
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Book Chapters Computer Science and Engineering, Department of

1-1-2006

Evaluating the Effectiveness of Slicing for Model
Reduction of Concurrent Object-Oriented
Programs
Matthew B. Dwyer
University of Nebraska - Lincoln, dwyer@cse.unl.edu

John Hatcliff
Kansas State University, hatcliff@cis.ksu.edu

Matthew Hoosier
Kansas State University, matt@cis.ksu.edu

Venkatesh Ranganath
Kansas State University, rvprasad@cis.ksu.edu

Robby
Kansas State University, robby@cis.ksu.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/csebookchaps
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Book Chapters by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Dwyer, Matthew B.; Hatcliff, John; Hoosier, Matthew; Ranganath, Venkatesh; Robby; and Wallentine, Todd, "Evaluating the
Effectiveness of Slicing for Model Reduction of Concurrent Object-Oriented Programs" (2006). CSE Book Chapters. Paper 1.
http://digitalcommons.unl.edu/csebookchaps/1

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csebookchaps?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csebookchaps?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csebookchaps/1?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, Venkatesh Ranganath, Robby, and Todd Wallentine

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/csebookchaps/1

http://digitalcommons.unl.edu/csebookchaps/1?utm_source=digitalcommons.unl.edu%2Fcsebookchaps%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

73

Published in Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science Volume 3920, ed. H. Hermanns and J. Palsberg (Berlin / Heidelberg:

Springer, 2006), pp. 73–89; doi: 10.1007/11691372 Copyright © 2006 Springer-Verlag.
Used by permission.

Evaluating the Effectiveness of Slicing for
Model Reduction of Concurrent Object-

Oriented Programs
Matthew B. Dwyer,1 John Hatcliff,2 Matthew Hoosier,2
Venkatesh Ranganath,2 Robby,2 and Todd Wallentine 2

1 University of Nebraska, Lincoln, NE 68588, USA; dwyer@cse.unl.edu
2 Kansas State University, Manhattan, KS 66506, USA; hatcliff@cis.ksu.edu ;

 matt@cis.ksu.edu ; rvprasad@cis.ksu.edu ; robby@cis.ksu.edu ; tcw@cis.ksu.edu

Abstract
Model checking techniques have proven effective for checking a number of non-trivial con-
current object-oriented software systems. However, due to the high computational and mem-
ory costs, a variety of model reduction techniques are needed to overcome current limitations
on applicability and scalability. Conventional wisdom holds that static program slicing can be
an effective model reduction technique, yet anecdotal evidence is mixed, and there has been
no work that has systematically studied the costs/benefits of slicing for model reduction in
the context of model checking source code for realistic systems. In this paper, we present an
overview of the sophisticated Indus program slicer that is capable of handling full Java and is
readily applicable to interesting off-the- shelf concurrent Java programs. Using the Indus pro-
gram slicer as part of the next generation of the Bandera model checking framework, we ex-
perimentally demonstrate significant benefits from using slicing as a fully automatic model re-
duction technique. Our experimental results consider a number of Java systems with varying
structural properties, the effects of combining slicing with other well-known model reduction
techniques such as partial order reductions, and the effects of slicing for different classes of
properties. Our conclusions are that slicing concurrent object-oriented source code provides
significant reductions that are orthogonal to a number of other reduction techniques, and that
slicing should always be applied due to its automation and low computational costs.

1 Introduction

1.1 Motivation

Model checking techniques have proven effective for debugging a number of
non-trivial software systems. Due to the high computational and memory costs, a
variety of model reduction techniques such as data abstraction [11], predicate ab-
straction [2], systematic application of data and resource bounds, heuristic search
strategies [16], and partial order reduction techniques driven by synchronization
and heap-structure properties [36, 12] are needed to overcome current limitations
on applicability and scalability. In model reduction, the resulting transition sys-
tem should be small enough to make automatic checking tractable, yet it should
be large enough to capture all information relevant to the property being checked.
One of the primary difficulties is determining which parts of the program are rel-
evant to the property being checked.

Dwyer et al. in Tools and algoriThms for … sysTems (2006)74

Conventional wisdom holds that static program slicing can be an effective
model reduction technique for software model checking. Given a program and
a slicing criterion—a set of program points (e.g., statements) that a user is inter-
ested in—a program slicer automatically calculates the portions of the program
that are relevant for carrying out the computation at the statements given in the
criterion. All features of the program (e.g., statements, fields, classes, methods,
threads) that are irrelevant for the computation at the criterion statements are
“sliced away.” Thus, by including the features of the program mentioned in a
property/specification to be model checked as a slicing criterion, slicing will re-
move from the program features that are irrelevant for (i.e., do not influence) the
property to be checked.

However, existing experience with slicing for model reduction is sometime
inconclusive. For example, Holzmann’s experience shows that slicing in Spin
usually does not yield much reduction for realistic Promela design models [20].
While there have been extensive experimental studies to evaluate the effective-
ness of model reduction techniques such as partial order reductions [15, 36, 12,
14] and abstraction [2] for software model checking, there have been no such
studies to evaluate the effectiveness of slicing as a model reduction technique.
In fact, there seem to be several factors that prevent researchers and practitioners
from drawing strong conclusions about the effectiveness of slicing as a model re-
duction technique.

First, due to the lack of robustness of many model checking tools and the rel-
ative immaturity of the field in general, researchers often tried to evaluate the ef-
fectiveness of slicing using only small “textbook” examples such as Dining Phi-
losophers or Bakery Algorithm in which the system under consideration has
already been boiled down to its bare essentials and possesses no property-irrele-
vant information to be sliced away. In contrast, larger realistic systems often have
many aspects that are irrelevant to specific properties being checked.

Second, few software model checking frameworks include or make use of
existing program slicing frameworks (quite sophisticated static analysis frame-
works themselves—especially in the context of concurrent object-oriented pro-
gramming languages). The Bandera model checking framework was the first to
include slicing capabilities with Spin following shortly thereafter with a Promela
slicing capability. Although one could imagine applying existing C program slic-
ers in the context of model checking C programs, we know of no other software
model checking frameworks with integrated slicing capabilities.

Lack of available slicing infrastructure in general has further hindered prog-
ress in evaluating the effectiveness of slicing for model reduction. Simply put,
building a slicing framework capable of scaling to realistic applications and han-
dling challenging language features such as one would find, e.g., in full Java, is a
very challenging task.

1.2 This Paper

In this paper, we present an overview of our Java program slicer available as part
of Indus, a program analysis tool kit, and we use this slicer to carry out wide-rang-
ing experimental studies that demonstrate program slicing to be a valuable model
reduction technique for model-checking concurrent object-oriented software. Both

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 75

the slicer and our extensible model checking framework Bogor [33] are components
of the next generation of the Bandera Java model checking framework that trans-
lates Java programs into models in the Bandera Intermediate Representation (BIR).
Bogor model checks BIR models, using state of the art techniques for heap symme-
try, collapse compression for object-oriented data structures, and partial order re-
ductions driven by synchronization and escape analysis.

We believe this work presents a number of results that will be of inter-
est to both researchers and practitioners working in the area of software model
checking.

• It represents the first study to systematically demonstrate the effectiveness
of program slicing as a model reduction technique for an interesting range
of Java programs. Specifically, we consider ten different programs includ-
ing an example from the Java Grande benchmarks as well as programs based
on Siena—a generic scalable publish/subscribe Internet event-notification
framework.

• It considers the relative benefits of state-of-the-art Java slicing techniques with
state-of-the-art implementations of other model reduction techniques such as
partial order reductions, and demonstrates that reductions provided by slic-
ing are largely orthogonal to the effect of these other techniques.

• It considers the effects of slicing for model reduction when considering differ-
ent classes of properties including deadlock checking and assertions.

• It shows that slicing can be applied as a low-cost (the costs are a very small
percentage of the overall cost of model checking) and completely automated
model reduction technique that almost always yields both space and time re-
ductions (often, significant reductions) while almost never causing an increase
in end-to-end run time.

• The Indus tool kit provides a sophisticated program slicer capable of handling
full Java and scaling to interesting off-the-shelf concurrent Java programs of
more than 10,000 application bytecodes (49,314 application + library byte-
codes). Indus is freely available, and has been downloaded over 1100 times
since its public release in June 2004. Thus, the techniques described in this pa-
per can be immediately applied to other Java model checking frameworks such
as JPF [5] and jMoped [37]. In fact, Indus is already being used by researchers
at Fujitsu for reduction when model checking with JPF.

The rest of the paper is organized as follows. Section 2 overviews the architec-
ture of the Bandera Java model checking tool set. Section 3 gives a brief summary
of slicing and the Indus analysis framework. Section 4 explains how slicing can
be used for model reduction, and presents the hypotheses and research questions
that we seek to answer with our experimental studies. Section 5 provides an over-
view of the different examples that we consider along with metrics capturing var-
ious static characteristics of their implementation (no. of bytecodes, no. of classes,
no. of fields, etc.). Section 6 presents the results of our experiments and provides
assessment with respect to the previously given research hypotheses. Section 7
surveys related work and Section 8 concludes.

The Indus web site [29] provides the Indus distribution as well as an extended
version of this paper that gives an expanded discussion of experimental results.

Dwyer et al. in Tools and algoriThms for … sysTems (2006)76

2 Bandera Overview

Bandera is a tool framework for model checking concurrent Java programs. The
tool framework is organized as a modular pipeline—each tool in the pipeline com-
municates with its predecessor and successor purely through its inputs and out-
puts. To create a run of Bandera for a specific program and property, the user
creates a session file that indicates the components of the pipeline that should be
applied as well as particular settings or options for each component.

In the pipeline that we use for the experiments in this paper, the Soot tool
[39] first reads Java class files to be model checked and translates them to Jimple
[39]—Soot’s three-address code intermediate representation for Java. The Indus
tool takes the resulting Jimple program along with information about the prop-
erty to be checked and produces a sliced Jimple program. The Jimple-To-BIR
(J2B) tool takes the sliced Jimple program and translates it to BIR, which is then
model checked by Bogor.

We are interested in determining the extent to which slicing can improve per-
formance beyond the best reduction strategies currently available in Bogor.

These reduction strategies include heap symmetry/canonicalization which
represents all execution states of a Java program that differ only in the physical
addresses of objects or in the unreclaimed garbage using a single representative
state, thread symmetry, and collapse compression which reduces the space re-
quired to store a state by sharing common parts of distinct states [34].

In this paper, we will be most interested in Bogor’s partial order reduction
framework that minimizes the set of paths that need to be explored in the state-
space during model checking. Classical partial order reductions (POR) (e.g., [15])
leverage the independence of transitions to induce equivalence classes of paths such
that it is sufficient to explore a single path from each class. For multi-threaded
Java programs, we leverage the structure of the Java heap and Java synchroni-
zation idioms to infer more precise information about transition independence
[12]. For example, transitions that access thread-local objects (i.e., objects that are
reachable from a single thread) are independent because no transition in another
thread can possibly access such an object (until the object becomes shared). Tran-
sitions that operate on a properly locked object (e.g., where the set of locks held by
each thread when accessing the object always contains at least one common lock)
are also independent as are operations on read-only objects. An additional fea-
ture of Bogor’s POR implementation is that it biases the search to coalesce transi-
tions in a method into a consecutive run of transitions. By doing this, the model
checker is able to defer state-storage until the end of the run of independent tran-
sitions effectively implementing on-the-fly detection of atomic blocks of transitions.
The combination of partial order reduction techniques in Bogor yields orders of
magnitude reduction in the space and time required for model checking nearly
all of the Java programs we have encountered.

3 Program Slicing and the Indus Java Slicing Framework

3.1 A Brief Overview of Slicing Concurrent Java Programs

There are many variants of slicing (forward/backward, static/dynamic) [38]. We
consider static backward slicing – the variant usually applied for model reduction

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 77

[6, 18, 26]. Evaluating the Effectiveness of Slicing 77 Static backward slicing uses static
program analysis to look backwards along data and control flows to discover the
set SC of all program statements that influence the given slicing criterion C—a set
of select program statements. SC is guaranteed to contain all the statements upon
which computations at statements in C depend; SC will usually contain additional
program statement beyond those that actually influence C due to the conserva-
tive nature of static analysis.

Slicing for concurrent Java programs is based on several notions of program
statement dependence, and it is well beyond the scope of this paper to present
detailed definitions for each of these. Our previous work presents formaliza-
tions and correctness proofs for the definitions of data and control dependence
[18, 31] and dependences for concurrent Java [17] that we use in this paper.
Control and data dependences are well understood, so we focus below on the
less familiar, but crucial, notions of dependence needed to treat concurrency.
Briefly, a node n is data-dependent on node m if, for a variable v referenced at n,
a definition of (i.e., an assignment to) v at m reaches n; a node n is control-depen-
dent on a conditional statement m if one of the branches of m must always lead
to n but the other branch of m can bypass n and reach the program’s (i.e., meth-
od’s) end node.

For the definitions below, if a statement at control-flow graph (CFG) node n
is in the slice set SC and n depends on a statement at node m, then node m is also
in SC. Intuitively, the slicer begins with the statements in the slicing criteria C and
computes a transitive closure using data and control dependence along with the
dependences below (modulo some optimizations enabled by further static analy-
sis) to obtain SC.

Divergence: To preserve behaviors with infinite delay (e.g., as required for
checking liveness properties or certain classes of deadlocks), our earlier work
[18, 31] notes that it is important to consider additional notions of control depen-
dence that preserve diverging executions (e.g., as caused by infinite loops). One
method for capturing dependences caused by diverging loops is to use the no-
tion of strong post-domination and weak control dependence introduced by Podgur-
ski and Clarke [28]. Node n strongly post-dominates node m if n post-dominates m
and there is an integer k ≥ 1 such that every path from node m of length ≥ k passes
through n [28]. The difference between strong post-domination and the simple
definition of post-domination above is that even though node n occurs on every
path from m to e (and thus n post-dominates m), it may be the case that n does not
strongly post-dominate m due to a loop in the CFG between m and n that admits
an infinite path beginning at m and not containing n. Hence, strong post-domi-
nation is sensitive to the possibility of non-termination along paths from m to n.
Node nj is weakly control dependent on ni if ni has at least two successors, nk and nl,
nj strongly postdominates nk, nj does not strongly postdominate nl. We will typ-
ically refer to control dependence and weak control dependence as termination
insensitive and termination sensitive control dependence, respectively. The experi-
ments in this paper will use the notion of weak control dependence – which guar-
antees that if n is in the slice and there exists a (possibly infinite) loop in the CFG
that could prevent control from reaching n, then the control structure associated
with the loop is also included in the slice.

Dwyer et al. in Tools and algoriThms for … sysTems (2006)78

Interference dependence: To capture data dependence across threads, node
n from thread tn is interference dependent on node m from thread tm with tn ≠ tm if
there exists a variable v Î def(m) Ç ref(n) and there exists a schedule in which m’s
execution is followed by n’s execution with no intervening definition of m [25]. A
precise static calculation of schedules that may give rise interference dependence
is prohibitively expensive for large systems (exact precision is equivalent to the
model checking problem itself). Cheap but conservative/imprecise strategies [17,
26] simply assume that an interference exists whenever v Î def(m) Ç ref(n) even
though there may never be a schedule that gives rise a flow of data between m
and n. Other approaches use exponential symbolic execution algorithms to try
to detect realizable execution paths leading to such flows [25, 27]. Indus strikes
a balance between these by pruning infeasible interference edges using escape/
alias analysis and various “happens before” relations [32].

Ready dependence: Just as diverging loops may give rise to infinite delays
within a single thread, indefinite delays can also be generated due to interactions
between threads via synchronization primitives such as locking (synchronized
statements) and wait/notify. When the completion of a statement n of thread tn
(e.g., an lock acquire or a wait) depends of the completion of node m of thread
tm (e.g., a lock release or a notify), n is said to be ready dependent on m [17]. In
addition, ready dependences can also arise within a single thread tm: if node p
is reachable in tm’s control flow graph from m where m is either a lock acquire
or wait statement, then p is ready dependent on m since m’s failure to complete
could cause p to never be executed.

Effects of references/aliasing: The calculation of above data dependences, in-
terference dependences, and ready dependences both in sequential and concur-
rent setting, becomes much more challenging (and the results much less precise)
when aliasing is introduced. In the presence of aliasing, two variables can refer to
the same data/object, and so, it is possible that an update via a.f will affect the
value of b.f when a and b are aliases. Our previous work [32], describes the vari-
ous forms of alias and escape analyses that are used in Indus to address this issue.

3.2 Indus

The goal of the Indus project is to provide a Java library of program analyses
and transformations for Java to enable sophisticated program analyses such as
program slicing and program specialization via partial evaluation. In its current
state, the project provides a large collection of program analyses, a Java program
slicing framework, and a sophisticated user interface for the slicer [23] built as an
Eclipse [13] plug-in.

Static analysis support provided by Indus includes a general flow analysis
framework in which an object-sensitive object-flow analysis [30] is implemented that
provides points-to information for objects, a call graph analysis of varying levels of
precision, a thread graph analysis that calculates the method-to-thread containment
relation in a given program, an alias-aware interprocedural use-def analysis that pro-
vides use-def information for reference type variables across procedural bound-
aries, and a side-effect analysis. Indus also provides two basic concurrency spe-
cific analyses: an escape analysis [32] that detects if an object allocation is thread
local and a monitor analysis that calculates containment relation between various

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 79

statements and locks in the program. Building on these analyses, a rich set of de-
pendence analyses calculate data and control dependences in intra-procedural, in-
ter-procedural, intra-thread, interthread, non-termination sensitive, and/or non-termi-
nation insensitive settings. These analyses subsume all dependences mentioned
in Section 3.1. Further, the precision of interference and ready dependence anal-
yses is improved by leveraging escape analysis to prune dependence based on
non-thread local access to objects [32] and safe-lock analysis to prune divergence
based dependence due to synchronization constructs [17].

4 Slicing for Model Reduction

4.1 Issues

Property-directed slicing: In earlier work [18], we presented the foundations
of slicing as a model reduction technique with emphasis on the notion of “prop-
erty-directed slicing”—program features mentioned in the property to be checked
formed the slicing criteria, hence, leading to the automatic removal of program
features that can be statically shown to be irrelevant to the property. In this pa-
per, we evaluate the effectiveness of slicing with respect to two classes of proper-
ties: deadlock checking and assertions. For deadlock checking, the slicing criteria
consists of all synchronized and wait/notify statements. The sophisticated anal-
yses of Indus allow us to optimize this in several ways, e.g., if Indus escape anal-
ysis indicates that objects being used in a synchronized statement are non-escap-
ing, such statements can be omitted from the criteria since there is no contention
for these locks. For assertion checking, the slicing criteria simply consists of the
assertion statements in the program.

Call-graph reachability vs. slicing: Researchers familiar with static analy-
sis might initially conceive of obtaining functionality related to slicing by sim-
ply constructing the call graph of the program to be checked and then eliminating
code for methods that are not reachable in the call graph. This is especially rel-
evant in model checking frameworks like Bandera that translate a program rep-
resentation to a lower-level language (e.g., BIR) for model checking. Removing
the code for unreachable methods via call-graph construction/analysis reduces
overhead in the translation phase (code for unreachable methods does not have
to be translated). Precise call graph construction in a concurrent OO language is
non-trivial; it must be intertwined with points-to/alias analysis to resolve virtual
method invocations, it must take control flow due to exceptions into account, and
it must account for the invocation of class initializers done implicitly by the vir-
tual machine and not by explicit invocation sites in the program.

The major drawback of mere call-graph reachability is that it does not elim-
inate parts of the system that are reachable in the system but do not affect the
property being verified. For example, while checking for deadlocks, every reach-
able call to System.out.println() in the system will be included when these
calls (almost always) do not affect the deadlocking behavior of the system. Inclu-
sion of such calls increases model checking cost due to simulation of unnecessary
transitions and storage of data entities required by such transitions in the state
vector. On the other hand, slicing can detect and exclude such unnecessary calls
and provide increased reduction in terms of model checking cost in comparison
with call-graph reachability.

Dwyer et al. in Tools and algoriThms for … sysTems (2006)80

Bandera implements pruning of unreachable methods and data using the
static analyses of Indus. Since such analyses are well-known in the static anal-
ysis community, we consider an approach that includes them as the baseline for
our experiments: we seek to demonstrate the benefits of slicing beyond the already
substantial reductions derived from such analyses.

4.2 Research Questions

We have focused our empirical study on four specific questions related to the use
of slicing as a reduction technique.

(RQ 1) How does the net effect of applying program slicing to reduce the cost of
model checking multi-threaded Java programs vary with program size
and complexity?

(RQ 2) What is the incremental benefit of program slicing compared to call-graph
based reachability optimizations in reducing the cost of model checking
multi-threaded Java programs?

(RQ 3) What is the incremental benefit of program slicing compared to state-of-
the-art partial order and thread symmetry reductions in reducing the
cost of model checking multi-threaded Java programs?

(RQ 4) Does program slicing yield greater reductions for model checking asser-
tion-based specifications of non-trivial multi-threaded Java programs in
comparison to checking for deadlock?

The lack of significant experimental has left the research community with in-
tuitions and opinions, but no definitive evidence on the effectiveness of slicing for
model reduction. While some initial case studies point to the effectiveness of slic-
ing [6, 8, 26] some experts have developed what can only be described as negative
intuitions about the effectiveness of slicing as a model reduction technique. In the
latter case, the best justified of these intuitions have been arrived at via formative
studies of slicers implemented in verification frameworks and applied to collec-
tions of transition system descriptions as opposed to program source code. For
example, Holzmann indicates that he has found SPIN’s slicing capabilities use-
ful for finding small redundancies in Promela models, but not that effective for
reduction in realistic Promela properties/systems [20]. Holzmann notes that ex-
perience with program slicing on Java source code might be different, and in fact,
we hypothesize that one reason why slicing has not been widely recognized as a
reduction technique is that it has not been applied to realistic source code. With
(RQ 1) we seek to provide evidence to indicate whether software model check-
ing reductions can be achieved in analyzing realistic Java code bases. To answer
this question, we have selected both relatively small, and well-studied, examples
from the software model checking literature and larger examples that have not
previously been analyzed via model checking.

Section 4.1 explains how sophisticated, but well-understood static analyses,
could remove unreachable/non-accessed program components. However, these
analyses do not eliminate code fragments that are reachable but yet irrelevant
with respect to the property (e.g. writes to standard output via System.out.
println()). Slicing is more costly and much more difficult to implement, yet
it is more precise and it is able to eliminate reachable but irrelevant features. An-

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 81

swering (RQ 2) will provide evidence on both the relative cost of these two anal-
yses and their relative benefit. Given the exponential complexity of model check-
ing, if static call graph and slicing provide clear benefits in terms of reduction
then it is likely that those benefits would outweigh any increase in static analysis
cost. Such an answer would indicate that existing Java model checking should al-
ways employ call-graph analysis or program slicing as a pre-phase.

Research on reduction techniques for model checking has produced signifi-
cant results over the past decades. Partial order reductions [36, 12] and heap sym-
metry/canonicalization reductions [21, 34] are completely automated reductions
that have been applied to reduce the state space of concurrent OO software mod-
els. We believe that the model checking research community is in broad agree-
ment that these techniques should always be used when model checking non-triv-
ial programs. Note that while counter-example guided predicate abstraction [2]
has been applied with good success in sequential settings where programs do not
include a lot of heap data manipulation, it has yet to be applied in the concurrent
OO setting in a completely automatic way. Moreover, tool-based data abstrac-
tion techniques for Java [11] still require some user intervention. Thus, in (RQ
3), we seek evidence on the incremental improvement in reduction that can be
achieved by slicing (a completely automated technique) relative to existing com-
pleted automated reduction techniques concurrent OO programs. We believe that
slicing should only be considered worthwhile for incorporating into tools if it can
provide reductions over-and-above what can be achieved by existing automated
state-space reductions.

As noted in Section 4.1, slicing for model reduction is property driven. Answer-
ing (RQ 4) will provide evidence on the degree to which model reduction via pro-
gram slicing is sensitive to the class of property under analysis. We have selected
two classes of properties: deadlocks and assertions. A deadlocks can be consid-
ered a relatively global property since it is potentially related to every blocking
statement in the program. It has been observed, e.g., [1, 7], that in many cases data
manipulation can be relatively cleanly separated from control structures involved
in synchronization. Thus, one might anticipate that significant data portions of
the program could be removed when slicing for deadlock. Unfortunately, distinc-
tions between data and synchronization are often blurred in the context of object-
oriented programming where synchronization is achieved by locking data struc-
tures. Thus, slicing multi-threaded Java programs for deadlock preservation may
not yield as significant a reduction as one might expect. Assertions, in contrast,
are often considered local properties since they reference a single control point
and an expression over variables in a program scope. In practice, the locality of
an assertion can vary widely depending on complexity of the asserted expres-
sion. Similar expressions form the definition of observable propositions [9] that are
used in defining temporal logic properties of programs. Thus, we expect that re-
duction results for assertional specifications will be indicative of the results for
model checking temporal logic formulae. In answering this question, we seek to
determine whether slicing on localized properties can yield additional reduction
in model checking. To emphasize the locality of assertions we defined a collection
of simple parameter and object field assertions that are enforced on method entry
and that reflect comments in the source code; we did not apply slicing to asser-
tions attempting to capture data structure properties of programs.

Dwyer et al. in Tools and algoriThms for … sysTems (2006)82

5 Description of Code Bases

We evaluate the effectiveness of slicing as a model reduction technique relative
to the research questions stated in Section 4.2 over a collection of multi-threaded
Java programs. In this section, we describe these Java code bases and characterize
them in terms of static measures of their control, data and synchronization com-
plexity. Table 1 presents the counts for several measures of each example: byte-
codes, classes, methods, fields, new expressions, calls to Thread.start(), catch
blocks, synchronized statements and methods, wait statements, and notify/
notifyall statements. For each example, the first table row gives these mea-
sures both for the total of the application and library code that comprise the pro-
gram and, independently, for just the application code; the values are given sep-
arated by a /. We provide the application measures for reference, but the tools
process both the application and referenced library code. The second row gives
the measures for the call-graph reachability based pruning from Section 4.1 and
deadlock-preserving slicing (separated by ’/’) when applied to the complete code
base (application + libraries). For example, 34479 bytecodes in the complete RAX
system are reduced to 768 bytecodes by call-graph reachability and to 101 byte-
codes by slicing. It is important to understand that these are static measures that
the code base complexity presented to the program slicer, rather than the state
space complexity presented to the model checker. For example, the static num-
ber of Thread.start() calls and new expressions typically underestimate the
number of running threads and object instances in a system since these calls of-
ten appear in loops.

The set of programs includes five standard examples, that are commonly used
in experiments in the concurrency literature, but which are best thought of as im-
plementations of algorithm sketches rather than realistic Java code bases. BBuffer
implements a thread-safe queue using an array and wait/notify synchronization
and includes very simple producer and consumer threads. Pipeline implements a
dynamically assembled sequence of threads that are used to parallelize a simple
staged computation on integer data. SBarbers is a classic synchronization problem
that is presented in many operating systems textbooks (e.g., [1]). RW includes an
abstract class that implements a concurrent-read and exclusive-write policy for
controlling access to program regions of implemented as methods that override
abstract methods; a simple set of reader and writer threads complete this exam-
ple. RAX is the distillation of a bug in the NASA remote experiment platform that
was presented in [5].

Two small programs implement simple discrete-event simulators for a Disk-
Scheduler and a non-trivial AlarmClock. In general, these examples are signifi-
cantly more heap-data intensive than the standard examples.

Of the three larger applications we considered, one is from the literature Rep-
Worker [3], one from the JavaGrande benchmark [22], RayTracer, and one is an
Internet-scale publish-subscribe infra-structure, named Siena, that has been the
subject of several studies of software testing techniques [10]. The RepWorker im-
plements a highly configurable client-server data-distribution framework with
a sample Jacobi relaxation example running atop it as an application. The Java-
Grande benchmark implements a non-trivial scientific calculations whose syn-
chronization is achieved through the use of barriers.

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 83

As the data indicate, slicing can yield reductions ranging up to two orders
of magnitude in the size of the code base to be analyzed by the model checker.
While the call-graph reachability reduction can also yield significant reductions,
program slicing always achieves better reductions. As we will see in the next sec-
tion, the elimination of additional statements and fields can give rise to substan-
tial reductions in model check times and more than compensate for the relatively
modest slicer run-time which for even the largest examples was at most several
seconds.

6 Experimental Results

In this section, we report on the performance of model checking selected proper-
ties of the examples described in Section 5 using different state-space reduction op-
tions. We present statistics from different subsets of these model checking runs and
discuss how those results help to answer the research questions from Section 4.2.

Table 2 presents a sampling of the model check runs we performed. For the sys-
tems we studied, we model checked a total of 31 different variations of those sys-
tems; variations were either applying fixes to known bugs or activating additional
specifications encoded as assertions in the code base. To conserve space, we only
list runs for variations on a given program that are substantially different in perfor-
mance. We differentiate runs that found errors from those that did not by using an
e subscript on example names; note that several of our examples have buggy ver-
sions. For each system variation we ran the model checker in at least four configu-

Table 1. Static measures of examples

Name Bytecode Class Method Field New Thrd Except Synch Wait Nfy

AlarmClock 34728/319 349/6 3245/25 1295/19 1461/13 4/3 473/18 252/15 3/2 3/2
 Reach/Slice 1020/345 49/25 98/41 57/18 45/18 3/3 23/17 18/15 2/2 2/2
BBuffer 34577/168 351/8 3238/18 1294/8 1455/7 4/3 462/7 241/4 3/2 3/2
 Reach/Slice 873/194 50/23 91/30 151/15 38/10 3/3 12/7 8/5 2/2 2/2
DiskSched 35181/793 348/5 3238/18 1297/21 1510/63 2/1 458/3 239/2 3/2 2/1
 Reach/Slice 1314/643 48/25 92/36 52/15 79/52 1/1 12/7 8/5 2/2 1/1
Pipeline 34475/66 347/4 3229/9 1280/4 1452/4 3/2 456/1 239/2 2/1 2/1
 Reach/Slice 764/97 46/19 80/20 42/6 35/7 2/2 6/1 6/3 1/1 1/1
SBarber 34564/155 347/4 3229/9 1287/11 1455/7 3/2 474/19 245/8 4/3 4/3
 Reach/Slice 853/184 46/19 80/20 48/12 38/10 2/2 24/19 12/9 3/3 3/3
RAX 34479/70 347/4 3229/9 1283/7 1452/4 3/2 456/1 239/2 2/1 2/1
 Reach/Slice 768/101 46/19 80/20 45/9 35/7 2/2 6/1 6/3 1/1 1/1
RW 34699/290 348/5 3246/26 1287/11 1455/7 5/4 473/18 247/10 3/2 3/2
 Reach/Slice 945/268 47/20 95/34 49/13 39/11 4/4 23/18 14/11 2/2 2/2
RepWorker 34885/574 356/14 3265/47 1317/42 1471/23 2/1 460/5 255/18 6/5 7/6
 Reach/Slice 1792/1460 69/57 158/131 82/47 81/74 1/1 22/19 6/6 5/5 6/6
RayTracer 35544/1783 361/19 3327/109 1351/76 1538/91 2/1 486/31 142/15 1/1 1/1
 Reach/Slice 2757/2520 72/65 195/179 126/95 119/114 1/1 29/26 12/12 1/1 1/1
Siena 49314/9229 489/74 4700/620 1688/296 2119/389 5/4 644/186 384/139 10/7 14/8
 Reach/Slice 14213/13491 198/194 844/909 424/306 574/565 3/3 164/164 105/110 4/4 8/7

Dwyer et al. in Tools and algoriThms for … sysTems (2006)84

rations. In each of these configurations, the model checker was configured to ter-
minate when the first error was encountered in the state space search. The tables
list statistics for different configurations of the model checking tools where d in-
dicates deadlock check, a indicates assertion check, R indicates call-graph reduc-
tion, S indicates slicing, and P indicates the use of POR. For each configuration,
we give the total number of stored states, the number of transitions searched, the
maximum memory consumption of the toolset in gigabytes, and the total run-time
for the toolset in hours:minutes:seconds format. The model checks were run as the
only application on an Opteron 250 processor with 12 Gigabytes of RAM running
Linux using the SDK 1.5. The small number of runs that exceeded 20 hours were
terminated and they are noted in the table with *. Consequently, the reduction re-
sults presented below should be viewed as lower bounds.

6.1 Analysis of Data and Research Questions

Our analysis of the experimental data confirms that slicing is a cost-effective state
space reduction technique, however the data do illustrate some of the limitations
of program slicing and suggest opportunities for additional approaches to refin-
ing slicing to achieve greater reductions.

To assess the cost-effectiveness of slicing we calculate reduction factors that
capture the ratio of the total run-time of our toolset for specific pairs of configu-
rations. The mean of a reduction factor is calculated over a specified subset of the
31 model check runs and positive outliers are removed; a positive outlier is a re-
duction factor that exceeds the mean by more than two standard deviations. We

Name Conf. States Trans. Memory Time

AlarmClocke dR 11204 28931 2.45 25.2
 dRP 106 870 0.12 11.1
 dS 4867 11593 0.12 13.1
 dSP 83 693 0.12 10.3
AlarmClock dR 1469917 5117602 4.49 57:56.4
 dRP 2305 49801 2.55 50.6
 dS 724666 2501705 3.69 13:1.6
 dSP 1204 25298 2.19 20.1
 aS 724666 2501705 3.22 12:56.4
 aSP 1204 25298 2.13 20.4
BBuffer dR 36405 90882 3.9 1:1.2
 dRP 138 3980 0.12 14.4
 dS 7484 18578 0.11 13.9
 dSP 28 630 0.12 10.7
 aS 7484 18578 0.12 13.9
 aSP 28 630 0.12 10.2
DiskSchede dR 7687219 2044564 5.71 9:48:1.8
 dRP 7690 858963 4.16 30:59.7
 dS 5487745 14302033 5.88 1:16:34.5
 dSP 7688 816991 1.81 5:17.6
 aS 5487745 14302033 5.88 1:16:26.7
 aSP 7688 816991 3.65 5:11.8
Pipeline dR 9892140 43821449 5.52 5:41:5.7
 dRP 7379 76307 4.21 45.6
 dS 9881030 43771450 5.43 5:28:4.4
 dSP 7379 76303 4.21 40.6

Name Conf. States Trans. Memory Time

SBarbere dR 197 197 0.12 13.4
 dRP 31 197 0.12 11.6
 dS 193 193 0.12 10.7
 dSP 31 193 0.12 12.1
RAXe dR 268 279 0.80 28.4
 dRP 33 252 0.80 27.2
 dS 266 277 0.57 26.8
 dSP 33 250 0.84 26.2
RW dR 25197913 26780595 5.86 13:21:24.6
 dRP 603 44621 4.13 1:11.2
 dS 113727 415098 4.15 1:29.8
 dSP 134 2103 0.12 11.3
RepWorker dR 2818232 8102858 4.77 2:9:59.9
 dRP 3091 96798 1.65 2:43.2
 dS 2736984 7867615 4.74 1:25:34.9
 dSP 2676 90735 3.52 2:1.1
RayTrace dR 2404257* 4754057* 6.26* 20:0:0*
 dRP 11610 2923881 5.35 9:8:45.4
 dS 2803535* 5552933* 6.34* 20:0:0*
 dSP 10932 2776238 5.18 6:53:13.9
Sienae dR 11465 11475 2.8 9:37.4
 dRP 116 11475 3.86 12:1.2
 dS 11310 11319 3.93 6:30.4
 dSP 114 11319 4.13 7:51.5

Table 2. Effect of slicing on model checking

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 85

consider different pairs of configurations of the model checker to address the dif-
ferent research questions. In the discussions below, we focus on run-time reduc-
tion factors as opposed to factors related to memory consumption or state-space
size, since this measure best captures the total time to apply slicing reductions
which happen before the actual model checks run. We have observed, however,
that space reductions seem to follow the same trend as time reductions.

(RQ 1) is concerned with the variation in effectiveness of slicing as a reduction
with program size and complexity. For this question, we consider the reduction fac-
tor dR/dS which is a measure of the effectiveness of slicing. To assess this question,
we group the examples into the set of larger examples and the rest. The mean of dR/
dS over set of larger examples is 1.4 and for the smaller examples it is 2.7.

This data seems to suggest that slicing scales poorly as a state-space reduc-
tion. It is well-understood, however, that static code measures, such as lines of
code, are poor indicators of state-space size and our real intention is to under-
stand the reduction of slicing as the size of the state-space scales. Furthermore,
we believe that the real benefit of slicing, and of many state-space reductions, is
only apparent when the search is stateful. To assess this, we compared the num-
ber of matched states to the number of stored states during model checking.
We term a model check run sparse if the ratio of matched to stored states is less
than 0.1. Most, but not all, of our error runs were classified as sparse, for exam-
ple, there were runs of SBarber, RAX and Siena that required no or only mini-
mal backtracking to find the error. The non-sparse searches included all of the
model checks that verified the property being checked and several error reveal-
ing checks where the error was found late in the search. Recalculating the mean
of dR/dS for this grouping of runs yields reduction factors of 1.9 for sparse and
4.0 for non-sparse searches. Even without this secondary analysis, it is clear that
program slicing is an effective reduction technique since the reduction factors
account for the cost of slicing.

(RQ 2) is concerned with the relative effectiveness of call-graph reachability
and slicing model reductions. The mean of dR/dS across all runs in our study was
2.5 indicating a non-trivial net benefit to slicing.

(RQ 3) is concerned with the relative effectiveness of partial-order reduction
and slicing. The mean of dRP/dSP over the total set of runs in our study was 2.1;
the means for sparse and non-sparse subsets of runs were 1.2 and 2.9, respec-
tively. Clearly slicing yields non-trivial additional reduction over POR. POR ap-
pears to be a more powerful than slicing based on the fact that the mean of dR/dRP
over the total set of runs in our study was 48.3; the means for sparse and non-
sparse subsets of runs were 1.2 and 105.5, respectively. Not surprisingly, POR
and slicing appear to both provide benefit only when a substantial portion of the
state space is searched.

(RQ 4) is concerned with the relative reduction power of slicing when the
property being analyzed is deadlock or a simple assertion. The data indicate that
there is no statistically significant difference. For the set of examples on which
both deadlock and assertional specifications were checked the mean of dRP/dSP
was 2.8 and the mean of aRP/aSP was 2.7. This was surprising to us since we ex-
pected that a more localized specification would require less of the program to
be included in the slice. In the programs we studied, however, there always ex-
isted a chain of dependences from the assertion expression to a program point

Dwyer et al. in Tools and algoriThms for … sysTems (2006)86

that is part of the programs synchronization skeleton. Once one such point is drawn
into the slice so to is the rest of the skeleton. This is an unfortunate consequence
of high-degree of synchronization coupling in the set of multi-threaded Java pro-
grams we studied.

7 Related Work

Since its development, the concept of slicing has been applied to a wide variety of
problems including: program understanding, debugging, differencing, integra-
tion, and testing; we refer the reader to Tip’s survey article for a broad view of
slicing [38]. Here, we focus on other work related to slicing for model reduction
and verification and slicing Java programs.

Millett and Teitelbaum [26] study static slicing of Promela (the model de-
scription language for the model-checker SPIN [19]) and its application to model
checking, simulation, and protocol understanding. Their work formed the basis
of the Promela slicing framework that is now included in the SPIN distribution.
Both [26] and the SPIN Promela slicer support slicing with criteria formed from
assertions and never claims (and thus LTL formulae), but do not include sup-
port for slicing to preserve deadlock. Slicing systems in a modeling language like
Promela is considerably simpler than slicing Java programs due to the absence of
challenging features like heap-allocated data, exceptions, methods and dynamic
dispatch, threads associated with object references, etc. However, care must be
taken to deal correctly with Promela features such as channels, richer intra-thread
non-deterministic choice constructs, and more sophisticated notions of blocking
due to Promela’s rich guarded command language (as we noted earlier, Java pro-
grams can only block due to lock acquisitions and wait statements.

The IF Validation Framework [4] also provides a slicing capability for the IF
modeling language which is similar to Promela in its level of abstraction. In a
case-study of using IF to verify properties of the MASCARA protocol for a wire-
less asynchronous transfer protocol, Graf and Jia [24] report reductions from 1-2
orders of magnitude for four different properties of the protocol while acknowl-
edging that it is difficult to make general conclusions about the effectiveness of
slicing since amount of reduction depends significantly on the particular prop-
erty and system considered.

Clarke et al.[6] present a tool for slicing VHDL programs with dependence
graphs. Using the VHDL description of the controller logic for a RISC processor
and two accompanying CTL properties (a safety and a liveness property), they
show that slicing reduces the reachable state space from roughly 1038 states to 1022
states. They also observe a reverse scalability effect for slicing—smaller VHDL pro-
grams tend to have fewer irrelevant components, and thus the benefits of slic-
ing to improve (percentage-wise) as programs grow in size. Sen et al.[35] use a
substantively different technique called computation slicing for model reduction in
verification of “systems on a chip” hardware designs.

8 Conclusion

Most researchers have developed strong opinions about the potential effective-
ness of program slicing as a reduction technique for software model checking.

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 87

Many of those opinions are in the negative. We believe that the study presented
in this paper provides convincing evidence that slicing is efficient to apply, taking
no more than 40 seconds on even the largest code base we considered, and yields
non-trivial reductions in model check time, averaging a factor of 4 improvement
for non-trivial model checks. Given the long-running nature of model checks,
this magnitude of reduction can significantly increase productivity. Furthermore,
these reductions are orthogonal to existing state-space reductions and can thus be
considered an extension to the state of the art.

As with any experimental study, one can question the external validity of
these conclusions, and we plan to increase the number of examples in our study
and vary the sources from which we draw those examples to provide more evi-
dential force to our findings. In spite of such questions, given that we never en-
countered a model check run where slicing caused a non-trivial increase in run-
time in our study, we believe that concluding that slicing is a cost-effective model
checking reduction is justified.

References

1. G. R. Andrews. Concurrent Programming: Principles and Practice. Addison-Wesley, 1991.
2. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic predicate abstraction of C

programs. In Proceedings of the ACM SIGPLAN ’01 Conference on Programming Language
Design and Implementation (PLDI-01), pages 203–213, June 2001.

3. Bandera. http://bandera.projects.cis.ksu.edu SAnToS Laboratory.
4. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L.Mounier. IF: A valida-

tion environment for timed asynchronous systems. In 12th International Conference on
Computer Aided Verification (CAV 2000), LNCS 1855, pp. 543–547, July 2000.

5. G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder – A second generation of a
Java model-checker. In Proceedings of the Workshop on Advances in Verification, July 2000.

6. E. Clarke, M. Fujita, S. Rajan, T.Reps, S. Shankar, and T. Teitelbaum. Program slicing of
hardware description languages. In Proceedings of CHARME’99, September 1999.

7. E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71, London,
UK, 1982. Springer.

8. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Păsăreanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proceedings of the 22nd
International Conference on Software Engineering, June 2000.

9. J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby. Expressing checkable properties of dy-
namic systems: The Bandera Specification Language. International Journal on Software
Tools for Technology Transfer, 2002.

10. H. Do, S. Elbaum, and G. Rothermel. Infrastructure support for controlled experimenta-
tion with software testing and regression testing techniques. In 2004 International Sym-
posium on Empirical Software Engineering (ISESE 2004), pages 60–70. IEEE Computer So-
ciety, 2004.

11. M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Păsăreanu, Robby, W. Visser, and
H. Zheng. Tool-supported program abstraction for finite-state verification. In Proceed-
ings of the 23rd International Conference on Software Engineering, May 2001.

12. M. B. Dwyer, J. Hatcliff, V. R. Prasad, and Robby. Exploiting object escape and locking
information in partial order reductions for concurrent object-oriented programs. Formal
Methods in System Designs, 25(2–3):199–240, September–November 2004.

13. Eclipse Consortium. Eclipse website. http://www.eclipse.org

Dwyer et al. in Tools and algoriThms for … sysTems (2006)88

14. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In J. Palsberg and M. Abadi, editors, Proceedings of the 32nd ACMSIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL, pages 110–121, Long
Beach, California, USA, January 2005. ACM.

15. P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems, volume 1032
of Lecture Notes in Computer Science. Springer, 1996.

16. A. Groce and W. Visser. Model checking Java programs using structural heuristics. In
Proceedings of the International Symposium on Software Testing and Analysis, pages 12–21.
ACM Press, 2002.

17. J. Hatcliff, J. C. Corbett, M. B. Dwyer, S. Sokolowski, and H. Zheng. A formal study of
slicing for multi-threaded programs with JVM concurrency primitives. In Proceedings of
the 6th International Static Analysis Symposium (SAS’99), volume 1694 of Lecture Notes in
Computer Science, Sept. 1999.

18. J. Hatcliff, M. B. Dwyer, and H. Zheng. Slicing software for model construction. Journal
of Higher-order and Symbolic Computation, 13(4):315–353, 2000.

19. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–294, May 1997.

20. G. J. Holzmann. Personal communication, Oct. 2005.
21. R. Iosif. Symmetry reduction criteria for software model checking. In Proceedings of Ninth

International SPIN Workshop, volume 2318 of Lecture Notes in Computer Science, pages 22–
41. Springer, Apr. 2002.

22. Java Grande Benchmarking Project. Java Grande forum benchmark suite – thread ver-
sion 1.0. http://www.epcc.ed.ac.uk/computing/research activities/ java grande/

23. G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: Delivering Indus Java program
slicer to Eclipse. In Proceedings of the Fundamental Approaches to Software Engineering,
FASE 2005. Springer, April 2005.

24. G. Jia and S. Graf. Verification experiments on the MASCARA protocol. In M. B. Dwyer,
editor, Model Checking Software: 8th International SPIN Workshop, volume 2057 of LNCS,
pages 123–142, Toronto, Canada, May 2001. Springer.

25. J. Krinke. Static slicing of threaded programs. In Proceedings ACM SIGPLAN/SIGFSOFT
Workshop on Program Analysis for Software Tools and Engineering (PASTE’98), pages 35–
42, Montreal, Canada, June 1998. ACM SIGPLAN Notices 33(7).

26. L. I. Millett and T. Teitelbaum. Slicing Promela and its applications to model check-
ing, simulation, and protocol understanding. In Proceedings of the 4th International SPIN
Workshop, LNCS, 1998.

27. M. G. Nanda and S. Ramesh. Slicing concurrent programs. In Proceedings of International
Symposium on Software Testing and Analysis (ISSTA’00), pages 180–190, 2000.

28. A. Podgurski and L. Clarke. A formal model of program dependences and its implica-
tions for software testing, debugging, and maintenance. IEEE Transactions on Software
Engineering, 16(8):965–979, 1990.

29. V. P. Ranganath. Indus. http://indus.projects.cis.ksu.edu
30. V. P. Ranganath. Object-flow analysis for optimizing finite-state models of Java soft-

ware. Master’s thesis, Kansas State University, 2002.
31. V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A new foundation

for control-dependence and slicing for modern program structures. In Programming
Languages and Systems, Proceedings of 14th European Symposium on Programming, ESOP
2005. Springer, April 2005.

32. V. P. Ranganath and J. Hatcliff. Pruning interference and ready dependences for slicing
concurrent Java programs. In E. Duesterwald, editor, Proceedings of Compiler Construc-
tion (CC’04), Lecture Notes in Computer Science 2985, pages 39–56. March 2004. Evaluat-
ing the Effectiveness of Slicing 89

Slicing for MoDel reDuction of concurrent object-orienteD PrograMS 89

33. Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An extensible and highly-modular model
checking framework. In Proceedings of the 9th European Software Engineering Conference /
11th ACM SIGSOFT Symposium on the Foundations of Software Engineering, 2003.

34. Robby, M. B. Dwyer, J. Hatcliff, and R. Iosif. Space-reduction strategies for model check-
ing dynamic systems. In Proceedings of the 2003 Workshop on Software Model Checking,
July 2003.

35. A. Sen, J. Bhadra, V. K. Garg, and J. A. Abraham. Formal verification of a system-on-
chip using computation slicing. In International Test Conference ITC, pages 810–819, Oc-
tober 2004.

36. S. Stoller. Model-checking multi-threaded distributed Java programs. In International
Journal on Software Tools for Technology Transfer. Springer, 2002.

37. D. Suwimonteerabuth, S. Schwoon, and J. Esparza. jMoped: A Java bytecode checker
based on Moped. In Proceedings of the 11th Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS 2007), number 3440 in Lecture Notes in Com-
puter Science, pages 541–545, 2005.

38. F. Tip. A survey of program slicing techniques. Journal of programming languages, 3:121–
189, 1995.

39. R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot—A Java
optimization framework. In Proceedings of CASCON’99, Nov. 1999.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	1-1-2006

	Evaluating the Effectiveness of Slicing for Model Reduction of Concurrent Object-Oriented Programs
	Matthew B. Dwyer
	John Hatcliff
	Matthew Hoosier
	Venkatesh Ranganath
	Robby
	See next page for additional authors
	Authors

