3-11-2006

Distinct Ceramide Synthases Regulate Polarized Growth in the Filamentous Fungus *Aspergillus nidulans*

Shaojie Li
University of Nebraska - Lincoln

Liangcheng Du
University of Nebraska - Lincoln, ldu3@unl.edu

Gary Yuen
University of Nebraska - Lincoln, gyuen1@unl.edu

Steven D. Harris
University of Nebraska - Lincoln, sharris2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/chemistrydu

Part of the [Chemistry Commons](http://digitalcommons.unl.edu/chemistrydu)

http://digitalcommons.unl.edu/chemistrydu/1

This Article is brought to you for free and open access by the Published Research - Department of Chemistry at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Liangcheng Du Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Distinct Ceramide Synthases Regulate Polarized Growth in the Filamentous Fungus *Aspergillus nidulans*\(^{D}\)

Shaojie Li,* Liangcheng Du,† Gary Yuen,* and Steven D. Harris*‡

Departments of *Plant Pathology and †Chemistry and ‡Plant Science Initiative, University of Nebraska, Lincoln, NE 68588-0660

Submitted June 14, 2005; Revised December 8, 2005; Accepted December 27, 2005

Monitoring Editor: Howard Riezman

In filamentous fungi, the stabilization of a polarity axis is likely to be a pivotal event underlying the emergence of a germ tube from a germinating spore. Recent results implicate the polarisome in this process and also suggest that it requires localized membrane organization. Here, we employ a chemical genetic approach to demonstrate that ceramide synthesis is necessary for the formation of a stable polarity axis in the model fungus *Aspergillus nidulans*. We demonstrate that a novel compound (HSAF) produced by a bacterial biocontrol agent disrupts polarized growth and leads to loss of membrane organization and formin localization at hyphal tips. We show that BarA, a putative acyl-CoA-dependent ceramide synthase activity (Vallee and Riezman, 2005). In addition, recent results implicate localized membrane organization as being an important determinant of SepA recruitment (Pearson et al., 2004). Notably, sphingolipids are required for SepA localization to the hyphal tip (Pearson et al., 2004), which may account for their essential role in the polarized growth of *A. nidulans* hyphae (Cheng et al., 2001).

Sphingolipids are components of specialized membrane microdomains that are thought to play key roles in cell signaling and cytoskeletal organization (Futerman and Hanun, 2004). The biologically active molecule ceramide is a simplified sphingolipid that is synthesized by the condensation of a fatty acyl-CoA with a sphingoid base (Merrill, 2002). The responsible enzyme, acyl CoA-dependent ceramide synthase, can utilize acyl chains of varying lengths, though the well-characterized yeast enzyme prefers C26 fatty acyl-CoA as the substrate (Guillas et al., 2001). In *Saccharomyces cerevisiae*, Lag1 and Lac1 are homologous ceramide synthases that generate the bulk of ceramide pools (Guillas et al., 2001; Schorling et al., 2001). The remainder is produced via reverse ceramidase activity (Schorling et al., 2001). Deletion of either *LAG1* or *LAC1* does not cause obvious growth defects; however, the double *lag1 lac1* mutant is severely crippled and displays cell wall defects (Barz and Walter, 1999; Schorling et al., 2001). Recent biochemical characterization of Lag1 and Lac1 resulted in the identification of an additional subunit, Lip1, which is required for ceramide synthase activity (Vallee and Riezman, 2005).

The bacterial biocontrol agent *Lysobacter enzymogenes* C3 exhibits promising plant protection activity against fungal plant pathogens (Zhang and Yuen, 1999; Yuen et al., 2001). A component of this activity is a heat-stable antifungal factor (HSAF). We have found that HSAF dramatically affects the polarized growth of *A. nidulans* hyphae. These effects include the rapid loss of SepA localization from growing hyphal tips. The characterization of mutants displaying al-
tered responses to HSAF reveals that a ceramide synthesis pathway is required for its effects. Further molecular analyses demonstrate that *A. nidulans* possesses two distinct ceramide synthases that regulate hyphal morphogenesis: an essential *Lag1* homologue and an additional enzyme unique to filamentous fungi that is required for the maintenance of a stable axis of hyphal polarity.

MATERIALS AND METHODS

Fungal Strains and Media

Strains used in this study are described in Table 1. Media used for growing *A. nidulans* include MN (1% glucose, nitrate salts, trace elements, pH 6.5), MN-VTF (0.1 M threonine, 0.1% fructose, nitrate salts, trace elements, and vitamins, pH 6.5), MAG (2% malt extract, 2% glucose, 0.2% peptone, trace elements, and vitamins), and VGY (2% dextrose, 0.5% yeast extracts, and vitamins). Trace elements, vitamins, and nitrate salts are described in the appendix to Kafer (1977). Media were solidified using 1.5% agar. Uridine (5 mM) and uracil (10 mM) were added as needed. Strains were grown at 28°C for temperature sensitive (Ts) strains, permissive temperature was 28°C and restrictive temperature was 42°C.

Preparation of HSAF

HSAF was prepared from *Lysobacter enzoeogenes* strain C3S5 (Zhang and Yuen, 1999) grown in 10% TSB liquid medium. Cell-free bridged cultures were subject to ammonium sulfite precipitation followed by methanol extraction. HSAF was dissolved in methanol to produce a stock solution (20 mg/ml), which was stored at −20°C. Additional purification by HPLC yielded purified material that was subjected to NMR analysis and was shown to possess a structure related to a family of antibiotics containing maltophilin and dihydromaltophilin (L. Du et al., unpublished results). HPLC-purified HSAF had the same activity as the partially purified material when tested in growth and morphological assays (Supplementary Figure 1). Because the amount of purified material was so small, the methanol extracts were used for most experiments.

Microscopy

Coverslips with adherent hyphae were prepared for microscopy as previously described (Harris et al., 1994). Cell walls, nuclei, and sterol-rich membrane microdomains were detected as previously described using Calcofluor, Hoechet33258, and filipin, respectively (Harris et al., 1994; Pearson et al., 2004). To visualize GFP fusion proteins, hyphae grown on coverslips in VGY were briefly rinsed in sterile water and mounted. SepA-GFP was detected in transformants possessing plasmid pKESSP (Sharpless and Harris, 2002). Microfilaments were visualized in transformants containing a tropomyosin GFP fusion (TpmA-GFP) on plasmid pCP32 (Pearson et al., 2004). In all cases, GFP constructs were expressed under control of native promoter sequences. Microscopic observations were made using the 40× (UPlanApo) and 60× objective (PlanApo) of an Olympus BX51 fluorescent microscope. Images were captured with a Photometrics CoolSnap HQ CCD camera (Roper Scientific, Tucson, AZ) and processed using IPLab software (Scanalytics, Billerica, MA).

Images were converted from 16 to 8 bits and saved as TIFF files. Additional processing was performed using Adobe Photoshop 6.0 (San Jose, CA).

HSAF Susceptibility Tests and Mutant Screens

HSAF was added to autoclaved media. In some cases, Tergitol NP-40 (Sigma, St. Louis, MO) was added to a final concentration of 0.05% to improve solubility. Equivalent amounts of solvent were added to control plates. To generate HSAF-resistant mutants, conidiospores (strain A28) were plated onto MAG containing HSAF (50 μg/ml) and mutagenized with UV light (100J/m2) at a kill rate of 90%. Plates were incubated at 28°C for 3 days and larger colonies were screened for subsequent analysis. HSAF-hypersensitive mutants were recovered by screening a large collection of Ts mutants (Harris et al., 1994) for those unable to form colonies at 28°C in MAG containing HSAF (50 μg/ml). Candidate mutants were further tested for HSAF-induced defects in polarized hyphal growth. Note that the mutants displayed equal levels of resistance (Supplementary Figure 1) or sensitivity to HPLC-purified HSAF. However, because the partially purified methanol-extracted material could be readily produced in sufficiently large amounts, it was used for most experiments.

Genetic Analysis of Mutants and Characterization of the Affected Genes

Standard approaches were used for mutant characterization (Harris, 2001). The affected genes were cloned by complementation using a genomic library constructed in the vector pRG3-AMA1 (Osherov and May, 2000); available from the Fungal Genetics Stock Center, Kansas City, MO). Protoplast preparation and transformation were performed as previously described (Oakley and Osman, 1993). Complementation was judged by restoration of wild-type growth and morphology at restrictive temperature. Plasmid dependency was verified by evicting complementing plasmids on MN media containing 5-fluoroorotic acid (5-FOA) and testing for restoration of the original mutant phenotype (O’Connell et al., 1992). Plasmids were recovered and transformed into *Escherichia coli* DH5α for amplification and then restested to confirm that they possess complementing activity.

Inserts were amplified from complementing plasmids using oligonucleotide primers that flank the cloning site. The sequence of ~300 nucleotides was determined for each end of the insert and compared with the *A. nidulans* genome sequence database (http://www.broad.mit.edu/annotation/fungi/fgi/) to identify its boundaries. Predicted open reading frames located on each insert were individually amplified and tested for complementation when cotransformed with pRG3-AMA1 (Effron and Morris, 1998). Once identified as the affected gene, the coding region was independently amplified and sequenced in triplicate to verify the presence of a mutation and determine its nature.

The fusion PCR approach recently described by Yang et al. (2004) was used to replace *lag4* with *pyr-4*. Briefly, we amplified the 5′ flanking sequence (201-base pairs) with primers Lac1 (5′GCCACAGATGCGTTACGCTATGTTCAAAACACATTCC) and Lac2 (5′CCACAGATGCGTTACGCTATGTTCAAAACACATTCC) to generate the 5′ flanking sequence with primers Lac3 (5′CAGTACAACTCCTGCATGCTATGCGTGTTATCTGGGATCACATTCC), Rlac1 (5′GGGGCGGCTGAGCCCTGGAAGGCTGCGCTGCGCGC) and Rlac2 (5′GGGGCGGCTGAGCCCTGGAAGGCTGCGCTGCGCGC), and *pyr-4* with primers Lac3 (5′GCCACAGATGCGTTACGCTATGTTCAAAACACATTCC) and Rlac1 (5′GGGGCGGCTGAGCCCTGGAAGGCTGCGCTGCGCGC). The amplified 5′ flanked sequence was then ligated at its 3′ end with the 5′ extension of the *pyr-4* product. The amplified 3′ flanked sequence was 54-base
pairs of sequence overlap at its 5’ end with the 3’ extension of the pgr-4 product. The final gene replacement was generated using primers Rlcl and Rlca with a template consisting of a mixture of the three amplified fragments (120 ng each). The fusion PCR was performed using programs specified by Yang et al. (2004). The final gene replacement was cloned into the TOPO vector (Invitrogen, Carlsbad, CA) to produce plasmid pLACR12. The lagA deletion mutant was subsequently generated by transformation of wild-type strain GR5 with pLACR12. The conditional lagA allele, alca(ATHG)-GFP::lagA, was constructed in plasmid pMCB17apx (Efimov, 2003). A 761-base pair fragment starting from the predicted initiation codon of lagA was amplified with the primers ASC2464F (CATCGGCGCGGCCGATGGCTCGCACGCGCAAATCCA; AscI site underlined) and Pac2464R (ACCTTAATTAACCGGAAGGAAACAAATACCGTCTGCTTTGGGG; PacI site underlined). The amplified fragment was cloned into pMCB17apx using the AscI and PacI cloning sites, thereby fusing the N-terminus of LagA to GFP, which in turn is expressed under the control of alca(ATHG). Homologous integration of this construct generates a single full-length copy of lagA regulated by alca(ATHG), plus a truncated version controlled by native promoter sequences. Accordingly, transformants are propagated under alca(ATHG) inducing conditions (1% glycerol), then shifted to repressing conditions (1% glucose) to observe mutant phenotypes (Oakley and Osmani, 1993).

Labeling and Analysis of Sphingolipids

Wild-type (GR5), barA mutant (UV13), alca(ATHG)-GFP::lagA (ASL10), and alca(ATHG)-GFP::lagA barA (DRG1) conidiospores were inoculated into 25 ml YGV (supplemented with uridine and uracil when necessary). After incubating at 28°C, 180 rpm for 2 d, mycelia were filtered through four layers of Miracloth. Approximately 100 mg (wet weight) of mycelia was transferred into a sterile 15-ml test tube containing 3 ml fresh YGV. Hyphae were allowed to grow overnight under the same conditions (1% glucose) to observe mutant phenotypes (Oakley and Osmani, 1993; L. Du et al., unpublished results). Although HSAF was never observed in untreated controls. In addition, although nuclei appeared normal, they were often distributed as aberrant clumps (Figure 1). Identical morphological effects were observed when HPLC-purified HSAF was tested (S. Li et al., unpublished results). These observations suggest that HSAF specifically targets processes required for the formation and maintenance of stable polarity axes, but does not affect growth or nuclear division.

Polarized hyphal growth is supported by the constant addition of new cell wall and membrane to a discrete apical site. In the presence of HSAF, this pattern was dramatically altered. Prominent patches of Calcofluor-bright cell wall material accumulated at the tips and apparent septation sites of treated hyphae (Figure 2, Calcofluor). Similar patches were never observed in untreated controls. In addition, within 10 min of exposure to HSAF, the normal apical localization of sterol-rich membrane microdomains was lost (Figure 2, filipin).

At hyphal tips, the A. nidulans formin SepA localizes to a broad cortical patch subtended by a bright spot (Sharpless and Harris, 2002; Figure 2, SepA-GFP). However, this localization pattern is rapidly disrupted (i.e., within 10 min) upon exposure to HSAF, and SepA accumulates within the cytoplasm (Figure 2, SepA-GFP). Longer treatment (i.e., 60 min) cause condensed SepA-GFP spots to appear at random locations throughout hyphae. The failure to maintain SepA at hyphal tips should preclude the formation of microfilaments that can be detected using a tropomyosin-GFP (TpmA-GFP) fusion protein (Pearson et al., 2004). Thus, as expected, the disappearance of SepA from HSAF-treated hyphal tips was accompanied by loss of TpmA-GFP local-
ization (Figure 2, TpmA-GFP). Together, these results imply that HSAF perturbs the stable recruitment of SepA to hyphal tips, thereby preventing the localized formation of microfilaments involved in vesicle transport. Notably, HSAF does not affect the localization of SepA or tropomyosin to septation sites, which is consistent with the observation that it has no effect on septum formation.

Mutation of an Acyl-CoA-dependent Ceramide Synthase Causes HSAF Resistance

To determine how HSAF affects polarized hyphal growth and to identify its presumptive target, a screen for mutants resistant to HSAF was undertaken. This screen yielded four bar (biocontrol agent resistance) mutants that were equally resistant to HSAF (both the partially purified methanol extracts and the HPLC-purified material; see Materials and Methods and Supplementary Figure 1). The barA1 mutant, which was selected for further analysis, is resistant to HSAF and also exhibits a colony morphology defect at 42°C (Figure 3A). Note that the resistance phenotype appears to be specific to HSAF; barA1 mutants retained wild-type susceptibility to aureobasidin A, myriocin, and nystatin (unpublished results). Genetic analysis revealed that resistance to the growth inhibitory effect of HSAF is dominant, whereas the colony and hyphal morphology defects are recessive. In addition, both traits cosegregated in backcrosses to wild type. The reduction in colony growth at 42°C was sufficient to permit cloning of the barA gene by complementation from a plasmid-borne genomic library (see Materials and Methods for details). The insert from a single rescued plasmid was positioned on the A. nidulans genome sequence (see Materials and Methods), and candidate open reading frames present on the insert were individually amplified and tested for complementation of barA1. These experiments revealed that barA1 is a mutation in annotated open reading frame AN4332.2, which we now designate as barA. Complementation analysis showed that barA was the affected gene in the three other HSAF resistant mutants (barA2, barA3, and barA4). Sequencing of the four independent barA alleles demonstrated that barA1, barA2, and barA3 possess different nonsense mutations (Supplementary Figure 2). These mutations would presumably lead to the formation of a nonfunctional truncated BarA protein, with the shortest consisting of only the first 161 amino acids. By contrast, barA4 possesses a large (1576 base pairs) deletion that extends from 470 base pairs upstream to 1106-base pairs downstream of the predicted translational start site, thereby removing the entire coding region except for the last 377 base pairs. Because the growth defects and HSAF resistance caused by barA4 are indistinguishable from the other barA mutations, these are all presumed to be null alleles.

BLAST searches revealed that BarA is a homologue of the yeast Lag1 acyl-CoA-dependent ceramide synthase (Table 2; Supplementary Figure 2), which catalyzes the condensation of phytosphingosine with a fatty acyl-CoA to form phyto-ceramide (Figure 3B). To determine if the barA1 mutation causes morphological defects similar to those triggered by HSAF treatment, mutant hyphae were examined after growth at 42°C. These experiments showed no obvious delay in the emergence of germ tubes (Figure 4A). Nevertheless, once formed, barA1 hyphae fail to maintain a stable axis of polarity, which results in extensive apical branching (Figure 4A; 58% of barA1 mutants possess apical branches compared with 1% of wild-type hyphae; n = 100). Filipin staining at hyphal tips could not be detected in barA1 mutants, nor could tropomyosin localization (Figure 4B). Notably, multiple attempts to transform barA1 mutants with a SepA-GFP construct (Sharpless and Harris, 2002) were unsuccessful, thereby suggesting that the mutant could not tolerate increased dosage of SepA. In total, these phenotypes resemble those caused by HSAF treatment and are also similar to the defects observed after imposition of a downstream...
block in sphingolipid biosynthesis (Cheng et al., 2001). Accordingly, we propose that the effects of HSAF require BarA-dependent ceramide synthesis. Although it is conceivable that BarA could be the target of HSAF, the observation that the morphological defects caused by the mutational inactivation of barA are not as severe as those caused by treatment of wild-type hyphae with HSAF (compare Figures 1 and 2 to Figure 4A) suggests that the role of BarA in HSAF resistance may not be direct (see Discussion).

Mutation of a Sur2 Homologue Causes HSAF Hypersensitivity

To further characterize the cellular response to HSAF, a large collection of Ts mutants was screened for mutations that cause hypersensitivity to HSAF at permissive temperature (28°C). Among several mutants identified, the one displaying the strongest hypersensitivity was named basA1 (biocontrol agent sensitivity; Figure 3A). Genetic analysis revealed that HSAF hypersensitivity and Ts growth were caused by a single recessive mutation. A single plasmid capable of complementing the Ts growth defect was recovered from a genomic library. The ends of the insert were sequenced, and testing of predicted coding regions for complementation demonstrated that basA1 is a mutation in an annotated open reading frame AN0640.2. Sequence analysis of the basA1 allele showed that it is caused by a missense point mutation (TGG→TGC; W44C; Supplementary Figure 2). BLAST searches revealed that BasA is a homologue of the yeast Sur2 sphinganine hydroxylase (47% identity over 328 amino acids; Supplementary Figure 2). Notably, in yeast, the conversion of dihydrosphingosine (DHS) to phytosphingosine (PHS) by Sur2 generates one of the substrates for the Lag1 ceramide synthase (Figure 3B).

Phenotypic characterization of the basA1 mutant revealed a striking similarity to the defects caused by HSAF in wild-type hyphae. Although there was no obvious delay in germ tube emergence, basA1 mutants displayed extensive hyperbranching due to the apparent failure to maintain a stable axis of hyphal polarity (Figure 3A), as well as the loss of both filipin staining and tropomyosin localization at hyphal tips (Figure 5B). As noted for barA1, basA1 mutants also appear sensitive to sepA gene dosage, as we could not recover transformants possessing SepA-GFP. Like HSAF-treated hyphae, basA1 mutants display abnormal deposits of Calcofluor-stained cell wall material at random sites (Figure 5A). Separate experiments showed that this effect could be mimicked by the exposure of wild-type hyphae to increased levels of DHS (1 μg/ml), which is predicted to accumulate in basA1 mutants (Figure 2B), whereas the addition of PHS (0.5–1 μg/ml) had no comparable effect (unpublished results). Collectively, these experiments suggest that the effects of HSAF on hyphal morphogenesis and cell wall deposition are exacerbated by the depletion of PHS, a ceramide precursor, and perhaps also the accumulation of DHS.

A. nidulans Possesses Two Distinct Ceramide Synthases

Simultaneous deletion of the two closely related acyl-CoA-dependent ceramide synthases in S. cerevisiae, Lag1 and Lac1, severely compromises growth (Barz and Walter, 1999; Schorling et al., 2001). By contrast, barA mutants are able to grow, albeit with abnormal hyphal morphology. This suggests that A. nidulans possesses a second ceramide synthase. Searches of the A. nidulans genome database identified another annotated coding region, AN2464.2, with much stronger predicted homology to the yeast Lag1 ceramide synthases than that displayed by BarA (Table 2; Supplementary Figure 2). Phylogenetic analysis (Figure 6) confirmed that this homologue belongs to a distinct clade that includes S.

Table 2. BLASTp comparisons of A. nidulans and S. cerevisiae Lag1 homologues

<table>
<thead>
<tr>
<th>Query</th>
<th>AN4332.2</th>
<th>AN2464.2</th>
<th>Lag1</th>
<th>Lac1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN4332.2</td>
<td>29/49 6e-24</td>
<td>31/38 1e-22</td>
<td>29/47 2e-21</td>
<td></td>
</tr>
<tr>
<td>BarA</td>
<td>277 aa</td>
<td>246 aa</td>
<td>221 aa</td>
<td></td>
</tr>
<tr>
<td>AN2464.2</td>
<td>30/51 1e-22</td>
<td>51/67 1e-86</td>
<td>43/58 5e-84</td>
<td></td>
</tr>
<tr>
<td>LagA</td>
<td>230 aa</td>
<td>314 aa</td>
<td>379 aa</td>
<td></td>
</tr>
</tbody>
</table>

BarA and LagA were used as query sequences for BLASTp searches at NCBI using default parameters. For each entry, the top line includes the %identity/%similarity and the e value, and the bottom line includes the length of predicted homology.
cerevisiae Lag1 and Lac1, plus single homologues from other filamentous fungi and yeasts. Accordingly, we named this homologue LagA. Notably (Figure 6), BarA belongs to a separate clade that consists of members from other filamentous fungi and Schizosaccharomyces pombe, but not S. cerevisiae. On the basis of this analysis, we sought to determine if LagA is an essential ceramide synthase in A. nidulans.

A precise replacement of lagA was constructed (ΔlagA::pyr-4), but could only be propagated as a heterokaryon. Homokaryotic segregants produced morphologically abnormal hyphae with a severe growth defect (Supplementary Figure 4), thereby suggesting that lagA is an essential gene. To further characterize its function, we generated a conditional allele regulated by the alcA promoter (alcA(p)::GFP::lagA; see Materials and Methods). When grown under inducing conditions, this strain grew as well as wild-type controls and displayed normal colony morphology (Figure 7A). However, on repressing media, the alcA(p)::lagA strain grew much worse than the wild-type or the barA1 mutant (compared with wild type, radial growth of alcA(p)::lagA was reduced by 91%, whereas barA1 was reduced by only 63%; Figure 7A). Although germ tube emergence was unaffected, repressed alcA(p)::lagA hyphae ultimately became grossly distorted with multiple apical branches and no obvious polarity axis (Figure 8A). Nevertheless, unlike barA1 mutants, the growth and morphological defects caused by repression of lagA expression were further exacerbated by exposure to HSAF (Figure 7B). Finally, we constructed and characterized a barA1 alcA(p)::lagA double mutant. Although this mutant was indistinguishable from barA1 when alcA(p) was induced, it displayed a severe growth defect on repressing media (Figure 8C). Under the latter conditions, double mutant conidiospores were only capable of producing short, morphologically aberrant hyphae (Figure 8, A and B). Based on this synthetic morphological defect, we conclude that LagA is an essential ceramide synthase that generates the bulk of ceramide pools required for the polarized growth of A. nidulans hyphae. By contrast, BarA appears produce a specialized pool that is particularly important for organization of the hyphal tip and is presumably targeted by HSAF.

Depletion of Sphingolipids in barA and lagA Mutants
To further characterize the roles of BarA and LagA in ceramide synthesis, we used labeled DHS to examine de novo ceramide synthesis in barA and lagA mutants. We observed a marked reduction in de novo ceramide synthesis in both mutants compared to wild type (Figure 9A and B). This result suggests that BarA and LagA are essential for de novo ceramide synthesis in A. nidulans.

Figure 4. Functional characterization of BarA. (A) Wild-type (wt) and barA1 conidia were germinated in YGV at 42°C for 8 or 12 h and then stained with Hoechst 33258 and Calcofluor. (B) Wild-type and barA1 hyphae grown in YGV were shifted to fresh YGV at either 28° or 42°C. After 30 min, hyphae were stained with filipin to observe sterols. Microfilaments were detected in wild-type and barA1 hyphae expressing TpmA-GFP. Bar, 3 μm.

Figure 5. Functional characterization of BasA. (A) basA1 conidia were germinated in YGV at 42°C for 8 or 12 h and then stained with Heochst 33258 and Calcofluor. (B) basA1 hyphae were shifted into fresh YGV medium and incubated at 28 or 42°C for 30 min. Sterols were visualized by staining with filipin. Microfilaments were detected by localizing TpmA-GFP. Bar, 3 μm.
sphingolipid biosynthesis in wild-type, barA1, alcA(p)::lagA, and barA1 alcA(p)::lagA strains. Although wild-type lipid extracts possessed two prominent bands of labeled sphingo-

lipids, sphingolipid levels were dramatically reduced in extracts from either single mutant or the double mutant (Figure 9). Moreover, PHS accumulated in the barA1 mutant, and to a lesser extent in the alcA(p)::lagA strain (Figure 9). Surprisingly, PHS accumulation was not observed in the double mutant. Collectively, these results suggest that BarA and LagA are bona fide ceramide synthases and support the notion that the morphological defects caused by their mutational inactivation is due to the depletion of ceramide pools.

DISCUSSION

It has become increasingly apparent that the formation of a stable polarity axis is a key event underlying hyphal mor-

<table>
<thead>
<tr>
<th>A</th>
<th>BarA</th>
</tr>
</thead>
<tbody>
<tr>
<td>28°C</td>
<td>42°C</td>
</tr>
<tr>
<td>alcA(p)::lagA</td>
<td>barA1</td>
</tr>
<tr>
<td>MAG</td>
<td>MNVTF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B</th>
<th>LagA</th>
</tr>
</thead>
<tbody>
<tr>
<td>alcA(p)::lagA</td>
<td>-HSAF</td>
</tr>
<tr>
<td>+HSAF</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7. Functional characterization of LagA. (A) Comparison of growth defects observed in barA1 and lagA108 mutants. Conidiospores from strains ASL10 (alcA(p)::lagA), UV13 (barA1) and A28 (wild type) were inoculated on alcA(p)-inducing (MNVTF) or -repressing (MAG) media and incubated at the indicated temperatures for 3 d. (B) The alcA(p)::lagA mutant is sensitive to HSAF. Conidiospores with the indicated genotypes were inoculated onto MAG + 50 μg/ml HSAF plates and incubated for 24 h. Images were acquired using an Olympus SZX12 dissecting microscope (Lake Success, NY).

Figure 6. Fungal Lag1-related acyl-CoA-dependent ceramide synthases. Predicted coding regions of Lag1 homologues were aligned using ClustalW (MacVector v7.0). The tree was constructed using the neighbor joining method with bootstrap support (1000 repetitions) and Poisson correction. All sequences are designated according to their annotation format or known protein name. A. nidulans (An), N. crassa (Nc), and F. graminearum (Fg) sequences were obtained from the Fungal Genome Initiative (http://www.broad.mit.edu/annotation/fungi/fgi/). F. verticillioides (Fum17 and Fum18), S. pombe (Sp), Ashbya gossypii, (Ag), S. cerevisiae (Sc), and human (Hs) sequences were obtained from NCBI. The blue line indicates BarA homologues, and the red line indicates LagA homologues.

Figure 8. Phenotype of barA lagA double mutants. (A and B) Wild-type (A28), barA1 (UV13), alcA(p)::GFP::lagA (ASL10), and barA1 alcA(p)::GFP::lagA (DRG1; ΔΔ) conidia were germinated in alcA(p) repressing YGV at 42°C for 12 h (A) or 16 h (E). (C) Conidiospores from strains UV13, ASL10, and DRG1 were inoculated on alcA(p)-inducing (MNVTF) or -repressing (MAG) media and incubated at 28°C for 3 d. Bar, 10 μm.
phagocytosis (Harris and Momany, 2004). Recent studies highlight the role of conserved signaling modules and novel fungal-specific proteins in controlling this event (Bauer et al., 2004; Pearson et al., 2004). Here, we exploit a small molecule that perturbs the normal pattern of hyphal morphogenesis to demonstrate that the formation and stabilization of polarity axes requires functional ceramide synthases. Moreover, we show that filamentous fungi possess two distinct acyl-CoA-dependent ceramide synthases, one that is essential and a second that appears to be uniquely dedicated to the regulation of polarized hyphal growth.

Plasma membrane microdomains are generally thought to serve as localized signaling platforms that facilitate the transduction of cell surface information to the cytoskeleton. These segregated microdomains, also known as lipid rafts, form in the lateral plane of the membrane and are composed of sphingolipids and sterols (Simons and Toomre, 2000; Tsui-Pierchala et al., 2002). Although there is some controversy regarding their existence (Munro, 2003), it has become increasingly apparent that plasma membrane microdomains play an important role in the regulation of polarized morphogenesis. For example, in neurons, lipid rafts have been implicated in the regulation of growth cone guidance by chemotropic signals (Guirland et al., 2004). More recently, distinct receptor-ligand complexes were shown to segregate into different membrane microdomains on the same axonal growth cone (Marquardt et al., 2005). This result is consistent with the idea that a diverse array of lipid microdomains may exist on the surface of a single polarized cell. The basis for this diversity may lie in the sphingolipid composition of each microdomain. The observation that different microdomains on the neuronal cell surface contain distinct sphingolipids that are presumably derived from separate ceramide pools supports this notion (Brugger et al., 2004). Indeed, it has been demonstrated that mammalian cells possess multiple Lag1 homologues that differ in the nature and length of the fatty acyl-CoA donor (Riebeling et al., 2003). On the basis of our results, we propose that a similar complexity in organization and composition of plasma membrane microdomains underlies the regulation of polarized hyphal growth.

In S. cerevisiae, the acyl-CoA-dependent ceramide synthases Lag1 and Lac1 form a complex with an additional subunit known as Lip1 (Vallee and Riezman, 2005). Within this complex, the synthases may associate with each other as heterodimers or with themselves as homodimers. Characterization of Lip1 shows that it is essential for ceramide synthase activity and, along with Lag1 and Lac1, localizes to the ER membrane (Vallee and Riezman, 2005). Although the specific function of Lip1 remains uncertain, it has been suggested that Lag1 and Lac1 may regulate the specificity of the fatty acyl-CoA donor (Guzias et al., 2001). Our results imply that, like yeast, filamentous fungi possess an essential Lag1 homologue that presumably generates most of the ceramide required for growth and hyphal morphogenesis. However, they also possess a distinct homologue that is absent from yeast and appears to be dedicated to the regulation of polarized hyphal growth. On the basis of our characterization of barA mutants and the effects of HSAF, we propose that this homologue uses an alternate acyl-CoA donor to generate a specific pool of sphingolipids that are incorporated into a lipid microdomain at the hyphal tip. This hypothesis predicts the existence of two different ceramide syntheses complexes in filamentous fungi. Annotation of the genome sequences of multiple filamentous fungi (i.e., A. nidulans, Neurospora crassa, Fusarium graminearum, Magnaporthe grisea) has failed to reveal obvious homologues of Lip1. Therefore, at this time, determining the biochemical composition of these complexes and the nature of their donor specificity is an important target for future research.

In filamentous fungi, the formation and maintenance of a stable polarity axis is essential for polarized hyphal growth. Functions known to be required for axis stabilization include the Bud1 GTPase signaling module and kinesin-based microtubule transport (Bauer et al., 2004; Konzack et al., 2005). Several previous observations also implicate membrane microdomains in this process. First, lipid rafts appear to be required for polarized hyphal growth in Candida albicans and mating projection formation in yeast (Bagnat and Simons, 2002; Martin and Konopka, 2004; though see Waldez-Taubus and Pelham, 2003 for an alternative interpretation of the yeast results). Second, an earlier study in A. nidulans documented a role for sphingolipid-rich membrane microdomains in the regulation of polarized hyphal growth (Cheng et al., 2001). Third, we recently described a novel fungal-specific protein required for axis stabilization that appears to regulate membrane organization at the hyphal tip (Pearson et al., 2004). Our results extend these previous observations by showing that filamentous fungi possess a unique acyl-CoA-dependent ceramide synthase that appears to promote the formation of a specialized membrane microdomain required to stabilize polarity axes. Moreover, the presence of distinct Lag1-related ceramide synthases that make independent contributions to polarized hyphal growth suggests the possible existence of distinct membrane microdomains at the hyphal tip. How could these lipid microdomains mediate the stabilization of polarity axes? One attractive possibility is that they provide anchoring regions for morphogenetic scaffold proteins such as formins and WASP, thereby placing these proteins in proximity to the upstream GTPases that trigger their activation (Evangelista et al., 1997; Golub and Caroni, 2005). For instance, a BarA-dependent microdomain may regulate the localization of SepA, whereas the function of WASP and other crucial morphogenetic proteins may require a parallel LagA-dependent microdomain (Figure 10). Moreover, the presence of the LagA-
insights into its role in the regulation of polarized hyphal growth.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their thoughtful suggestions. This study was supported by an award from the Nebraska Research Initiative.

REFERENCES

