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Two-dimensional nuclear magnetic resonance correlation spectroscopy
at zero field

Ming-Yuan Liaoa) and Gerard S. Harbison
Department of Chemistry, 508 Hamilton Hall, University of Nebraska at Lincoln, Lincoln,
Nebraska 68588-0304

~Received 20 April 1999; accepted 21 May 1999!

Three methods for two-dimensional correlation nuclear magnetic resonance spectroscopy at zero
field are discussed. All three involve coherence transfer via longitudinal polarization, double
quantum coherence, or both in parallel. The double quantum pulse sequences exploit the spinor
property of spin states. These sequences have been applied to connectedDm51 transitions, as well
as for the indirect detection of forbidden or nearly forbiddenDm.1 transitions. ©1999 American
Institute of Physics.@S0021-9606~99!00331-1#

INTRODUCTION

Despite their success in high-field nuclear magnetic
resonance~NMR!, extension of multidimensional Fourier
transform methods to zero-field NMR has been limited.
There are several legitimate reasons for this; principally,
high-field spectra are often complex, with literally thousands
of resonance signals; in such systems, two-dimensional
methods are necessary both to increase the resolution and
provide spectral assignments. In contrast, zero-field spectra
are often very simple, both because of the paucity of chemi-
cally distinct species in the material, and because there is
usually only a single significant term in the spin Hamil-
tonian, resulting in a lack of spectral multiplicity.

Nonetheless, there are occasions when multidimensional
techniques can be usefully applied at zero field. The first
such applications1–3 were directed at extracting the asymme-
try parameter, ordinarily unavailable for spin 3/2 nuclei at
zero field. For spins 5/2 and higher,h can be obtained from
the ratios of two or more spectral frequencies observable for
each species. However, in samples with several distinct qua-
drupolar species, such as partially deuterated amine and
amino acid hydrohalides,4 connected transitions must be cor-
rectly assigned to extract this information. This was the pur-
pose of our original nuclear quadrupolar correlation
experiment.5 Since then, we have also applied the experi-
ment to inhomogeneously broadened systems, since in such
systems the quadrupolar frequencies are strongly correlated.
The resulting removal of this broadening has allowed us to
estimate the hexadecapolar interaction for127I In cadmium
iodide with high accuracy.6

Figure 1 correlates the energy levels and transitions for a
spin 5/2 nucleus at zero field with the high-field energy lev-
els. At zero field, the high-field eigenstates, labeled by the
quantum numberm associated with thez component of the
angular momentum, become twofold degenerate, with the
6m states having the same energy. There are two connected
single-quantum transitions at frequenciesn1 andn2 and one
double-quantum transition atndq5n21n1 . For an axially

symmetric electric field gradientn252n1 , and the eigen-
states are identical to the high-field eigenstates. If the electric
field gradient is not axially symmetric, the ratio between the
two single-quantum frequencies decreases until it reaches a
value of 1 for an asymmetry parameterh5(¹Eyy

2¹Exx)/¹Ezz51, and concomitantly there is some mixing
of the high-field eigenstates, them565/2 states being par-
tially mixed with m561/2 and them563/2 state withm
571/2. For simplicity’s sake, we shall henceforth refer to
the degenerate states corresponding to quantum numbers
6m simply asm.

The original NQ-COSY experiment used a strategy com-
mon to many high-field NMR experiments: the first transi-
tion was excited, allowed to evolve, one component of the
transverse magnetization returned to thez direction, and then
the second~connected! transition excited and observed. This
strategy has the virtue of simplicity, and in many systems at
high field it is the only alternative. It has however, one major
drawback: it wastes half of the initial nuclear polarization.

There exists a second method of transferring coherence
between connected transitions: via the double-quantum co-
herence. In this paper, we explore alternative strategies for
correlation spectroscopy employing this route of polarization
transfer, weigh the advantages of the two transfer pathways,
and consider hybrid methods employing both.

MATERIALS AND METHODS

Antimony~III ! chloride and bismuth~III ! chloride are ob-
tained from Johnson Matthey Electronics and Fluka. The
quadrupole resonance frequencies of121Sb (I 55/2), 123Sb
(I 57/2), and209Bi ( I 59/2) in antimony~III ! chloride and
bismuth~III ! chloride are obtained from the literature.7,8

All experiments were carried out using a home-built
pulsed double-resonance solid-state NMR spectrometer at
zero field. Since it was not necessary in any of these experi-
ments simultaneously to irradiate one transition while ob-
serving a second, no attempt was made to frequency isolate
the two probe resonances; rather, the radio-frequency output
from the two spectrometer channels was combined before
final amplification, using a single linear high-power ampli-
fier, and the output sent to the probe circuit shown in Fig. 2.
This circuit provides two probe resonances which can be

a!Current Address: Department of Applied Chemistry, National Chi Nan
University, Puli, Taiwan, Republic of China.
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tuned largely independently of each other, and which can be
matched individually to 50V using the matching inductorL3

and by adjusting the inductive coupling betweenL1 , L2 , and
L3 . The sample coil in this probe configuration is usuallyL1

The samples were packed into a glass tube of whose
dimensions are 10340 mm, and the probe tuned to the reso-
nance frequencies of two connected spin transitions of the
sample. The temperature was maintained at 24.560.5 °C by
air cooling.

RESULTS AND DISCUSSION

Longitudinal coherence transfer

Coherence transfer via longitudinal magnetization can
best be approached conceptually from the simpler nutation
experiment diagrammed in Fig. 3~a!. In this experiment,n1

andn2 correspond to the frequencies of two connected NMR
transitions. Pulses of variable lengtht1 is applied to the tran-
sition atn1 , causing the polarization, initially aligned along
thez direction, to process into the transverse direction, which
we can callx. As a result, the residual polarization of a single
crystallite is proportional toI 0 cosvt1, with v, the nutation
frequency, being a function of the nuclear gyromagnetic ra-
tio, the radio-frequency field strength, the quadrupolar asym-
metry parameter, and the crystallite orientation. If the two
transitions corresponding ton1 andn2 are connected, then a
pulse on the connected transition atn2 will give an observ-
able signal dependent on the residualz polarization of the
first transition. The first pulse on the~5/2-3/2! transition of
the 123Sb nucleus changes the population difference between
these two states. This increases the population difference be-
tween the 3/2 and the 1/2 state above that of thermal equi-

librium. If, subsequently, a spin echo pulse sequence is ap-
plied to observe the~3/2-1/2! transition, the effect of the first
pulse length on the intensity of the second transition can be
observed.

This is demonstrated in Fig. 4~a!, in which we show the
intensity of the~3/2-1/2! transition of the123Sb nucleus in
antimony~III ! chloride at an observation frequency ofn2

537.400 MHz, as a function of the length of a pulse on the

FIG. 1. Energy levels and coherences of a spin-5/2 nucleus~a! at high field,
with no quadrupole coupling present~b! at zero field.

FIG. 2. Double resonance probe circuit used in this work.C1 and C2 are
vacuum variable capacitors~Jennings, 15 kV breakdown voltage, 1.5–30
pF!, while L1–L3 are inductors.

FIG. 3. Pulse sequences for nutation spectroscopy at zero field.~a! Longi-
tudinal nutation experiment.~b! Spinor nutation experiment.

FIG. 4. ~a! Intensity of the 3/2-1/2 transition of the123Sb signal in antimo-
ny~III ! chloride, as a function of the time of nutation of the 5/2-3/2 transi-
tion, obtained using the pulse sequence in Fig. 2~a!. ~b! Intensity of the
3/2-1/2 transition of the123Sb signal in antimony~III ! chloride, as a function
of the time of nutation of the 5/2-3/2 transition, obtained using the pulse
sequence in Fig. 2~b!. Both spectra are obtained with transmitter frequencies
n1567.8 MHz andn2537.4 MHz, close to the respective resonance fre-
quencies of the~5/2-3/2! and ~3/2-1/2! transitions.
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~5/2-3/2! transition. The nominal nutation frequency is 65
kHz, however, because the precession frequency of indi-
vidual crystallites in a powder NQR sample depends on the
orientation of the electric field gradient tensor relative to the
coil axis,2,9 this is merely the predominant value in the pow-
der. The maximum enhancement measured for the~3/2-1/2!
transition is 2.64, corresponding to a nominalp pulse on the
5/2-3/2 transition, which is close to the maximum possible
value for a single crystal of (n11n2)/n252.81.

The nutation experiment, which merely demonstrates
polarization transfer, can be turned into a coherence transfer
experiment by replacing the variable pulset1 by two nominal
p/2 pulses separated by a variable delayt1 , as shown in Fig.
5~a!. Since this pulse sequence has already been published,5

it will be discussed only in the most cursory detail. The first
p/2 pulse creates single quantum coherence corresponding to
the ~5/2-3/2! transition for the spin system. The single-
quantum coherence evolves during thet1 period and acquires
a phasef5v1t1 . Applying a secondp/2 pulse on the same
~5/2-3/2! transition rotates the component out-of-phase with
the second pulse back along thez or 2z direction, leaving
the in-phase component unaffected. Thez magnetization of
the ~3/2-1/2! transition is therefore now modulated by cosf
or sinf. The perturbedz polarization can then be sampled
using ap/22t2p spin echo pulse sequence on the con-
nected transition. Both real and imaginary parts of the trans-
verse magnetization are collected in two separate experi-
ments to generate quadrature information in the first
dimension. Other artifacts, such as those arising from the
production of double-quantum coherence from the single-
quantum magnetization remaining after the secondp/2
pulse, can also be removed be phase cycling. The spin echo
on the~3/2-1/2! transition is used to avoid dead-time prob-
lems and does not complicate the spin dynamics. After pro-
cessing by the method of Stateset al.,10 a two-dimensional
spectrum correlating the~5/2-3/2! and~3/2-1/2! transitions of

123Sb in antimony trichloride was obtained, and is shown in
Fig. 6~a!. As can be seen, the spectrum obtained has pure
phase in both dimensions.

While this sequence has the virtue of simplicity, the Her-
miticity of the density matrix means that purely real longitu-
dinal elements, through which coherence is transferred, can
only contain half of the~complex! coherence information,
and half of the initial magnetization is lost, an inevitability in
any sequence which relies on coherence transfer via longitu-
dinal polarization.

Coherence transfer via the double-quantum
coherence

The pulse sequence shown in Fig. 3~b! seems at first
glance to be a trivial variation on that in 3~a!; the order of the
first two pulses is reversed. The rearrangement, however, has
profound consequences. Following creation of single-
quantum coherence of then2 transition by the nominalp/2
pulse on that transition, the pulse of variable lengtht1 now
converts that coherence into double-quantum coherence be-
tween the top and bottom states of the system. Moreover,
because the pulse affects only one of the two states involved
in the initial coherence, the evolution of that state follows the
behavior of a spinor.11 The observed signal in the experi-
ment, shown in Fig. 4~b!, obtained under identical conditions

FIG. 5. Pulse sequences for two-dimensional NMR correlation spectroscopy
at zero field.~a! NQ-COSY.~b! NQ-SCOSY.~c! NQ-MSCOSY.

FIG. 6. Two-dimensional zero-field NMR correlation spectrum of the123Sb
nucleus in antimony~III ! chloride recorded by~a! the NQ-COSY pulse se-
quence,~b! the NQ-SCOSY pulse sequence,~c! the NQ-MSCOSY pulse
sequence.
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to those used in Fig. 4~a! ~except for the rearrangement of the
pulse sequence!, has a measured nutation frequency of 31.7
kHz, which is approximately half of the nutation frequency
measured via the experiment in Fig. 3~a!. Complete conver-
sion of the single-quantum signal into the~nearly invisible!
double-quantum coherence is achieved with a nominalp
pulse, inversion of the transition with a 2p pulse, and~ap-
proximate! regeneration of the original single-quantum co-
herence only after a 4p pulse. Such effects have been ob-
served previously in various forms of magnetic
resonance.12,13

The double-quantum coherence produced by thep pulse,
unlike longitudinal magnetization, has a phase associated
with it, which can in fact be written as the simple sum of the
phase of the single-quantum coherence and that of thep
pulse. Therefore, in a two-dimensional NMR experiment, it
can retain all of the phase information present in the evolved
single-quantum coherence at the end of thet1 period.

A two-dimensional coherence transfer experiment based
on such double-quantum coherence transfer is shown in Fig.
5~b!, and we have dubbed this experiment SCOSY~for
spinor COSY!. A p/2(n1)2t12p(n2) pulse sequence cre-
ates single-quantum coherence for the~5/2-3/2! transition,
allows it to evolve, and then transfers it to double-quantum
~5/2-1/2! coherence, as described above. A secondp pulse,
this time on the~5/2-3/2! transition, converts the double-
quantum coherence to single-quantum coherence of the~3/2-
1/2! transition. This pair ofp ‘‘spinor pulses’’ therefore has
the net effect of transferring the coherence between two con-
nected single-quantum transitions. After the refocusingp
pulse on the~3/2-1/2! transition, the transferred coherence,
which contains phase information acquired during the evolu-
tion t1 period, is observed during the detectiont2 period.

Unlike the simple NQ-COSY experiment, SCOSY re-
tains all the initial polarization of the~5/2-3/2! transition as
detected signal in then2 dimension, and since phase is trans-
ferred between the two coherences, elaborate schemes for
obtaining quadrature information in then1 dimension are
unnecessary. However, it has one overriding disadvantage.
As can be seen in the SCOSY spectrum of SbCl3 in Fig. 6~b!,
obtained with the identical sample and conditions as used in
the previous experiment, the two-dimensional spectrum ex-
hibits ‘‘phase-twist,’’14 a consequence of the transformation
of the dispersive part of the first Fourier transform into ab-
sorbtive signal by the second transform. This phase twist
broadens the two-dimensional signal and creates artifacts.
The key to removing phase twist is to produce a ‘‘time-
reversed’’ signal15 exp(2iv1 t1)exp(iv2 t2) in the first dimen-
sion in parallel with the normal signal exp(iv1t1)exp(iv2t2).
Unfortunately, there seems no straightforward way to do this
in the simple SCOSY experiment. Therefore, SCOSY ap-
pears to be largely of heuristic value.

We can modify the spinor experiment to allow observa-
tion of the evolution of the double-quantum transition. A
p/2(n1)p(n2) pulse sequence creates double-quantum co-
herence, which can be allowed to evolve in thet1 period.
This transition is weakly allowed for systems without axial
symmetry, but generally can be observed directly only with
great difficulty. Therefore, anotherp(n1) pulse converts the

double-quantum coherence to single-quantum coherence of
then2 transition, which is then detected. The linewidth of the
double-quantum coherence is about twice that of the single-
quantum transitions. The same pulse sequence was applied in
NMR to detect forbidden transitions by Hatanakaet al.,16

and investigated theoretically in NQR by Reddy and
Narasimhan17 and Ramamoorthy.18 Of course, the double-
quantum coherence could as easily be detected via then1

single-quantum coherence, by putting the secondp pulse on
n2 rather thann1 .

Dual mode coherence transfer

The NQ-MSCOSY pulse sequence@Fig. 5~c!# was devel-
oped to attain a spectrum with the improved signal-to-noise
ratio of SCOSY, but without the phase twist problem. It is a
conceptual hybrid of the two earlier experiments, in which
half the coherence is transferred via the longitudinal and half
by the double-quantum route. As in the original NQ-COSY
experiment, ap/2(n1)2t12p/2(n1) sequence allows evolu-
tion of the first single-quantum coherence, and places one of
the two transverse components along thez direction. Instead
of allowing the residual transverse to decay or be phase
cycled away, however, it is transferred into single-quantum
coherence of then2 transition by the pair ofp pulses used in
the SCOSY experiment.~This pulse pair also inverts the lon-
gitudinally transferred component, but this can be dealt with
in data processing.! A p/2 pulse on then2 transition, if it is
in phase with the coherence transferred via the double-
quantum route, will leave it unaffected, but it will accom-
plish the transfer of the longitudinal polarization component
into single-quantum coherencen2 , orthogonal to the single-
quantum coherence transferred by the double-quantum route.
Phases of the pulses can be cycled to ensure that equal
amounts of both Cartesian components of the initial single-
quantum coherence are transferred by each route; moreover,
the phase of the longitudinal transfer pulses can be selected
so as to produce quadrature in the first dimension and elimi-
nate phase twist. The result is a complete transfer of single-
quantum coherence between the two transitions, just as in
SCOSY, one half taking the route followed in NQ-COSY,
the other the route followed in NQ-SCOSY. A finalp refo-
cusing pulse on the~3/2-1/2! transition is used to avoid dead-
time problems.

Using a 32 step phase cycling routine, the two-
dimensional correlation spectrum of123Sb in antimony~III !
chloride is shown in Fig. 6~c!. For purposes of comparison,
the spectrum was acquired under the same acquisition con-
ditions as NQ-COSY and NQ-SCOSY spectra shown for the
same material above. The spectrum has pure phase in both
dimensions, however, the improvement of the signal to noise
is not substantial. It is likely that the full factor of 2 improve-
ment over NQ-COSY is not achieved largely because of the
number of pulses used in the sequence: in NQR this is a
particular problem, since there is no single flip angle for all
spins in the sample. Nonetheless, there is some improve-
ment, and NQ-MSCOSY sequence is an instructive example
of the flexibility available in designing pulse sequences in a
three-level system. Moreover, the flip-angle problem may
also be ameliorated by using composite pulses.19
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Indirect detection of forbidden transitions

These experiments can be applied to the detection of
nominally forbidden transitions in zero-field NMR.Dm52
transitions, forbidden at high field and at zero field in an
environment of effective axial symmetry, become weakly al-
lowed if the asymmetry parameter is nonzero. The effect of
the small transition magnetic dipole on the efficiency of de-
tection can obviously be eliminated if the coherence is trans-
ferred to aDm51 transition, while the inefficiency of exci-
tation can be mitigated by a longer pulse. In Fig. 7 we
demonstrate the effect, using the spin 9/2209Bi nucleus in
bismuth~III ! chloride. In this experiment, we directly excited
the ~7/2-3/2! double-quantum coherence with ap/2 pulse of
nominal precession frequency 21 kHz, allowed it to evolve,
and then transferred it to~3/2-1/2! coherence by the NQ-
COSY scheme for detection. Because of the large Boltzmann
polarization of the 7/2-3/2 transition, a positive enhancement
of the ~3/2-1/2! coherence by a factor of 1.85 was observed.
This enhancement is considerably lower than the theoretical
value, probably as a result of inefficient irradiation of the
forbidden transition. On the other hand, exciting the~5/2-
1/2! transition and observing the connected, inner~3/2-1/2!
transition, the enhancement is negative as shown in Fig. 4~b!.
The two-dimensional correlation spectrum of bismuth~III !
chloride corresponding to the nutation experiment in Fig.
7~a! is shown in Fig. 7~b!; clearly, the nearly forbidden
Dm52 transition is efficiently detected by this means.

Utility

The new pulse sequences described in this paper are of
obvious utility for correlation spectroscopy at zero field, for
example, for precise simultaneous measurement of transition
frequencies with the elimination of correlated inhomoge-

neous broadening,6 and for the assignment of complex NQR
spectra.4 While phase twist is an obvious drawback of the
spinor COSY sequence, this will not be an issue if phase
quadrature in the first dimension is not desired, and the re-
sulting simplicity and considerable improvement in signal to
noise are significant advantages of the method. While the
MS-COSY sequence in practice does not offer the full two-
fold signal-to-noise improvement of S-COSY, it is an en-
hancement of the original NQCOSY sequence, and it is
likely amenable to further improvement by the use of com-
posite pulses.

CONCLUSIONS

We have successfully applied the double resonance nu-
tation methods to demonstrate the spin dynamics of a half-
integer high-spin quadrupolar nucleus. We have also suc-
cessfully applied these two-dimensional methods to correlate
connected single-quantum transitions (Dm51) in spin 5/2
(127I , 121Sb), 7/2 (123Sb) and 9/2 (209Bi) systems. These cor-
relation methods not only measure the connected spin tran-
sitions simultaneously but also eliminate inhomogeneous
line broadening. Finally, we have shown that the double-
quantum transitions (Dm52) can also be observed via the
connected single-quantum transitions (Dm51) using the
two-dimensional correlation methods.
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APPENDIX: DENSITY MATRIX APPROACH FOR THE
EVALUATION OF SPIN DYNAMICS FOR SPIN
5/2 IN AN ENVIRONMENT OF AXIAL SYMMETRY

In the absence of a fixed magnetic field, the density ma-
trix of a half-integer spin nucleus has a twofold redundancy
which makes the sign of the quantum numberm
unimportant.20 Thus, the dynamics of a spin 5/2 with axial
symmetry can be evaluated as a 333 matrix. The thermal
equilibrium reduced density matrix can be written as

r~0!5F 5 0 0

0 21 0

0 0 24
G ~A1!

in which the rows and columns of the matrix correspond to
the eigenvectors, in the orderm565/2; 63/2; 61/2. For an
axially symmetric system, the resonance frequencies of the
~5/2-3/2! and~3/2-1/2! spin transitions are given by 2vQ and
vQ , respectively. To evaluate the pulse response in this sys-
tem, radio-frequency irradiation at nutation frequenciesv1

andv2 are set at frequencies close to 2vQ andvQ , respec-
tively. The radio-frequency pulses are denoted asu~f!,
whereu1,25v1,2t indicates the flip angle of the first or sec-
ond resonance frequency channel andf is the phase of the
pulsed radio frequency. The responses for a two-pulse se-
quence at the same transition or at two connected transitions
can be calculated using single transition operators.21

FIG. 7. ~a! Intensity of the 3/2-1/2 transition of the209Bi signal in bis-
muth~III ! chloride, as a function of the time of nutation of the nominally
forbidden 7/2-3/2 transition, obtained using the pulse sequence in Fig. 2~a!.
~b! The two-dimensional zero-field NMR correlation spectrum of the209Bi
nucleus is bismuth~III ! chloride, correlating the~7/2-3/2! and~3/2-1/2! spin
transitions. In both cases the observation frequencies weren1562.52 MHz
andn2531.90 MHz.
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The pulse propagators for the~5/2-3/2! transition and the
~3/2-1/2! transition can respectively be written as

U1~u,f!5F cos
u

2
2 ie2 if sin

u

2
0

2 ieif sin
u

2
cos

u

2
0

0 0 1

G ~A2!

U2~u,f!5F 1 0 0

0 cos
u

2
2 ie2 if sin

u

2

0 2 ieif sin
u

2
cos

u

2

G ~A3!

and evolution via the quadrupolar Hamiltonian is expressed
by the propagator

UQ~vQ ,t !5F e2 i5vQt/3 0 0

0 eivQt/3 0

0 0 ei4vQt/3
G . ~A4!

As an example, we evaluate the result of a two-pulse
experiment similar to the first half of NQ-COSY. After a
single pulse followed by a period of evolution,u1(f1)
2t1 , the density matrix can be evaluated as

r~1!5UQ~vQ ,t !U1~u,f!r~0!U1~u,f!21UQ~vQ ,t !21

5F 213 cosu1 3i sinu1e2 ia 0

23i sinu1eia 223 cosu1 0

0 0 24
G , ~A5!

wherea5f112vQt1 is the transverse phase. After a second
pulse on the~5/2-3/2 transition! pulse, the density matrix can
be evaluated as

r~2!5U1~u2 ,f2!r~1!U1~u2 ,f2!21

5F S11 S12 0

S21 S22 0

0 0 24
G ~A6!

with

S115213 cosu1 cosu22 3
2 sinu1 sinu2~eib1e2 ib!;

S215S12* 52
3i

2
sinu1@~eia2e2 ig!1~eia1e2 ia!cosu2#

23i cosu1 sinu2eif2;

S225223 cosu1 cosu21 3
2 sinu1 sinu2~eib1e2 ib!;

where a5f112vQt1 , b5f12f212vQt1 and g5f1

22f212vQt1 . From the matrix elements shown above, af-
ter a pair ofp/2 pulses the population of the 3/2 state will be
proportional to cosb. As a result, the population difference
between the63/2 and61/2 states depends on the phaseb,
which contains information about the evolution of the~5/2-
3/2! transition during thet1 period.

The further propagation of this experiment, and of other
experiments discussed in this paper, are left as an exercise
for the reader.
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