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Abstract—Many Sensor applications such as monitoring and
surveillance may require image sensor array to conduct col-
laborative image transmissions in Wireless Sensor Networks
(WSN). The large size image transmissions cause bottlenecks in
WSN due to the limited energy resources and network capacity.
In this paper, we propose a collaborative transmission scheme
for image sensors to utilize inter-sensor correlations to decide
transmission patterns based on transmission path diversities,
which achieves minimal energy consumption, balanced sensor
lifetime and required image quality. This optimization scheme
not only allows each image sensor to transmit optimal fractions
of the overlapped images through appropriate transmission paths
in energy-efficient way, but also provides unequal protection on
the overlap image regions through path selections and resource
allocations to achieve good transmission image quality. The simu-
lation results show that the proposed image transmission scheme
can achieve considerable gains in terms of the network lifetime
extension, image distortion reduction, and energy efficiency.

I. INTRODUCTION

Many applications, e.g., multimedia surveillance networks,
target tracking, environmental monitoring, and traffic manage-
ment systems, require effective harvesting and communication
of event features in the form of multimedia such as image, and
video. They require energy-efficient multimedia processing
and may need image sensor array to conduct collaborative
image transmissions under limited sensor resource constraints.
However, image sensors generate a large amount of data loads
in WSN, which become the bottlenecks of network transmis-
sion. These burdensome image data transmissions in WSN
can drastically degrade the network performance and network
lifetime due to the limited power in the sensors and relay nodes
[1]. How to tackle this problem is still an open and on-going
research topic. Most existing image compression methods only
take advantage of the intra-image data redundancy, which is
in a single sensor’s measurement; on the other hand, although
there may exist large volumes of data redundancy among
the sensed images in the sensor array, a comprehensive joint
image compression scenario for the images collected by the
correlated sensors would be impractical, unless these image
data reach an aggregation point. This is because such joint
compression would require the simultaneous availability of
image data from multiple sensors, involving high communica-
tion overhead for comprehensive data exchange. Therefore, it

is difficult to increase the communication energy efficiency of
correlated image sensors and extend the overall WSN lifetime.
The redundancy of data transmission among correlated image
sensors could not be easily exploited to save communication
energy through common image compression methods.

In recent literature, the WSN research in utilizing sensor
correlation is focused on either cooperative methods [2] or
predictive methods [3]- [5].The former heavily involve inter-
sensor communication overhead, which could be prohibitively
high in the case of image applications. The latter must use
prior knowledge of the sensor constellation. There have been
reports on Distributed Source Coding (DSC) [5], applied onto
multiple source sensors in WSN for efficient coding without
mutual data exchange while the redundancy can be removed.
However, DSC has major challenges particularly in image
applications due to the difficult image correlation modelling,
synchronization, etc. In addition, how to utilize the sensor
correlation model for efficient image transmissions should not
only be determined with the consideration of source image
sensors themselves, but also be guided with the network
parameters such as the routing pattern.

In this paper, we propose an effective approach where
the data redundancy among correlated image sensors can be
considerably reduced by a simple scenario, different from
either joint image coding or distributed source coding. The
communication overhead for data exchange is relatively small
to exploit the correlations in the proposed approach. Further-
more, we investigate and consider both source sensor image
transmission schemes and routing path selection together in
WSN. We assume that image sensors are installed in various
locations of a large size sensor network to monitor or track
objects. These sensed images may overlap with each other.
The sensors have limited capability and resource to process the
images; therefore, images have to be sent to sink (or cluster
head) for more sophisticated processing. As the sink may be
a little far away from the image sensor, the images then have
to be transmitted by multiple hops through relay sensors to
the sink. It requires an effective image transmission pattern,
working with energy-ware routing strategy, to handle large-
size image data.

Further, it would be very important to exploit the inter-
correlation of these sensed images of sensors with consider-
ation of image region diversities (i.e., different image region
importance levels among the overlap and non-overlap regions
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of the sensed images). This kind of region diversities may
be utilized in multiple routing path transmissions in order
to achieve higher energy efficiency, longer network life time
and required image quality. For example, different routing
path in network can have different reliability level and power
consumption, transmitting most of image packet on reliable
path might result in unnecessary power consumption. The
question is how to allocate these diverse image regions to
different paths so that for a total image distortion, the energy
is minimized and vice versa.

II. IMAGE REGION DIVERSITY OF MULTIPLE SENSORS

In our research, a heterogeneous cluster-based wireless
Image Sensor Network architecture is assumed.The clustered
image sensor networks include the single hop and multi-hop
scenarios. A single hop scenario is the one in which sensor
nodes use single hopping to reach the cluster head (CH). In a
multi-hop scenario, several images sensors use multi-hopping
to reach the cluster head. For example, three image sensors
within one cluster might transmit their captured image by 1,
2 or 3 hops separately. To be practical, we assume maximum
hops from image sensors to cluster head is not too high (<5
hops). With the clustered-based image sensor network, we
are interested in collaborative image transmission from image
sensors to cluster head either by one hop or multiple hops.
The efficient communication strategy between cluster heads
is beyond our discussions in this paper and can be solved by
many existing solutions. Based on single hop or multi-hop
scenarios, given a random deployment of image sensors and
relay sensors to cluster heads along with the corresponding
energy on each sensor as shown in Figure 1(b), we want to
find an optimal transmission pattern with respect to single hop
or multiple hop paths to the cluster head.In Figure 1(b), it gives
a part of cluster-based network topology on which we focus
our study, and several coordinated image sensors transmit their
captured image to the cluster head either by single hop or
multiple hops to the cluster head. For simplicity yet without
loosing generality, we list the following assumptions: Each
image sensor sends non-overlapping region and possibly part
of overlapping regions shared with other image sensors within
its field of view; The union of non-overlap regions and overlap
regions equals the whole area of view for all correlated image
sensors. Figure 1(b) shows a generic sensor network model
with three image sensors capturing pictures F1, F2 and F3.
In Figure 1(b), F1, F2 and F3 are three images taken by
three image sensors, respectively. Each image can be separated
into Overlap (OVL) regions and Non-Overlap (N OVL) region
as illustrated in Figure 1(a). This scenario is very typical in
image sensor-based network due to random deployment of
sensors with highly random camera angle and application-
initiated collaborative detection of target. Overlap area is the
intersection of the fields of image captured by each cameras
array. Non-overlap region is the each image region not being
included in the overlap region. Each image sensor will transmit
its N OVL region and part of OVL regions to the cluster head
via single-hop or multi-hop paths. To save communication

energy, it would be important for each source sensor to send
its own N OVL region and not to send the portion of OVL
region that has already been sent by another source sensor
who shares this portion of OVL region. We use xi,j to denote
the fraction of the overlap region OV Lj that is to be sent by
sensor i. All xi,j form a matrix X called distribution ratio of
OVL region transmissions. Therefore, each sensor i will send

N OV Li +
M∑

j=1

xi,j · OV Lj amounts of image data.

In addition, there is image region diversity for image trans-
missions due to following two reasons: In most applications,
all OVL regions should be the major fields of interest; The
transmission quality of an OVL region is dependent on more
than one source sensors because each of them may send
a portion of this OVL region. Therefore, it is necessary
to provide unequal protection to transmit OVL and N OVL
image regions and achieve expected image quality. This kind
of diversity would potentially provide energy efficient image
transmission over multiple paths.

Fig. 1. Sensor network model of image transmission

III. RESOURCE-DISTORTION AND DISTRIBUTION RATIO

ANALYSIS

As we mentioned, image transmission over wireless sensor
networks operates under a set of unique resource constraints. It
is expected that the amount of resource supply of the sensor
nodes determines the image quality of service that one can
expect. For a given configuration of system resources on each
route paths(such as rate, power supply) and distribution ratio of
OVL image regions, we are interested in what level of image
quality we would be able to achieve with minimized energy
consumptions.

The natural image is generally delivered by layer bit stream.
There are different fault-tolerance levels for disturbance on the
compressed image bits to be transmitted in wireless networks,
particularly wireless sensor network environment. With con-
sideration of the distortion reduction at each layer, we form a
performance metric for the overall image sensor transmissions.
The following expression gives the image distortion reduction:

E(∆p) =
M∑

j=1




j∑
i=1

∆i ·
(

j∏
i=1

(1 − PER(p, i))
)

·PER(p, i + 1)


 (1)

Where E(∆p) is average distortion reduction and
PER(p, i) denotes average packet loss probability for the
i−th layer packet on pathp, and ∆i is the distortion reduction
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associated with the ith layer, M and are the total number
of transmitted layer packets of image regions. Details about
distortion reduction can be referred from recent studies in [6].
In (1), PER is average packet loss probability determined by
the transmission paths and channel characteristics (BER, ARQ,
Power, Rate, etc.), it can be modelled as described in [6]-
[8].Therefore, packets being transmitted over multiple paths
with diversities such as BER, maximum retransmission count,
hop counts, packet length would have different packet loss
probability. Those diversities work with different distribution
ratio Xwill make different image quality transmissions. For

example, assume that

{
x11, x12

x21, x22

}
is the distribute ratios of

{OVL1, OVL2} image regions that two image sensors (sensor
1 and sensor 2) have to transmit. Therefore, image sensor 1
will transmit x11 · OV L1 + x12 · OV L2 image and image
sensor 2 will transmit (1− x11) ·OV L1 + (1− x12) ·OV L2
(x21 = 1 − x11, x22 = 1 − x12). As shown in Figure 2(b),
we can observe different distribution ratio will cause different
image transmission quality even at the same BER value. At the
same time, the higher image quality could be achieved by the
distribution ratio(x11=0.2, x12=0.3). Therefore, transmission
distribution ratio combinations could impact performance of
image transmission under different path diversity. Sensed
image is based on figure 2(a). Further, in order to achieve
required image quality, corresponding desirable BER at each
link on the multiple hop paths has to be guaranteed. Dynamic
changing transmission power and rate is an effective way to
assure desirable BER. Figure 3 provides a solution illustration
with Unequal Path protection (UPP) scheme by path selections
and Unequal BER protection (UBP) scheme implemented by
resource allocations(allocate power and rates) . Figure 3 gives
a path selection pattern design, three paths(Path1, path2 and
path 3) would have different path diversity( hops, transmis-
sion rate, BER, retransmission count, etc.), UPP decide what
portion of OVL image will be transmitted over which path so
image quality can be well protected. At the physical-link layer,
AMC and PC are employed to achieve required BER to protect
image transmission (called UBP) as we discussed in the MAC-
PHY design model [10]. We want to determine appropriate

Fig. 2. An example for overlap region transmission diversity by two
paths

distribution ratios, and allocate limited resource (Power, rate,
etc.) into each node-disjoint path to implement UPP and UBP
scheme for image delivery. Corresponding with path diversity,

Fig. 3. Unequal path protection and BER protection

the region diversity can be implemented in (2), which indicates
that different level thresholds(DT (OV L), DT (N OV L))can
be applied in OVL and N OVL region for expected image
quality. The distortion threshold of OVL region is less than
N OVL regions. With different average image quality thresh-
old requirements, it could potentially provide benefits with
respect to energy efficiency for whole system.

M∑
i=1

Di(OV Li) < DT (OV L),

M∑
i=1

Di(N OV Li) < DT (N OV L)
(2)

IV. DYNAMIC ROUTING PATH SELECTION AND RESOURCE

ALLOCATION WITH DISTRIBUTE RATIOS

Consideration of distribution ratio with routing path selec-
tions (UPP) and resource allocation (UBP) together would
offer extra benefits in energy efficiency and sensor life time
extensions with required image delivery quality. For example,
in Figure 4, senor nodes (1, 2, 3, 4) have equal initial energy
except for the cluster head. After a period of time for image
transmission, they left 30%, 60%, 60% and 30% remaining
energy individually. Correlated image sensors s1 and s2 sense
target and capture images being sent to cluster head by two
node-disjoint paths. Figure 4 illustrated it by two scenarios:
one is that distribute ratio X is determined without dynamic
routing path selection, the other is the distribution ratio X is
determined with dynamic routing path selection.

Fig. 4. Dynamic path selection and pre-determined path example

In the first scenario, if the routing path has pre-determined,
for example, s1 image sensor has routing path (s1->1->3-
>cluster head), and s2 image sensor has routing path (s2-
>2->4-cluster head), so the resource (Power, rate) will be
allocated on the pre-determined routes. Optimal distribution
ratio is determined based on the condition of pre-determined
route paths. Once it is available, the source rate of s1
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and s2 can be determined. Since each route has to provide
transmission rate and PER to support its source rate image
delivery quality in this scenario, node 1 has to afford as same
transmission load as node 3 because they are at the same
route path, so node 1 would die earlier since it just has 30%
residual energy. The same thing will happen on the other route
(s2->2->4->cluster head), which makes energy consumption
unbalanced and network life time reduced. The problem of
unbalanced energy consumption and reduced network lifetime
in the first scenario can be solved by dynamic route path
selection with distribution ratio, resource-distortion estimation.
In this scheme, distribution ratio has to be interdependent with
routing path selection. Given a network topology, the routing
path selection should also be taken to balance sensor life time
as possible as it can. Therefore, a source-rate based routing
path selection is well suited to be applied in this scheme. We
propose a Multi-Level Rate-Oriented routing (MLRR)scheme
based on the link rate assignment, we separate the sensors
between the group of source sensors and the cluster head into
multiple levels according to their distance to the head. Sensors
at each level will be assigned with data rates according to their
residual energy. After a sensor determines its rate according
to the residual energy level, it will choose the next hop node
in the next level based on its rate.The detail are refereed to
our work in [9]. This routing selection scheme guarantees that
each individual source node in the source group can find node-
disjoint path while satisfying their rate constraints. As shown
in figure 4, for example, MLRR will choose the new path1 {s1-
>1->4->cluster head} for image sensor s1 and path2 (s2->2-
>3->cluster head) for image sensor s2 while being adaptive
to appropriate distribution ratio. In this case, more portions
of the OVL region will be transmitted by path 2 due to more
remaining energy on its relay nodes, and fewer portions of the
OVL region will go to path 1 due to less remaining energy.
This distribution ratio being adaptive to route path selection
offer more gains in sensor life time balancing than scheme in
the first scenario.

V. OPTIMAL IMAGE TRANSMISSION MODEL

With the transmission diversity for different image regions
on multiple paths based on MLRR, we are looking for an
optimal solution to achieve higher energy efficiency and better
load balancing under the requirement for image transmission
quality, i.e., image distortion requirement. Let S be a set of
nodes from image sensor groups that can perform cooperative
measurements on the target, and N be the total number of
nodes in S. We also denote by Ei,{i = 1, 2, ......N} the
sensors’ residual energy with i as the sensor index. Each
N OVL region is labelled by N OV Li, and OV L region is
labelled by OV Lj , {j = 1, 2, ......N). M is the number of
overlap regions in the interest scene. We use xi,j to denote
the fraction of the overlap region OV Lj that is to be sent by
sensor i.Therefore, the ith sensor’s lifetime can be expressed
as follows:

ti =
Ei

(N OV Li +
M∑

j=1

xi,j · OV Lj) · Costi

(3)

Where Costi is the energy consumption per unit when the
ith sensor sends image to the next-hop node, which can be
derived from energy model in [10].In the network model, all
correlated image sensors should die at the same time to balance
the network lifetime to avoid losing the sensing coverage.
Therefore, the life time of each image sensor is balanced after
we consider the constraint in (4), the remaining question is
to how to find an optimal distribution ratio combination to
transmit image sensor in unequal way so that the total energy
consumption will be minimized.

Cost1·Ei

E1·Costi
(N OV L1 +

M∑
j=1

x1,j · OV Lj) =

(N OV Li +
M∑

j=1

xi,j · OV Lj)
(4)

For single node-disjoint path, the energy cost Ep is the sum
of each hop energy consumption. We use the PHY-MAC layer
energy model we have developed in [10].

E(BER,LDATA, RCTRL, RDATA, PDATA, RTmax)
= (ET + ER) · RT

Etotal =
N∑

P=1

(N OV Lp +
M∑
i=1

xi,pOV Li)·Ep

(5)

the average total energy consumption E can be expressed as
a function of desirable BER requirement BER, frame length
LDATA, control packet transmission rate RCTRL, data packet
transmission rate RDATA, transmission power PDATA and

retransmission limit RTmax in [10], N OV Lp +
N∑
i

xi,pOV Li

is the amount of image data being transmitted on path p, Etotal

is total energy consumptions for transmitting all the image
regions. There is cross-layer optimization problem that can be
expressed to find an optimal set {xi,j} such that

{xopt
i,j } = arg min

xi,j

{Etotal} subject to (2) (4) and
N∑

i=1

xi,j =

1.

VI. SIMULATION AND ANALYSIS

In our scheme, due to simple cluster-based topology with
few hops, the collaborative optimizations done by cluster head
and sink are feasible. By offline learning at sink, the sink has
the basic knowledge of region distribution patterns for image
sensors. Cluster head collects the initial energy status for each
sensor, and creates energy status profile at the base station.
It applies the algorithm described in the previous section
to calculate the routing and allocate resource based on the
topology and energy status information. When the view field
of image sensor has been changed, the image sensor raises a
flag, and the cluster head or sink can detect the region pattern
change by analyzing the content of image block sent from
source sensors. The cluster head estimates the residual energy
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based on the image block it received, and updates the residual
energy profile for each sensor at base station. Once the region
distribution pattern has changed, the cluster head recalculates
the optimal result and broadcasts update message to update the
rate and route table. We illustrated our solution in following
example. The overlapping and no-overlapping regions can be
denoted into several areas. We applied same example in figure
1. In Figure 5 we get some results with consideration of
image sensor life time balance (These constraints reduce the
parameters to only unknown x11). In figure 5(a), there is
total energy consumption shaking due to life time balance at
different distribution ratio with different packet length (same
as frame length). Longer frame length 128 has less energy
consumption than other frame length (48, 64, and 80). Figure
5 (b) describes a PSNR (image quality) change with different
distribution ratio(x11). If we defined image quality require-
ment (>28dB) as shown in figure 5(b), there is an optimal
ratio around 0.25 that has minimal energy consumption while
satisfying bound requirement as shown in figure 5(a). In our
experiment, we use Genetic Algorithm to find an optimal
solution with given path diversity parameters and distortion
bound. To solve the optimization problem formalized in the
previous sections, we design a specific GA, in which Fitness
function is defined as (Etotal

max − Etotal
min )/(Etotal

c − Etotal
min ),

where Etotal
c is the total energy consumption in the current

generation. In our scheme, only a part of unknown xij need to
be coded into genes since others will be accordingly bound by
those constraint equations elaborated in section V. This reduces
the complexity of computation greatly. For our simulation, part
of the viewing field where image sensors capture pictures is
illustrated in Figure 2(a). We get simulation results in Figure
6. In Figure 6(a), optimal set achieves more and more energy
savings compared with the non-optimal set when the sampling
frequency increases (i.e., the source rate increases), and the
optimal set spends less energy consumption than Non-optimal
set. This performance improvement becomes more obvious,
up to 21% in the simulation, when the source rates of image
sensors increase. Figure 6(b) shows that the MLRR scheme
with the optimal set based on genetic algorithm also extends
the network lifetime considerably by a factor up to 11%. This
is because it utilizes the higher residual energy nodes, and
balances the node energy consumption in WSN.

VII. CONCLUSIONS

In this paper, we studied how each correlated image sensor
within WSN can transmit appropriate fractions of overlap
regions to the base station optimally, and how images can
be sent through multiple node-disjoint paths. We found that
the effective pattern of collaborative image transmission is
not only determined by the network resource of each image
sensor itself, but also is related to the network routing hop
by hop selection. The image region and path diversity have
also been exploited in order to save energy while satisfying
image quality bound by applying UPP and UBP schemes to
multiple routing paths. Based on it, we formed a network opti-
mization problem with the considerations on characteristics of

correlated image sensors, and the energy-aware path selection
strategy corresponding with path diversity. The simulation
results have shown that our algorithm and procedures achieve
considerable gains with respect to the energy efficiency, net-
work lifetime, and improved image qualities in image-sensor-
based WSN.

Fig. 5. Energy consumption and PSNR Vs Distribution ratio

Fig. 6. Energy consumption, Network lifetime Vs Sample frequency
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