traits.

While females from the two focal populations are virtually indistinguishable, males differ in both morphology and courtship behavior as discussed below (Maddison and McMahon, 2000).

SR males

From the front, SR males have a dark brown face with a white horizontal stripe along the bottom (Maddison and McMahon, 2000). They have a thin streak of white scales that extends above their anterior eyes. The anterior-most pair of walking legs also has pendant fringes of setae. The courtship behavior of these males begins with circular rotations of the palpi (modified appendages beside the face) (Maddison and McMahon, 2000). This palpal rotation is unique to SR males and is continued throughout the courtship display. Males remain mostly stationary in location during courtship until the actual approach of the female, which is generally direct. Males occasionally engage in an alternating slow leg wave. The final stages of courtship involve the male holding his first pair of legs above the female and flicking the tips.

AT males

The face of AT males is covered with silver-gray scales, except for the lower lateral portion, which is yellowish with a few dark spots (Maddison and McMahon, 2000). The sides of the carapace are swollen. There is no eye streak above their anterior eyes, as seen in SR males, but the chelicerae are striped. The courtship display of AT males appears more vigorous than that of the SR males. Males approach females rapidly while sidling, which involves moving in large arcs in one direction followed by the other with the first pair of legs held above the ground for the entire time (Maddison and McMahon, 2000). AT males have no palpal circling, but similar to the SR males, they have a vigorous leg flicking during the final stages of their courtship.

Experimental design

Mature males and penultimate females were collected from the SR Mountains on 26 and 27 March and 1 April 1998 and 3 March and 9 April 2000. Mature males and penultimate females were collected from the AT Mountains on 26 March and 9 April 1998 and 16 and 27 February, 1, 11, and 24 March, and 18 April 2000. All individuals were collected from the field during the day and brought back to the laboratory where they were individually housed in seven dram polystyrene vials with white polyethylene snap caps. They were kept on a constant 12:12 h light:dark cycle and were fed one cabbage looper caterpillar once a week. After females molted to maturity, their age was determined by counting the number of days that had elapsed since their maturation molt. Females ranging in age from 14 to 21 days postmaturity molt were randomly assigned and tested with either males from their own mountain range or males from the foreign mountain range. Most males were collected mature, and thus, their age or mating history could not be determined. All specimens are deposited in a private collection (E.A.H.).

An equal number of females from both populations were assigned males either from the same (“local”) or the other (“foreign”) population. Each female was tested with up to five different males from the assigned population, each on consecutive days. For each trial, a female was placed in a circular acetate arena approximately 9 cm in diameter with graph
Our data, for among females that rejected the first male, some continued to reject males, while others quickly accepted an alternative male. Thus, in order to make full use of our data while still avoiding the statistical problem of using individual females multiply (pseudoreplication), we counted the number of trials until a female accepted a male of her assigned population as a measure of her readiness to mate with males of that category. This “trial latency score” is simply the trial number on which each female mated, unless she did not mate by the fifth trial, in which case she was given a conservative trial latency score of 6. Each female was only represented once in this statistical analysis. Again, because a common prediction of positive reinforcing selection relates specifically to how females from each population respond to local versus foreign males and because females from each population were run slightly offset in time, separate analyses were conducted for each population. Once trial latency scores for each female were assigned, analyses of variance (ANOVARs) were conducted for each population to look for an effect of male origin (local versus foreign) on “trial latency.” For various reasons (e.g., premature death, escape), some females neither mated nor were used five times, and these females were excluded from the analysis.

Among females that mated, the time from initiation of the trial until mounting by the male was scored as the “copulation latency.” An ANOVA was used on all mating pairs to test for differences in copulation latency between females from each range.

Difference of response differences test

In order to test for positive coevolution between male traits and female response, we compare the strength of female responses to both local and foreign males. We used the trial latency data for this test because it utilized more of our data and represented a more conservative test (see Results). It may initially seem a model of positive coevolution (i.e., reinforcement between male trait and female preference) can be rejected merely by showing that females of one population prefer males of another (e.g., showing that mean trial latency of SR female × AT male is less than mean trial latency SR female × SR male). As discussed further below, positive coevolution within a population allows for the result that females prefer males from a second population; but if so, then females from the second population should prefer their own males, with whom they have coevolved, even more strongly. More precisely, in our study system, positive coevolution predicts that the degree to which AT females respond faster to their own males [(mean trial latency AT × SR) − (mean trial latency AT × AT)] should be greater than the degree to which SR females respond faster to AT males [(mean trial latency SR × SR) − (mean trial latency SR × AT)]. Thus,

\[
[MTL(AT \times SR) - MTL(AT \times AT)] > [MTL(SR \times SR) - MTL(SR \times AT)],
\]

where \(MTL(P \times Q)\) is mean trial latency of female P with male Q. This is algebraically equivalent to the comparable prediction focusing on SR females:

\[
[MTL(SR \times AT) - MTL(SR \times SR)] > [MTL(AT \times AT) - MTL(AT \times SR)]
\]

as well as to the prediction that trial latency within populations should be lower than that between populations:

\[
[MTL(SR \times SR) + MTL(AT \times AT)] < [MTL(AT \times AT) + MTL(SR \times AT)].
\]
where males stood stationary and moved only their palpi. Female visual attention was defined as times when a female’s anterior median eyes were directly oriented toward a courting male. Females often track male movements by holding the male in the center of their visual field, making this behavior easy to detect. These behaviors were scored prior to copulation. We also standardized the behaviors across pairs by dividing them by the associated latency to copulation. Multiple t tests compared female behaviors between local and foreign males, and a Bonferroni correction was used to adjust the alpha level to $p = .017$.

RESULTS

A total of 70 females (SR = 42 and AT = 28) and 90 males (SR = 43 and AT = 47) were used in a total of 173 trials. Sixty-seven percent of the males were used more than once with the following breakdown: once $N = 31$; twice $N = 20$; three times $N = 15$; four times $N = 16$; five times $N = 5$; six times $N = 1$, and seven times $N = 2$. The individual male had no effect on whether the female would mate ($\chi^2 = 0.46, p = .51$). AT and SR males did not differ in their average size (AT male mean weight = 13.5 mg, SE = 0.37, $N = 46$; SR male mean weight = 13.43 mg, SE = 0.29, $N = 46$).

Using data from only the first trial for each female, SR females tended to copulate more readily with AT males; but there was no significant difference in mating frequency for either population with local versus foreign males (Figure 1A; SR females $\chi^2 = 1.54, p = .2$; AT females $\chi^2 = 0.007, p = .95$). In a combined analysis including first trials only for both populations, mating frequency did not depend on mating treatment ($\chi^2 = 2.02, p = .57$; Figure 1A). When only pairs which mated in less than 2 min were included, SR females mated significantly more with foreign (AT) males versus local (SR) males (Figure 1B; $\chi^2 = 8.52, p = .0035$) while AT females did not distinguish between males (Figure 1B; $\chi^2 = 0.03, p = .85$). A combined analysis including pairs that mated in less than 2 min for both populations also reveals that mating frequency depends on mating treatment ($\chi^2 = 8.67, p = .034$), and a correspondence analysis shows that SR × AT pairings result in significantly more matings than any other pairing (Figure 1B).

An analysis using trial latency, or the number of trials each female experienced prior to mating, revealed again that female response to foreign versus local males is significantly different for SR females but not for AT females. Eight AT females and seven SR females were excluded in these comparisons because they had not mated and were not used for a total of five times. SR females had a shorter trial latency with AT males than SR males, indicating a preference for AT males (SR × SR mean trial latency = 5.0, SE = 0.42, $N = 17$; SR × AT mean = 1.8, SE = 0.4, $N = 18$; $F_{1,33} = 4.44, p = .04$; Figure 2). AT females showed no difference in trial latency (AT × AT mean = 2.3, SE = 0.67, $N = 10$; AT × SR mean = 2.9, SE = 0.67, $N = 10$; $F_{1,18} = 0.40, p = .54$; Figure 2). In an ANOVA including both populations, trial latency did not depend on mating treatment ($F_{1,31} = 1.48, p = .23$). Two females, SR females paired with SR males, refused to mate during each of the five trials. To examine whether they would react differently to AT males, they were presented on subsequent days with AT males. One of the females mated with her first AT male and the other with her second AT male, again suggesting a preference for AT males. Because these females were treated differently, their latency to copulation scores were not included in the copulation latency data (Figure 2).

Using the trial latency data, the DRD test showed that within-population latencies were greater than between-population latencies and thus that AT female preference for AT males
analyses (number of times attentive/mount latency, latency was dependent on mating treatment in combined times attentive/mount latency nor male movement/mount latency were found among females (Table 1). Neither number of tion did depend on mating treatment (F_{3,27} = 3.96, p = .018; female origin F = 1.28, p = .27, male origin F = 4.29, p = .048, female origin × male origin F = 3.94, p = .058). SR × SR pairs had a significantly longer latency to copulation than any other pair (Figure 3).

Prior to copulation, SR females tend to direct their visual attention toward SR males more frequently than toward AT males, yet this pattern is not significant and disappears when the behavior is compared relative to the mount latency (Table 1). When compared relative to mount latency, AT females tend to direct their visual attention toward SR males more frequently than toward their local AT males, but after the Bonferroni correction, this trend is not significant (Table 1).

When comparing the duration of visual attention prior to copulation, SR females spend more time visually attentive to local SR males compared to AT males (Table 1). Yet, when compared relative to mount latency, SR females spend proportionally more time visually attentive to AT males versus their own local SR males (Table 1). No other behavioral differences were found among females (Table 1). Neither “number of times attentive/mount latency” nor “male movement/mount latency” was dependent on mating treatment in combined analyses (number of times attentive/mount latency, F_{3,25} = 0.17, p = .92; male movement/mount latency, F_{3,24} = 0.98, p = .42). However, “prior attention/mount latency” did depend on mating treatment (F_{3,22} = 5.88, p = .004). Both male origin and an interaction between female and male origin influenced prior attention/mount latency (female origin \(F = 2.1, p = .16 \), male origin \(F = 4.59, p = .04 \), female origin × male origin \(F = 8.89, p = .007 \)). AT males received proportionally more visual attention than SR males (AT mean = 0.84 ± 0.06, SR mean = 0.63 ± 0.08). SR females spent proportionally less time visually attentive to local SR males than foreign AT males, and SR females spent proportionally less time visually attentive to their own SR males than did AT females (Figure 4).

DISCUSSION

We conducted reciprocal crosses between two phenotypically divergent populations of the jumping spider *H. pugillis* in order to explore the pathways taken by sexual selection in their diversification. Our data revealed a xenophilic mating preference in which females from one population (SR) had a greater tendency to mate with males from a second population (AT) as compared to their own local SR males, while females from the other population (AT) showed no difference in mating frequency between SR (foreign) and AT (local) males. This xenophilic mating pattern is suggested by the mating frequency data from first trials only (Figure 1A) and is statistically supported when we analyze only pairs that copulated within 2 min (a putatively meaningful cutoff based on field observations). This same statistical pattern is also found in analyses involving both trial latency data as well as the latency to copulation data (Figures 2 and 3). This xenophilic mating pattern is highlighted in the DRD test, which rejects the predictions of a simple positive coevolutionary model. As we will argue below, this does not necessarily rule out entirely positive reinforcing coevolution between male traits and female preferences, but it would impose specific requirements on such a system.

Positive coevolution allows for the possibility that females of one population prefer males of a second population if, for example, males in population 1 are constrained in their elaboration of a trait (e.g., due to predation pressure) or if males from population 2 evolve a particularly attractive trait (e.g., due to sensory exploitation). In the first scenario, females from both populations are expected to prefer the more ornamented males, a pattern which is not supported by our results. In the second scenario, females from both populations should be equally susceptible to the newly evolved attractive trait (Jennions and Petrie, 1997). Thus, through a process of positive coevolution, females from population 2 would evolve an enhanced preference for this attractive trait. Females of population 2 then are expected to prefer their own males even more than females from population 1. In other words, under a process of pure positive coevolution, if SR females prefer...
AT males, then AT females must prefer AT males even more strongly. This hypothesis was rejected by our DRD test, indicating that indeed the preference shown by SR females for AT males is stronger than that shown by AT females, and thus, our results are not consistent with a simple process of pure positive coevolution. Of course, that is not to say that such a process has played no role in this system, only that on its own it cannot explain the observed pattern. Our test is consistent, for instance, with a compound model in which positive reinforcing selection is acting in conjunction with another form of selection or with random drift.

The preceding argument, and our DRD test, implicitly assumes that the two populations are evolving along more or less isolated evolutionary trajectories, with different traits being the focus of selection in the different populations. This appears to be a reasonable assumption for H. pugilis, given the strikingly different phenotypes that have been derived in the different populations (Madison and McMahon, 2000), but it is not what might be expected in general. Evidence in other species suggests that selection acts on similar traits across populations, especially with respect to sexual selection (male coloration: Houde and Endler, 1990; Kwiatkowski and Sullivan, 2002; long chirp call: Simmons et al., 2001). The assumption that populations have independent trajectories permits us to assume that a female’s preference enhanced by coevolution is enhanced only to her own male’s traits. If the two populations’ novel traits and preferences are in similar signaling and sensory modalities, it is possible to imagine scenarios in which the females’ evolving enhanced preferences to the traits of local males could coincidentally enhance their preferences to traits of foreign males even more strongly. This coincidental coevolution could yield a significant result in the DRD test even though the process is positive coevolution. Thus, what the DRD test actually rejects is a simple hypothesis of positive male-female coevolution that is exclusive to the local population.

Patterns of foreign-mate preference seen as in this study are certainly not uncommon and have been observed in Drosophila (Dobzhansky and Steisinger, 1944; Wu et al., 1995), swordtail fish (Ryan and Wagner, 1987), and sticklebacks (McPhail, 1969). In many of these examples, females from both populations/species prefer males from the same population. For example, a pattern of xenophilia was observed in the mating patterns of Drosophila prosaltans, where females from Mexico preferred Brazilian males to their own and Brazilian females also preferred their own males (Dobzhansky and Steisinger, 1944). In swordtails, females of one species (Xiphophorus pygmaeus) prefer to mate with heterospecific (Xiphophorus nigrensis) males to their own conspecifics, while X. nigrensis females prefer their own males. In this particular example, the female preference seems to relate to the courtship behavior of the X. nigrensis males (Ryan and Wagner, 1987). A sensory bias, manifested as the shared preference for full courtship in a common ancestor, was put forth as one potential explanation for this observed heterospecific mating preference (Ryan and Wagner, 1987). All these patterns of foreign-mate preference differ markedly from those presented in this study.

Here, females from both populations did not have higher mating frequencies with males from the same population; instead, the preferred males (AT) were not preferred by their local females. A pattern of mate choice xenophilia similar to that seen in this study was found in a study of female preference functions in poeciliid fish. The strength of female preference for a sword in a genus lacking swords (Priapella) was higher than the strength of female preference for a sword in a genus in which swords evolved (Xiphophorus) (Basolo, 1998).

Table 1

Summary of behaviors associated with successful copulations from first trials only (means ± SE)

<table>
<thead>
<tr>
<th></th>
<th>AT males</th>
<th>SR males</th>
<th>t Value</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT females</td>
<td>N = 6</td>
<td>N = 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of times attentive</td>
<td>1.5 ± 0.95</td>
<td>3.2 ± 1.03</td>
<td>-1.2</td>
<td>.26</td>
</tr>
<tr>
<td>Number of times attentive/mount latency</td>
<td>0.96 ± 0.14</td>
<td>1.45 ± 0.15</td>
<td>-2.4</td>
<td>.04</td>
</tr>
<tr>
<td>Male movement (min)</td>
<td>0.43 ± 0.11</td>
<td>0.16 ± 0.13</td>
<td>1.57</td>
<td>.15</td>
</tr>
<tr>
<td>Male movement (min)/mount latency</td>
<td>0.24 ± 0.08</td>
<td>0.11 ± 0.08</td>
<td>1.17</td>
<td>.27</td>
</tr>
<tr>
<td>Prior attention</td>
<td>1.5 ± 0.04</td>
<td>1.1 ± 0.44</td>
<td>0.68</td>
<td>.52</td>
</tr>
<tr>
<td>Prior attention/mount latency</td>
<td>0.76 ± 0.13</td>
<td>0.85 ± 0.16</td>
<td>-0.41</td>
<td>.7</td>
</tr>
<tr>
<td>SR Females</td>
<td>N = 12</td>
<td>N = 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of times attentive</td>
<td>1.5 ± 0.8</td>
<td>4.0 ± 0.92</td>
<td>-2.02</td>
<td>.06</td>
</tr>
<tr>
<td>Number of times attentive/mount latency</td>
<td>1.26 ± 0.52</td>
<td>1.4 ± 0.58</td>
<td>-0.18</td>
<td>.86</td>
</tr>
<tr>
<td>Male movement (min)</td>
<td>0.25 ± 0.11</td>
<td>0.42 ± 0.13</td>
<td>-0.98</td>
<td>.34</td>
</tr>
<tr>
<td>Male movement (min)/mount latency</td>
<td>0.19 ± 0.04</td>
<td>0.12 ± 0.05</td>
<td>1.07</td>
<td>.3</td>
</tr>
<tr>
<td>Prior attention</td>
<td>1.09 ± 0.23</td>
<td>2.58 ± 0.3</td>
<td>-3.96</td>
<td>.0014*</td>
</tr>
<tr>
<td>Prior attention/mount latency</td>
<td>0.76 ± 0.1</td>
<td>0.3 ± 0.12</td>
<td>2.95</td>
<td>.009*</td>
</tr>
</tbody>
</table>

*Indicates significance at alpha = 0.017 (Bonferroni correction).

![Figure 4](image-url)

Figure 4

The proportion of time a female spent visually attentive to her future mate prior to copulation (using first trial data only) broken down into within-population response (local) and between-population response (foreign). SR females spent proportionally more of their time visually attentive to foreign males versus local males, while AT females showed no difference. Different letters indicate significant differences (p < .017).
In discussing her results, Basolo (1998) mentions a process involving antagonistic coevolution as one potential explanation underlying her observed female preference pattern. More recent studies have also provided empirical evidence of antagonistic coevolution. For example, the coevolution of male seminal signals and female receptors is argued to be driven by sexual conflict in houseflies (Andres and Arnquist, 2001). In a series of reciprocal mating experiments, Andres and Arnqvist (2001) found that the male’s ability to induce oviposition in females was dependent on her genotype. Females of one strain did not respond differently to foreign males (males of different strains), while females from other strains showed the weakest response to local males (Andres and Arnquist, 2001).

The results observed in this study may also represent an example of antagonistic coevolution. The observed mating pattern of SR female xenophilia and AT female apathy is similar to theoretical predictions of interpopulation crosses involving two populations with varying intensities of sexual conflict (see figure 3b Pizzari and Snook, 2003). Assuming a general resistance, females from the population with more intense conflict should be more resistant to males from both populations as compared to females from the population with less intense conflict (Pizzari and Snook, 2005). Provided that these predictions are valid (but see Rowe et al., 2003), our results would suggest that the AT population is under more intense conflict than the SR population (Figures 1 and 2 compared to figure 3c Pizzari and Snook, 2003). Unfortunately, our data do not permit us to affirm antagonistic coevolution as explaining our data. Without knowledge of the baseline or ancestral mating frequency for this group, it is impossible to discern whether AT females actually have a lower mating frequency with local males than expected or whether SR females are exhibiting an exaggerated mating frequency when paired with AT males. Furthermore, even if we knew such details, they may nonetheless be consistent with many models other than antagonistic coevolution (Rowe et al., 2003).

While details regarding the proximate factors underlying our observed mating patterns cannot be addressed with this study, our results do provide some preliminary insights into factors influencing mate choice among females from different populations. Of the SR females that copulated, those that mated with AT males spent 85% of their time visually attentive to the male prior to copulation, while those that mated with local SR males spent only 40% of their time visually attentive (Figure 4). In contrast, AT females did not significantly differ in the amount of time they spent visually attentive to males from either population. The ability of AT males to retain the visual attention of SR females may be an important factor underlying the xenophilic mating preferences observed in this study; AT males may be taking advantage of some component of the SR female’s visual sensory system. Originally, based on the differences in courtship behavior between the two populations (see Methods), we expected that any difference in visual attention would result from differences in male movement during courtship. Surprisingly, the amount of time males spent moving did not differ between populations (Table 1). This difference in attention then does not appear to be related to male courtship movements or to the overall visual locomotory-based signals involved in these courtship displays.

Other *Habronattus* species (including *H. pugillis*) produce multimodal (visual plus seismic) signals during courtship (Elias DO, Hebets EA, Hoy RR, in preparation) (Elias et al., 2003; Maddison and Stratton, 1988) and AT males appear to have a more elaborate seismic component to their courtship display than SR males (Elias DO, Hebets EA, Hoy RR, in preparation). The AT male’s elaborate seismic component may be involved in focusing/attracting/retaining a female’s visual attention. This type of attention-altering interaction between seismic and visual courtship signals has recently been demonstrated in a wolf spider (Hebets, 2005). Future studies will explore this potential for seismic manipulation of visual attention and will attempt to uncover the proximate factors underlying the xenophilic mating pattern observed between *H. pugillis* from these two populations.

Ambiguity in predictions of interpopulation crosses (Rowe et al., 2003) prevents us from confidently attributing our observations to a particular model of sexual selection. However, we can reject a pure process of positive coevolution of male trait and female preferences, which could have implications for the process of diversification and speciation. Although sexual selection is sometimes implicated in promoting reproductive isolation, antagonistic coevolution between males and females could conceivably do the opposite, promoting hybridization by making females susceptible to male traits with which they have not coevolved (Parker and Partridge, 1998). The xenophilia seen in *H. pugillis* populations allows for the possibility that the very traits in which they are diverging most noticeably might paradoxically promote introgression should the populations come into secondary contact. Indeed, while Masta (2000) did not find support for hybridization in mitochondrial data (Masta, 2000), there are hints of hybridization in the pattern of phenotypic differences among the populations (Maddison and McMahon, 2000).

We thank G. Binford, C. Maddison, and G. Bodner for helping in spider collecting. B. Walsh suggested the statistical test to measure differences in response differences. Helpful early drafts of this manuscript were provided by D. Papaj, D. Elias, G. Rosenthal, J. Storz, A. Cutter, B. Klein, T. Bukowski, P. Midford, K. Powers, A. Spence, N. VanderSal, K. Fowler-Finn, S. Sponberg, B. Borrell, B. Carter, T. Brown, L. Benedict, and two anonymous reviewers. D. Elias and A. Mooers provided fruitful discussions. The National Forest Service provided permits to collect on their lands. This work was funded in part by a David and Lucile Packard Fellowship to W.P.M.

REFERENCES

