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BOUNDARY CONTROLLABILITY OF THERMOELASTIC PLATES
VIA THE FREE BOUNDARY CONDITIONS∗

GEORGE AVALOS† AND IRENA LASIECKA‡

SIAM J. CONTROL OPTIM. c© 2000 Society for Industrial and Applied Mathematics
Vol. 38, No. 2, pp. 337–383

Abstract. Controllability properties of a partial differential equation (PDE) model describing a
thermoelastic plate are studied. The PDE is composed of a Kirchoff plate equation coupled to a heat
equation on a bounded domain, with the coupling taking place on the interior and boundary of the
domain. The coupling in this PDE is parameterized by α > 0. Boundary control is exerted through
the (two) free boundary conditions of the plate equation and through the Robin boundary condition of
the temperature. These controls have the physical interpretation of inserted forces and moments and
prescribed temperature, respectively, all of which act on the edges of the plate. The main result here
is that under such boundary control, and with initial data in the basic space of well-posedness, one
can simultaneously control the displacement of the plate exactly and the temperature approximately.
Moreover, the thermal control may be taken to be arbitrarily smooth in time and space, and the
thermal control region may be any nonempty subset of the boundary. This controllability holds for
arbitrary values of the coupling parameter α, with the optimal controllability time in line with that
seen for uncoupled Kirchoff plates.

Key words. partial differential equations, exact-approximate controllability

AMS subject classification. 35B37
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1. Introduction.

1.1. Statement of the problem. Throughout, Ω will be a bounded open sub-
set of R2 with sufficiently smooth boundary Γ = Γ0 ∪ Γ1, with both Γ0 and Γ1 being
open, with Γ0 being possibly empty, and satisfying Γ0 ∩ Γ1 = ∅. Furthermore, Γ2

will be any open and nonempty subset of Γ1. With this geometry, we shall consider
here the following thermoelastic system on finite time (0, T ):

{
ωtt − γ∆ωtt + ∆2ω + α∆θ = 0
βθt − η∆θ + σθ − α∆ωt = 0

on (0, T )× Ω;

ω =
∂ω

∂ν
= 0 on (0, T )× Γ0;

{
∆ω + (1− µ)B1ω + αθ = u1

∂∆ω

∂ν
+ (1− µ)

∂B2ω

∂τ
− γ ∂ωtt

∂ν
+ α

∂θ

∂ν
= u2

on (0, T )× Γ1;

∂θ

∂ν
+ λθ =

{
u3 on (0, T )× Γ2,
0 on (0, T )× Γ\Γ2,

λ ≥ 0;

ω(t = 0) = ω0, ωt(t = 0) = ω1, θ(t = 0) = θ0 on Ω.

(1.1)
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338 GEORGE AVALOS AND IRENA LASIECKA

Here, α, β, η, and σ are positive constants. The positive constant γ is proportional
to the thickness of the plate and assumed to be small with 0 < γ ≤M. The boundary
operators Bi are given by

B1ω ≡ 2ν1ν2
∂2ω

∂x∂y
−ν2

1

∂2ω

∂y2
−ν2

2

∂2ω

∂x2
and B2ω ≡ (ν2

1−ν2
2)

∂2ω

∂x∂y
+ν1ν2

(
∂2ω

∂y2
− ∂2ω

∂x2

)
.

(1.2)
The constant µ ∈ (0, 1

2 ) is the familiar Poisson ratio, and ν = [ν1, ν2] denotes the out-
ward unit normal to the boundary. Here and throughout we shall make the following
geometric assumption on the (uncontrolled) portion of the boundary Γ0:

(1.3)

with h(x, y) ≡ [x− x0, y − y0] ,∃ {x0, y0} ∈ R2 such that h(x, y) · ν ≤ 0 on Γ0.

The PDE model (1.1), with boundary functions u1 = u2 = 0 and u3 = 0, math-
ematically describes an uncontrolled Kirchoff plate subjected to a thermal damping,
with the displacement of the plate represented by the function ω(t, x, y) and the tem-
perature given by the function θ(t, x, y) (see [11] for a derivation of this model). The
given control variables u1(t, x) and u2(t, x) are defined on the portion of the boundary
(0, T )× Γ1; the control u3(t, x) is defined on (0, T )× Γ2.

Making the denotation

Hk
Γ0

(Ω) ≡
{
$ ∈ Hk(Ω) :

∂j$

∂νj

∣∣∣∣
Γ0

= 0 for j = 0, ..., k − 1

}
,(1.4)

we will throughout take the initial data [ω0, ω1, θ0] to be in H2
Γ0

(Ω)×H1
Γ0

(Ω)×L2(Ω).
For initial data in these spaces and controls u1 = u2 = 0 and u3 = 0, one can
show the well-posedness of (1.1) with the corresponding solution [ω, ωt, θ] being in
C([0, T ];H2

Γ0
(Ω) × H1

Γ0
(Ω) × L2(Ω)) (see, e.g., [11] and [2]). In this paper, we will

study controllability properties of solutions of (1.1) under the influence of boundary
control functions in the following spaces:

[u1, u2, u3] ∈ L2(0, T ;L2(Γ1)×H−1(Γ1))×Cr(Σ2,T ), where r > 0 and Σ2,T = (0, T )×Γ2.
(1.5)

For arbitrary [u1, u2, u3] of such smoothness, the corresponding solution [ω, ωt, θ] will
be in the “large” space C([0, T ]; [D(A∗γ)]′) (see the definition of D(A∗γ) in (1.49)).
In particular, we intend to address, on the finite time interval [0, T ], the question of
exact-approximate controllability (this term being originally coined in [6]). That is
to say, for given data [ω0, ω1, θ0] (initial) and

[
ωT0 , ω

T
1 , θ

T
0

]
(terminal) in H2

Γ0
(Ω) ×

H1
Γ0

(Ω) × L2(Ω), and arbitrary ε > 0, is there a suitable control triple [u1, u2, u3] ∈
L2(0, T ;L2(Γ1)×H−1(Γ1))×Cr(Σ2,T ) such that the corresponding solution [ω, ωt, θ]
of (1.1) satisfies the following steering property at terminal time T :

[ω(T ), ωt(T )] =
[
ωT0 , ω

T
1

]
and

∥∥θ(T )− θT0
∥∥
L2(Ω)

≤ ε?

In this regard, we post our main result here for which we need the number

T ∗ ≡ 2
√
γ ·max

{√
2

1− µ max
[x,y]∈Ω

∣∣h(x, y)
∣∣ , sup

[x,y]∈Ω

d ([x, y],Γ2)

}
,(1.6)

where, above, d([x, y],Γ2) denotes the distance between [x, y] and Γ2.
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Theorem 1.1. Let assumptions (1.3) and (1.6) stand. Then for T > T ∗, the
following controllability property holds true: For given initial data [ω0, ω1, θ0] and
terminal data

[
ωT0 , ω

T
1 , θ

T
0

]
in the space H2

Γ0
(Ω) × H1

Γ0
(Ω) × L2(Ω), and arbitrary

ε > 0, one can find control functions [u∗1, u
∗
2, u
∗
3] ∈ L2(0, T ;L2(Γ1) × H−1(Γ1)) ×

Cr(Σ2,T ) (where arbitrary r ≥ 0) such that the corresponding solution [ω∗, ω∗t , θ
∗] to

(1.1) satisfies at terminal time T ,

[ω∗(T ), ω∗t (T )] =
[
ωT0 , ω

T
1

]
,∥∥θ∗(T )− θT0

∥∥
L2(Ω)

< ε.

Theorem 1.1 is almost a corollary from the following controllability result for the
mechanical variable only, which comprises the bulk of our effort here.

Theorem 1.2. With the coupling parameter α in (1.1) being arbitrary, and
(1.3), (1.6) in place, then for T > T ∗, the following property holds true: For all
initial data [ω0, ω1, θ0] ∈ H2

Γ0
(Ω) × H1

Γ0
(Ω) × L2(Ω) and terminal data

[
ωT0 , ω

T
1

] ∈
H2

Γ0
(Ω)×H1

Γ0
(Ω), there exists [u1, u2, u3] ∈ L2(0, T ;L2(Γ1)×H−1(Γ1))×Hs(Σ2,T ),

where arbitrary s ≥ 0, such that the corresponding solution [ω, ωt, θ] to (1.1) satisfies
[ω(T ), ωt(T )] =

[
ωT0 , ω

T
1

]
.

Remark 1.3. Note that the point [x0, y0] can be selected in such a way so that
2 max[x,y]∈Ω

∣∣h(x, y)
∣∣ ≤ diam (Ω), and so, ultimately, T ∗ in (1.6) can be rechosen as

T ∗ = 2
√
γ diam (Ω).

Remark 1.4. Note that in our statement of controllability, no geometric conditions
are imposed on the controlled region of the boundary Γ1 , only on the (possibly void)
boundary portion Γ0.

1.2. Literature. To date, the only work dealing with the boundary control of
thermoelastic plates, in dimension greater than one, had been that of J. Lagnese in [12]
(indeed, this present paper is principally motivated by [12]). In this paper, Lagnese
shows that if the coupling parameter α is small enough and the boundary Γ is “star
shaped,” then the boundary controlled system (1.1) is (partially) exactly controllable
with respect to the mechanical variables [ω, ωt]. Also in [22], a boundary-controlled
system of thermoelastic waves is studied, with a coupling parameter α likewise present
therein, and a result of partial exact controllability for this PDE is cited (again,
controllability with respect to the hyperbolic component). This controllability result
is quoted in [22] to be valid for all sizes of α; however, in the erratum [23], the author
of [22] has acknowledged a flaw in the controllability proof, the correction of which
will necessitate a smallness criterion on α. Ultimately, then, the paper [22] produces
a controllability result if the coupling parameter is small enough, a result in the style
of [12]. The chief contribution of the present paper is to remove restrictions on the
size of α (see Theorem 1.2 above). For a one-dimensional version of (1.1), S. Hansen
and B. Zhang in [8], via a moment problem approach, show the system’s exact null
controllability with boundary control in either the plate or the thermal component.

Other controllability results for the thermoelastic system, which do not assume
any “smallness” condition on the coupling parameters, involve the implementation
of distributed/internal controls subject to clamped or hinged boundary conditions.
These results include that in [6], in which interior control is placed in the Kirchoff
plate component subject to clamped boundary conditions.
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With such control, one obtains exact controllability for the plate [ω, ωt] and ap-
proximate controllability for the temperature θ (i.e., exact-approximate controllabil-
ity). In addition, the work in [19] deals with obtaining a result of null controllability
for a linear system of thermoelasticity, in which both the hyperbolic and the parabolic
components can be driven to zero by means of interior control placed in the hyperbolic
(wave) component.

Another result of internal control for the thermoelastic PDE (1.1) is in [5], wherein
interior control is placed in the heat equation only (i.e., βθt− η∆θ+ σθ−α∆ωt = u)
so as to obtain exact controllability for both components ω and θ. The novelty of this
result is that this (total) exact controllability obtains for all values of the rotational
inertia parameter γ ≥ 0: in the limiting case γ = 0, one is then presented with a result
of exact controllability for a PDE modeled by the generator of an analytic semigroup
(see [18]). This controllability holds for all values of α.

Again, the main contribution of this paper is that we consider boundary controls
acting via the higher order free mechanical boundary conditions, and we do not assume
any size restriction on the coupling parameter α. Moreover, we do not impose any
geometric “star-shaped” conditions on the controlled portion of the geometry.

At this point, we attempt to compare the degree of difficulty in obtaining control-
lability results for thermoelastic plates under mechanical interior control with lower-
order mechanical boundary conditions enforced (such as clamped or hinged), versus
that involved in the present study, where, again, boundary control is exerted upon
the second and third order free boundary conditions. This comparison is appropriate,
since the novelty of our work is touted to be (mechanical) exact controllability for the
PDE (1.1), whatever α may be; and excluding the paper [5], the only other available
controllability results for thermoelastic systems, which require no size constraints on
α, concerned thermoelastic systems under (distributed) interior mechanical control
and with lower mechanical boundary conditions in place.

An underlying strategy in control theoretic studies of thermoelastic plates has
been to exploit, if possible, previously known controllability results for (uncoupled)
Kirchoff plates. To this end, one attempts to treat the thermoelastic system as a sort
of perturbation of the Kirchoff plate. It is well known that if the underlying con-
trollability map can be decomposed into the sum of a compact map and a surjective
controllability map, corresponding to a (simpler) subcomponent of the PDE system,
then the exact controllability of the original problem is equivalent to its approximate
controllability. This favorable scenario occurs in equations of thermoelasticity with
either clamped or hinged boundary conditions and interior, distributed controls (see,
e.g., [20]). Indeed, the part of the simpler component is played by the classical and
much-studied Kirchoff plate, for which many results on exact controllability are al-
ready available in the literature. Taking the boundary conditions to be clamped or
hinged allows for a known structural decomposition of the thermoelastic system into
a group (associated with the Kirchoff plate) and a compact perturbation. Combin-
ing this decomposition with the boundedness of interior control actions immediately
yields the desired decomposition of the original controllability map into the sum of
a surjective controllability map (corresponding to the Kirchoff plate) and a compact
perturbation. This popular strategy was used in [6], where an exact-approximate
controllability result was established for the thermoelastic system with clamped ho-
mogeneous boundary conditions and internal controls.

The situation is drastically different in the present paper, involving the case of
boundary controls. Here, in this case of free mechanical boundary conditions, the
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corresponding controllability operator cannot be taken to be a compact perturbation
of the controllability map for the (uncoupled) boundary-controlled Kirchoff plate. In
the first place, the associated input→state space map, defined explicitly in (1.42), is
an inherently unbounded operator with respect to the natural energy space (see [17]
for recent sharp regularity results for corresponding solutions, which are still, however,
below the level of energy). Moreover, in the present case of free boundary conditions,
there is a decomposition of the underlying thermoelastic semigroup, but it is into the
sum of a Kirchoff plate semigroup and an unbounded—not compact—operator (see
[16]). This complication is due to the fact that the Lopatinski conditions are not
satisfied for the Kirchoff model under free boundary conditions, and to the intrinsic
nature of the coupling between the mechanical and thermal variables within the free
boundary conditions. These two complications above, again an artifact of the “free
case,” explain why there have been so few results regarding the boundary control of
thermoelastic plates and why a “decoupling” of the thermoelastic PDE into a sole
Kirchoff plate can only go so far.

Our goal here is to dispense with this smallness assumption and, in addition,
show that a control can be constructed that provides exact controllability of the me-
chanical variables and approximate controllability of the thermal component. We
note that the thermal control u3 present in (1.1)—wholly absent in [12]—plays no
part at all in the removal of the size restriction on α; it is in place only to exploit,
in a compactness-uniqueness argument, recently obtained approximate controllability
properties of the thermoelastic plate under the action of boundary control in the free
mechanical boundary conditions (see [10]). At this point in time, the thermoelastic
system cannot be shown to be approximately controllable with control in the free
boundary conditions only (and no thermal control). Therefore, the presence of the
thermal boundary control here is not an artificiality; it appears to be necessary for
approximate controllability. (We do not know if the future will bring a unique con-
tinuation result for the thermoelastic plate in the absence of the thermal component.)
However, the result of Theorem 1.1 says that the thermal control may be taken to
be very smooth and with arbitrarily small support Γ2. Again, this benign situation
is a consequence of our employing thermal control at the compactness-uniqueness
level only; it plays no part whatsoever in generating the main observability estimate
(estimate (2.5) of Theorem 2.1), this being free of any size restrictions on α.

The strategy adopted in this paper consists of the following steps. Initially, a
suitable transformation of variables is made and applied to (1.1); subsequently, a mul-
tiplier method is invoked with respect to the transformed equation. The mulitiplers
employed here are the differential multipliers used in the study of exact controllabil-
ity for the Kirchoff plate model (inspired by [11]), together with the nonlocal (ΨDO)
multipliers used in the study of thermoelastic plates in [3] and [4]. The controllabil-
ity time T ∗ in Theorem 1.1 ultimately depends in part upon the radial vector field
associated with the differential Kirchoff multipliers (see Lemma 2.5 below). This mul-
tiplier method allows the attainment of preliminary estimates for the energy of the
system. However, these estimates are “polluted” by certain boundary terms that are
not majorized by the energy. To cope with these, we use the sharp trace estimates
established in [15] for Kirchoff plates. The use of this PDE result introduces lower
order terms into the energy estimate, which are eventually eliminated with the help of
a new unique continuation result in [10]. It is only at the level of invoking this unique-
ness result that the thermal control u3 on Γ2 must be introduced. The controllability
time T ∗ in (1.6) is optimal.
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1.3. Operator theoretic formulation and analysis.

1.3.1. Preliminary definitions. In obtaining our controllability result Theo-
rem 1.1, it will be useful to consider the PDE system (1.1) as an abstract evolution
equation in a certain Hilbert space, to which end we introduce the following definitions
and notation.

• With Hk
Γ0

(Ω) as defined in (1.4), we define Å: L2(Ω) ⊃ D
(
Å
) → L2(Ω) to

be Å= ∆2, with domain

D(Å) =

{
ω ∈ H4(Ω) ∩H2

Γ0
(Ω) : ∆ω + (1− µ)B1ω = 0 on Γ1 and

∂∆ω

∂ν
+ (1− µ)

∂B2ω

∂τ
= 0 on Γ1

}
.(1.7)

• Å is then positive definite and self-adjoint, and consequently from [7] we have
the characterizations

D
(
Å

1
4

)
= H1

Γ0
(Ω),

D
(
Å

1
2

)
= H2

Γ0
(Ω),

D
(
Å

3
4

)
=
{
ω ∈ H3(Ω) ∩H2

Γ0
(Ω) : ∆ω + (1− µ)B1ω = 0 on Γ1

}
.

(1.8)

Note that without loss of generality, we are here taking Γ0 to be nonempty
in order to have the equivalence of the H2(Ω) norm with that induced by the

D(Å
1
2 ). In the case that Γ0 = ∅, we would simply modify D(Å) by enforcing

∂∆ω
∂ν + (1−µ)∂B2ω

∂τ |Γ1
= ω|Γ1

(instead of ∂∆ω
∂ν + (1−µ)∂B2ω

∂τ |Γ1
= 0 in (1.7)).

This modification would not change the problem.
Moreover, using Green’s formula in [11], we have that for ω, ω̂ “smooth

enough,” ∫
Ω

(∆2ω)ω̂dΩ = a (ω, ω̂) +

∫
Γ

[
∂∆ω

∂ν
+ (1− µ)

∂B2ω

∂τ

]
ω̂dΓ

−
∫

Γ

[∆ω + (1− µ)B1ω]
∂ω̂

∂ν
dΓ,(1.9)

where a(·, ·) is defined by

a (ω, ω̂) ≡
∫

Ω

[ωxxω̂xx + ωyyω̂yy + µ (ωxxω̂yy + ωyyω̂xx) + 2(1− µ)ωxyω̂xy] dΩ.

(1.10)
In particular, this formula and the second characterization in (1.8) give that

for all ω, ω̂ ∈ D(Å
1
2 ),〈

Åω, ω̂
〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) =
(
Å

1
2ω, Å

1
2 ω̂
)
L2(Ω)

= a (ω, ω̂)L2(Ω) ,

‖ω‖2
D

(
Å

1
2

) =
∥∥∥Å 1

2ω
∥∥∥2

L2(Ω)
= a (ω, ω) .(1.11)

• We define AD : L2(Ω) ⊃ D (AD) → L2(Ω) to be AD = −∆, with Dirichlet
boundary conditions, viz.,

D(AD) = H2(Ω) ∩H1
0 (Ω).(1.12)
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AD is also positive definite, self-adjoint, and by [7]

D
(
A

1
2

D

)
= H1

0 (Ω).(1.13)

• We denote the operator AR : L2(Ω) ⊃ D (AR) → L2(Ω) by the following
second order elliptic operator:

AR = −∆ +
σ

η
I, with D(AR) =

{
ϑ ∈ H2(Ω) :

∂ϑ

∂ν
+ λϑ = 0

}
.(1.14)

AR is self-adjoint, positive definite on L2(Ω), with its fractional powers there-
fore being well defined. In particular, we have again by [7] that for s ∈ [0, 3

4

)
,

D(AsR) = H2s(Ω),(
ϑ, ϑ̃

)
H1(Ω)

=
(
A

1
2

Rϑ,A
1
2

Rϑ̃
)
L2(Ω)

=
(
∇ϑ,∇ϑ̃

)
L2(Ω)

+ λ
(
ϑ, ϑ̃

)
L2(Γ)

+
σ

η

(
ϑ, ϑ̃

)
L2(Ω)

.(1.15)

• We denote the operator AN : L2(Ω) ⊃ D (AN ) → L2(Ω) by the following
second order elliptic operator:

AN = −∆, with D(AN ) =

{
ϑ ∈ H2(Ω) : ϑ|Γ0

=
∂ϑ

∂ν

∣∣∣∣
Γ1

= 0

}
.(1.16)

Once again by [7], we have for s ∈ ( 1
4 ,

3
4

)
D(AsN ) =

{
ϑ ∈ H2s(Ω) such that ϑ|Γ0

= 0
}
.(1.17)

• (γ0, γ1) will denote the classical Sobolev trace maps, which yield for f ∈
C∞(Ω)

γ0f = f |Γ ; γ1f =
∂f

∂ν

∣∣∣∣
Γ

.(1.18)

• We define the elliptic operators G1, G2, and D as follows:

G1h = v ⇐⇒



∆2v = 0 on Ω,

v =
∂v

∂ν
= 0 on Γ0, ∆v + (1− µ)B1v = h

∂∆v

∂ν
+ (1− µ)

∂B2v

∂τ
= 0

on Γ1,

G2h = v ⇐⇒



∆2v = 0 on Ω,

v =
∂v

∂ν
= 0 on Γ0, ∆v + (1− µ)B1v = 0

∂∆v

∂ν
+ (1− µ)

∂B2v

∂τ
= h

on Γ1,

(1.19)
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Dh = v ⇐⇒
{

∆v = 0 on Ω,

v|Γ = h on Γ;
Rh = v ⇐⇒



(
−∆ + σ

η I
)
v = 0 on Ω,

∂v

∂ν
+ λv = h on Γ2,

∂v

∂ν
+ λv = 0 on Γ\Γ2.

(1.20)
The classic regularity results of [21, p. 152] then provide that for all q real,

D ∈ L
(
Hq(Γ), Hq+ 1

2 (Ω)
)
,

R ∈ L
(
Hq

0 (Γ2), Hq+ 3
2 (Ω)

)
,

G1 ∈ L
(
Hq

0 (Γ1), Hq+ 5
2 (Ω)

)
,

G2 ∈ L
(
H
q− 1

2
0 (Γ1), Hq+3(Ω)

)
.

(1.21)

Denoting the topological dual of Hq as [Hq]
′

(pivotal with respect to the
L2-inner product), then with the elliptic operators AR and R as defined
above, one can show that for q ≥ − 1

2 , the (Banach space) adjoint R∗AR ∈
L(D(A

1
2

R), [Hq(Γ2)]′) satisfies

R∗ARϑ = ϑ|Γ2
for all ϑ ∈ D

(
A

1
2

R

)
.(1.22)

Moreover, with the operators Å and Gi as defined above, one can readily
show with the use of Green’s formula (1.9) that ∀ $ ∈ D(Å

1
2 ) the (Banach

space) adjoints G∗i Å ∈ L(D(Å
1
2 ), Hi− 1

2 (Γ1)) satisfy for i = 1, 2,

G∗i Å$ =

{
(−1)i−1 γ2−i$|Γ1

on Γ1,

0 on Γ0.
(1.23)

• With AN given by (1.16), we define the operator Pγ : D(Pγ) ⊂ L2(Ω) →
L2(Ω) by

Pγ ≡ I + γAN .(1.24)

(i) With the parameter γ > 0, we define a space H1
Γ0,γ

(Ω) equivalent to

H1
Γ0

(Ω) with inner product

(1.25)

(ω1, ω2)H1
Γ0,γ

(Ω) ≡ (ω1, ω2)L2(Ω) + γ (∇ω1,∇ω2)L2(Ω) ∀ω1, ω2 ∈ H1
Γ0

(Ω)

and with its dual denoted as H−1
Γ0,γ

(Ω). After recalling that H1
Γ0

(Ω) = D(A
1
2

N )
(by (1.17)), two extensions by continuity will then yield that

Pγ ∈ L
(
H1

Γ0,γ(Ω), H−1
Γ0,γ

(Ω)
)

with 〈Pγω1, ω2〉H−1
Γ0,γ

(Ω)×H1
Γ0,γ

(Ω) = (ω1, ω2)H1
Γ0,γ

(Ω) .(1.26)

Furthermore, the obvious H1
Γ0,γ

(Ω)-ellipticity of Pγ and Lax–Milgram give us

that Pγ ∈ L(H1
Γ0,γ

(Ω), H−1
Γ0,γ

(Ω))is boundedly invertible, with

P−1
γ ∈ L

(
H−1

Γ0,γ
(Ω), H1

Γ0,γ(Ω)
)
.(1.27)
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Moreover, because Pγ is positive definite and self-adjoint as an operator Pγ :

L2(Ω) ⊃ D(Pγ) → L2(Ω), the square root P
1
2
γ is consequently well defined

with D(P
1
2
γ ) = H1

Γ0,γ
(Ω), by (1.17). It then follows from (1.25) and (1.26)

that for ω and ω̂ ∈ H1
Γ0,γ

(Ω),∥∥∥P 1
2
γ ω
∥∥∥2

L2(Ω)
= ‖ω‖2L2(Ω) + γ ‖∇ω‖2L2(Ω) = ‖ω‖2H1

Γ0,γ
(Ω) ,(1.28) (

P
1
2
γ ω, P

1
2
γ ω̂
)
L2(Ω)

= (ω, ω̂)H1
Γ0,γ

(Ω) .(1.29)

(ii) Finally, by Green’s formula we have for ω, ω̂ ∈ D(Å
1
2 ),

γ
〈(

∆ + ÅG2γ1

)
ω, ω̂

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

= −γ (∇ω,∇ω̂)L2(Ω) + γ

(
∂ω

∂ν
, ω̂

)
L2(Γ1)

+ γ
(
γ1ω,G

∗
2Åω̂

)
L2(Γ1)

= −γ (∇ω,∇ω̂)L2(Ω) = −γ 〈ANω, ω̂〉H−1
Γ0,γ

(Ω)×H1
Γ0,γ

(Ω)(1.30)

after using (1.23). We thus obtain after two extensions by continuity to
H1

Γ0,γ
(Ω) that

Pγ = I− γ (∆ + ÅG2γ1

)
as elements of L

(
H1

Γ0,γ(Ω), H−1
Γ0,γ

(Ω)
)
.(1.31)

In obtaining the equality above, we have used implicitly the fact that for
every $∗ ∈ H−1

Γ0,γ
(Ω) and $ ∈ D(Å

1
2 ),

〈$∗, $〉H−1
Γ0,γ

(Ω)×H1
Γ0,γ

(Ω) = 〈$∗, $〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)(1.32)

• We denote the Hilbert space Hγ to be

Hγ ≡ D
(
Å

1
2

)
×H1

Γ0,γ(Ω)× L2(Ω),(1.33)

with the inner product ω1

ω2

θ

 ,
 ω̂1

ω̂2

θ̂


Hγ

=
(
Å

1
2ω1, Å

1
2 ω̂1

)
L2(Ω)

+
(
P

1
2
γ ω2, P

1
2
γ ω̂2

)
L2(Ω)

+ β
(
θ, θ̂
)
L2(Ω)

.(1.34)

• With the above definitions, and making the denotation

(♣) ≡ AR − σ

η
− ÅG1γ0 + λÅG2γ0,(1.35)

we then set Aγ : Hγ ⊃ D(Aγ)→ Hγ to be

Aγ ≡
 I 0 0

0 P−1
γ 0

0 0 I


 0 I 0
−Å 0 α(♣)

0 −α
β
AD(I−Dγ0) − η

β
AR


with D(Aγ) =

{
[ω0, ω1, θ0] ∈ D

(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR))

such that Åω0 + αÅG1γ0θ0 ∈ H−1
Γ0,γ

(Ω)
}
.

(1.36)
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• We make the following denotations for the space of controllability:

Us = L2(Γ1)×H−1(Γ1)×Hs(Γ2),

Us = L2(0, T ;L2(Γ1)×H−1(Γ1))×Hs((0, T )× Γ2),(1.37)

where s ≥ 0. We define the control operator B on Us by having for every
u = [u1, u2, u3] ∈ Us,

Bu =

 0
P−1
γ [ÅG1u1 + ÅG2u2]

η

β
ARRu3

 .(1.38)

Note that a priori the mapping B only makes sense as an element of L(Us,
[D(A∗γ)]′), where Hγ ⊂ [D(A∗γ)]′. Indeed, for fixed u = [u1, u2, u3] ∈ Us one
has, upon using the expression for the inverse A−1

γ given in (4.2) below, and
the definition of the elliptic operators G1, G2, and R in (1.19) and (1.20)
above, that

Bu = AγA−1
γ

 0
P−1
γ [ÅG1u1 + ÅG2u2]

η

β
ARRu3


= Aγ

 −G1u1 −G2u2 − αÅ
−1

(♣)Ru3

0
−Ru3

 ∈ [D(A∗γ)
]′
,(1.39)

where (♣) is as defined in (1.35).
• By duality, we have

U∗s = L2(Γ1)×H1(Γ1)× [Hs(Γ2)]
′
,

U∗s = L2(0, T ;L2(Γ1)×H1(Γ1))× [Hs(0, T ;L2(Γ2))
]′
,(1.40)

and B∗ ∈ L (D(A∗γ), U∗s
)
.

1.3.2. Abstract operator formulation. If we take the initial data [ω0, ω1, θ0]
to be in Hγ , and control u ∈ Us, where Us is as defined in (1.37), then considering
the operator definitions above, the coupled system (1.1) can be rewritten a fortiori as
the operator theoretic model

d

dt

 ω(t)
ωt(t)
θ(t)

 = Aγ
 ω(t)
ωt(t)
θ(t)

+ Bu(t),

 ω(0)
ωt(0)
θ(0)

 =

 ω0

ω1

θ0

 ,(1.41)

with this equation having sense in
[
D(A∗γ)

]′
(a space strictly larger than Hγ). Given

the operator definitions for Aγ and B above, the solution [ω, ωt, θ] to the ODE (1.41)
(and so to the PDE (1.1)) is given by ω(·)

ωt(·)
θ(·)

 = eAγ(·)

 ω0

ω1

θ0

+

∫ (·)

0

eAγ(·−s)Bu(s)ds,(1.42)
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which by (1.39) and the convolution theorem is an element of C([0, T ]; [D(A∗γ)]′).
With this representation of the solution [ω, ωt, θ] in mind, we define the input →
terminal state map LT ∈ L(Us,

[
D(A∗γ)

]′
) as

LTu =

∫ T

0

eAγ(T−s)Bu(s)ds.(1.43)

Taken as an unbounded operator from Us into Hγ , then LT : D(LT ) ⊂ Us → Hγ is
closed and densely defined, with its domain of definition D(LT ) given to be

D(LT ) = {u ∈ Us : LTu ∈ Hγ} .(1.44)

Its adjoint L∗T : D(L∗T ) ⊂ Hγ → U∗s , where U∗s is as given in (1.40), is likewise closed
and densely defined, with

D(L∗T ) =

[φ0, φ1, ψ0] ∈ Hγ : L∗T

 φ0

φ1

ψ0

 ∈ U∗s
 .(1.45)

As we are concerned with obtaining exact controllability of the displacement
[ω, ωt] only, we accordingly define the projection operator Π : Hγ → D(Å

1
2 ) ×

H1
Γ0,γ

(Ω) by

Π

 $0

$1

ϑ0

 =

[
$0

$1

]
.(1.46)

Henceforth, the work here will be concerned with determining the surjectivity of the
closed operator ΠLT , D(ΠLT ) ⊂ Us → D(Å

1
2 )×H1

Γ0,γ
(Ω), with

ΠLTu = Π

∫ T

0

eAγ(T−s)Bu(s)ds,(1.47)

and with D(ΠLT ) = D(LT ). Determining the surjectivity of the operator ΠLT for
some T > 0 becomes our concern here, since it is equivalent to showing the exact
controllability of the mechanical component [ω, ωt] to (1.1) (Theorem 1.2). This
surjectivity for ΠLT is in turn equivalent to the existence of a certain observability
inequality pertaining to the range of the adjoint L∗TΠ∗ (the inequality (2.1) below),

where L∗TΠ∗ : D(L∗TΠ∗) ⊂ D(Å
1
2 ) × H1

Γ0,γ
(Ω) → Hγ is likewise a closed densely

defined operator (as L∗T is), with its domain given by

D(L∗TΠ∗) =
{

[φ0, φ1] ∈ D
(
Å

1
2

)
×H1

Γ0
(Ω) : [φ0, φ1, 0] ∈ D(L∗T )

}
.(1.48)

It is the injectivity condition (2.1) that we intend to directly verify. In order to rewrite
this abstract inequality in “PDE form” (i.e., as the inequality (2.2) below), we need
the following two propositions, the first of which is proved in the appendix below.

Proposition 1.5. The Hilbert space adjoint A∗γ of Aγ , as defined in (1.36), is
given to be

A∗γ =

 I 0 0
0 P−1

γ 0
0 0 I


 0 −I 0

Å 0 −α(♣)

0
α

β
AD(I−Dγ0) − η

β
AR

 ,

with D(A∗γ) =
{

[φ0, φ1, ψ0] ∈ D
(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR)

such that Åφ0 + αÅG1γ0ψ0 ∈ H−1
Γ0,γ

(Ω)
}

(1.49)
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(above, (♣) is the same denotation made in (1.35)).
Remark 1.6. Using the semigroup {eA∗γt}t≥0 generated by A∗γ , then for terminal

data [φ0, φ1, ψ0] ∈ Hγ , φ(t)
φt(t)
ψ(t)

 = eA
∗
γ(T−t)

 φ0

φ1

ψ0

 ∈ C([0, T ]; Hγ)(1.50)

is the solution to the following backward problem:

{
φtt − γ∆φtt + ∆2φ+ α∆ψ = 0
βψt + η∆ψ − σψ − α∆φt = 0

on (0,∞)× Ω,

φ =
∂φ

∂ν
= 0 on (0,∞)× Γ0,

{
∆φ+ (1− µ)B1φ+ αψ = 0
∂∆φ

∂ν
+ (1− µ)

∂B2φ

∂τ
− γ ∂φtt

∂ν
+ α

∂ψ

∂ν
= 0

on (0,∞)× Γ1,

∂ψ

∂ν
+ λψ = 0 on (0,∞)× Γ, λ ≥ 0,

[φ(T ), φt(T ), ψ(T )] = [φ0, φ1, ψ0] .

(1.51)

Remark 1.7. For terminal data [φ0, φ1, ψ0] in D(A∗γ), the two equations of (1.51)
may be written pointwise as

Pγφtt = −Åφ− αÅG1γ0ψ + αλÅG2γ0ψ − α∆ψ in H−1
Γ0,γ

(Ω),(1.52)

βψt = −η∆ψ + σψ+α∆φt in L2(Ω),(1.53)

[φ(T ), φt(T ), ψ(T )] = [φ0, φ1, ψ0] .(1.54)

Remark 1.8. Since Γ0∩Γ1 = ∅, and Γ is smooth, we can assume throughout that
D(A∗γ) is dense in the graph topology of D(L∗T ).

Proposition 1.9. The adjoint L∗T : D (L∗T ) ⊂ Hγ → U∗s of LT is computed to
be

L∗T

 φ0

φ1

ψ0

 =

[
∂φt
∂ν

∣∣∣∣
Γ1

, −φt|Γ1
, η ψ|Γ2

]
for all

 φ0

φ1

ψ0

 ∈ D (L∗T ) ,(1.55)

where [∂φt∂ν |Γ1
, φt|Γ1

, ψ|Γ2
] are boundary “traces” of the solution [φ, φt, ψ] to the coupled

system (1.51).
Proof. By Remark 1.8, it is enough to show the characterization in (1.55) for

[φ0, φ1, ψ0] ∈ D(A∗γ). With this in mind, one has readily the classic representation

L∗T

 φ0

φ1

ψ0

 = B∗eA∗γ(T−t)

 φ0

φ1

ψ0

 for every

 φ0

φ1

ψ0

 ∈ D (A∗γ) ,(1.56)

where again, B∗ ∈ L (D (A∗γ) , U∗s ) is the adjoint of B. We must show that the right-
hand side of this equality may be written explicitly in “PDE form” as (1.55). To this
end, for every [u1, u2, u3] ∈ Us and [φ0, φ1, ψ0] ∈ D (A∗γ), we have

(1.57)
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LT
 u1

u2

u3

 ,
 φ0

φ1

ψ0

〉
[D(A∗γ)]′×D(A∗γ)

=

〈∫ T

0

eAγ(T−s)B
 u1(s)
u2(s)
u3(s)

 ds,
 φ0

φ1

ψ0

〉
[D(A∗γ)]′×D(A∗γ)

=

∫ T

0

〈
eAγ(T−s)AγA−1

γ B
 u1(s)
u2(s)
u3(s)

 ,
 φ0

φ1

ψ0

〉
[D(A∗γ )]′×D(A∗γ )

ds

=

∫ T

0

A−1
γ B

 u1(s)
u2(s)
u3(s)

 , eA∗γ(T−s)A∗γ

 φ0

φ1

ψ0


Hγ

ds

=

∫ T

0

 −G1u1(s)−G2u2(s)− αÅ
−1

(♣)Ru3

0
−Ru3

 ,A∗γeA∗γ(T−s)

 φ0

φ1

ψ0


Hγ

ds.

Noting that  φ(t)
φt(t)
ψ(t)

 ≡ eA∗γ(T−t)

 φ0

φ1

ψ0


gives the solution to the backward problem (1.51), we then use this relation, the
definition of the adjoint A∗γ in (1.49), and Proposition 4.1 of the appendix to obtain

(1.58)〈
LT
 u1(s)
u2(s)
u3(s)

 ,
 φ0

φ1

ψ0

〉
[D(A∗γ)]′×D(A∗γ)

=

∫ T

0

 −G1u1(s)−G2u2(s)− αÅ
−1

(♣)Ru3

0
−Ru3

 ,
 −φt

P−1
γ Åφ− αP−1

γ (♣)ψ
α

β
AD(I−Dγ0)φt − η

β
ARψ




Hγ

ds

=

∫ T

0

[(
Å

1
2G1u1, Å

1
2φt

)
L2(Ω)

+
(
Å

1
2G2u2, Å

1
2φt

)
L2(Ω)

+ η (Ru3, ARψ)L2(Ω)

]
dt

=

∫ T

0

[(
u1, G

∗
1Åφt

)
L2(Γ1)

+
〈
u2, G

∗
2Åφt

〉
H−1(Γ1)×H1(Γ1)

]
dt+

∫ T

0

η (u3, ψ)L2(Γ2) dt

=

∫ T

0

[(
u1,

∂φt
∂ν

)
L2(Γ1)

− 〈u2, φt〉
H−1(Γ1)×H1(Γ1)

]
dt+ η 〈u3, ψ〉Hs((0,T )Γ2)×[Hs((0,T )×Γ2)]′ ,

thereby completing the proof of Proposition 1.9.
Immediately, we have Corollary 1.10.
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Corollary 1.10. The adjoint operator L∗TΠ∗ : D(L∗TΠ∗) ⊂ D(Å
1
2 )×H1

Γ0,γ
(Ω)→

U∗s is given by

L∗TΠ∗
[
φ0

φ1

]
=

[
∂φt
∂ν

∣∣∣∣
Γ1

, −φt|Γ1
, ηψ|Γ2

]
(1.59)

for all [φ0, φ1] ∈ D(L∗TΠ∗), where [∂φt∂ν |Γ1
, φt|Γ1

, ψ|Γ2
] are boundary traces of the so-

lution [φ, φt, ψ] to the following (backward) system:

{
φtt − γ∆φtt + ∆2φ+ α∆ψ = 0
βψt + η∆ψ − σψ − α∆φt = 0

on (0,∞)× Ω,

φ =
∂φ

∂ν
= 0 on (0,∞)× Γ0,

{
∆φ+ (1− µ)B1φ+ αψ = 0
∂∆φ

∂ν
+ (1− µ)

∂B2φ

∂τ
− γ ∂φtt

∂ν
+ α

∂ψ

∂ν
= 0

on (0,∞)× Γ1,

∂ψ

∂ν
+ λψ = 0 on (0,∞)× Γ, λ ≥ 0,

[φ(T ), φt(T ), ψ(T )] = [φ0, φ1, 0] .

(1.60)

We conclude this section with a regularity result for the thermal component of
the solution [φ, φt, ψ] to (1.51) , this being originally derived in [11] and [2] for the
forward problem (1.1). Assuming terminal data [φ0, φ1, ψ0] ∈ D(A∗γ), we have, by
using (1.50), the equality

d

dt

∥∥∥∥∥∥
 φ(t)
φt(t)
ψ(t)

∥∥∥∥∥∥
2

Hγ

= −2

A∗γ
 φ(t)
φt(t)
ψ(t)

 ,
 φ(t)
φt(t)
ψ(t)


Hγ

.(1.61)

Integrating this equation from 0 to T , performing computations similar to those per-
formed for the proof of Proposition 1.9, recalling the characterization (1.15), and
subsequently invoking a density argument, we have the following proposition.

Proposition 1.11. With terminal data [φ0, φ1, ψ0] ∈ Hγ , we have that the

component ψ of the solution of (1.51) is an element of L2(0,∞;D(A
1
2

R)). Indeed, we
have the following relation valid for all T > 0:∥∥∥∥∥∥

 φ0

φ1

ψ0

∥∥∥∥∥∥
2

Hγ

−
∥∥∥∥∥∥
 φ(0)
φt(0)
ψ(0)

∥∥∥∥∥∥
2

Hγ

= 2η

∫ T

0

∥∥∥A 1
2

Rψ
∥∥∥2

L2(Ω)
dt.(1.62)

2. Proof of Theorem 1.2.

2.1. The necessary inequality. As stated above, showing the partial exact
controllability of the system (1.1) for some time T > 0 is equivalent to showing the

surjectivity of the operator ΠLT : D(LT ) ⊂ Us → D(Å
1
2 )×H1

Γ0,γ
(Ω), where ΠLT is

as defined in (1.47) and with D(LT ) as defined in (1.44). Using the classical functional
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analysis (e.g., couple Lemma 3.8.18(i) and Theorem 6.5.10(ii) of [9]), the surjectivity
of ΠLT for some time T > 0 is tantamount to the existence of a constant CT > 0
such that following inequality is satisfied for all [φ0, φ1] ∈ D(L∗TΠ∗), where D(L∗TΠ∗)
is as defined in (1.48):∥∥∥∥∥∥L∗T

 φ0

φ1

0

∥∥∥∥∥∥
U∗s

≥ CT
∥∥∥∥[ φ0

φ1

]∥∥∥∥
D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)

.(2.1)

Corollary 1.10 then gives that this abstract inequality above may be rewritten by
having for all [φ0, φ1] ∈ D(L∗TΠ∗),∫ T

0

[
‖φt‖2H1(Γ1) +

∥∥∥∥∂φt∂ν

∥∥∥∥2

L2(Γ1)

]
dt+η ‖ψ‖2[Hs((0,T )×Γ2)]′ ≥ CT

∥∥∥∥[ φ0

φ1

]∥∥∥∥2

D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)

,

(2.2)
where [∂φt∂ν |Γ1

, φt|Γ1
, ψ|Γ2

] are traces of the solution [φ, φt, ψ] to the backward system
(1.60) (this being “adjoint” with respect to (1.1)). So to prove the statement of partial
exact controllability of the thermoelastic system (Theorem 1.2), it will hence suffice to
establish the inequality (2.2) for T > 0 large enough. With this end in mind, we make
the following denotation for the mechanical “energy” of the system for 0 ≤ t ≤ T :

Eφ(t) =
1

2

[∥∥∥Å 1
2φ(t)

∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ φt(t)

∥∥∥2

L2(Ω)

]
,(2.3)

where again [φ, φt, ψ] solve the backward system (1.60). In addition, we will denote
by l.o.t.(φ, φt, ψ) (“lower order terms”) any sum of terms that obey the following
estimate for some constant CT :

l.o.t.(φ, φt, ψ) ≤ CT
‖φ‖2

L∞
(

0,T ;H
3
2

+ε(Ω)

) + ‖φt‖2
L∞
(

0,T ;H
1
2

+ε(Ω)

)
+ ‖ψ‖2

L2

(
0,T ;H

1
2

+ε(Ω)

) + ‖ψ‖2
L∞
(

0,T ;H−
1
2

+ε(Ω)

) .(2.4)

By way of establishing (2.2), the bulk of the work will entail the derivation of the
following estimate.

Theorem 2.1. For T > 0 large enough, the solution [φ, φt, ψ] to (1.51) with
terminal data [φ0, φ1, ψ0] ∈ D(L∗T ) satisfies the following inequality:∫ T

0

[
Eφ(t) +

∥∥∥A 1
2

Rψ
∥∥∥2

L2(Ω)

]
dt+ Eφ(0)

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

‖∇φt‖2L2(Γ1) dt+ l.o.t.(φ, φt, ψ)

)
.(2.5)

This theorem will follow from a chain of results. Given the density of D(A∗γ) in
D (L∗T ) (see Remark 1.8) and the fact that the solution of (1.51) has the representation φ(t)

φt(t)
ψ(t)

 = eA
∗
γ(T−t)

 φ0

φ1

ψ0

 ,(2.6)
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it will be enough to show inequality (2.5) for solutions [φ, φt, ψ] to (1.51) corresponding

to terminal data in D(
[A∗γ]2). Taking [φ0, φ1, ψ0] ∈ D(

[A∗γ]2), we then have that

[φ, φt, ψ] is an element of C2([0, T ]; Hγ)∩ C1([0, T ];D(A∗γ))∩ C([0, T ];D(
[A∗γ]2)) and

as such has the additional regularity (see [3, Theorem 2] and also [12]):

φ ∈ C([0, T ];H4(Ω)); φt ∈ C([0, T ];H3(Ω)); φtt ∈ C
(

[0, T ];D
(
Å

1
2

))
,

ψt ∈ C([0, T ];D(AR)),

φ− γG2γ1φtt + αG1γ0ψ − αλG2γ0ψ ∈ C([0, T ];D(Å)).(2.7)

This extra regularity of [φ, φt, ψ], corresponding to smooth initial data, will justify
the computations to be done below.

2.2. Proof of Theorem 2.1. As mentioned above, the terminal data [φ0, φ1, ψ0]

will be considered to be in D(
[A∗γ]2); accordingly the corresponding solution [φ, φt, ψ]

of (1.51) will be a classical one, with the regularity posted in (2.7). With the end in
mind of deriving the estimate (2.2), we start by making the substitution

φ̂(t) = e−ξtφ(t) and ψ̂(t) = e−ξtψ(t),(2.8)

where parameter ξ ∈R is to be determined. Necessarily then [φ̂, φ̂t, ψ̂] solves the
coupled (backward) system


(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
− γ∆

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ ∆2φ̂+ α∆ψ̂ = 0

β
(
ξψ̂ + ψ̂t

)
+ η∆ψ̂ − σψ̂ − α∆

(
ξφ̂+ φ̂t

)
= 0

on (0,∞)× Ω,

φ̂ =
∂φ̂

∂ν
= 0 on (0,∞)× Γ0, ∆φ̂+ (1− µ)B1φ̂+ αψ̂ = 0

∂∆φ̂

∂ν
+ (1− µ)

∂B2φ̂

∂τ
− γ ∂

∂ν

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ α

∂ψ̂

∂ν
= 0

on (0,∞)× Γ1,

∂ψ̂

∂ν
+ λψ̂ = 0 on (0,∞)× Γ, λ ≥ 0,

[
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
.

(2.9)

Since [φ0, φ1, ψ0] ∈ D(
[A∗γ]2), the extra regularity in (2.7) gives that [φ̂, φ̂t, ψ̂] is a

classical (not just weak) solution of (2.9); accordingly, we can rewrite (2.9) abstractly
as (see Remark 1.7 and (1.31))(

ξ2φ̂+ 2ξφ̂t + φ̂tt

)
− γ∆

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
− γÅG2γ1

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ Åφ̂+ αÅG1γ0ψ̂ − αλÅG2γ0ψ̂ + α∆ψ̂ = 0 in H−1

Γ0,γ
(Ω),(2.10)

β
(
ξψ̂ + ψ̂t

)
+ η∆ψ̂ − σψ̂ − α∆

(
ξφ̂+ φ̂t

)
= 0 in L2(Ω),(2.11)

[
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
.(2.12)
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Now multiplying the heat equation (2.11) by α
η and adding it to the Kirchoff plate

(2.10), and subsequently taking the parameter ξ to be ξ ≡ α2

2γη , we obtain the single
equation

φ̂tt − γ∆φ̂tt + Åφ̂− γÅG2γ1

(
ξ2φ̂+ 2ξφ̂t + φ̂tt

)
+ αÅG1γ0ψ̂ − αλÅG2γ0ψ̂

= c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂ ,(2.13) [
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
,(2.14)

where the constants c0 = α3β
2γη2 − ασ

η , c1 = αβ
η , c2 = − α4

4γ2η2 , c3 = −α2

γη , and c4 =

− α4

4γη2 . (Note that the particular choice of ξ made here eliminates the higher order

term ∆φ̂t.) System (2.13)–(2.14) may be rewritten in PDE form as the Kirchoff plate
equation

φ̂tt − γ∆φ̂tt + ∆2φ̂ = c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂ on (0,∞)× Ω,

φ̂ =
∂φ̂

∂ν
= 0 on (0,∞)× Γ0, ∆φ̂+ (1− µ)B1φ̂ = −αψ̂

∂∆φ̂

∂ν
+ (1− µ)

∂B2φ̂

∂τ
− γ ∂φ̂tt

∂ν
= γ

∂

∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν

on (0,∞)× Γ1,

[
φ̂(T ), φ̂t(T ), ψ̂(T )

]
=
[
e−ξTφ0,−ξe−ξTφ0 + e−ξTφ1, e

−ξTψ0

]
.

(2.15)

As φ̂ − γG2γ1(ξ2φ̂ + 2ξφ̂t + φ̂tt) + αG1γ0ψ̂ − αλG2γ0ψ̂ ∈ C([0, T ];D(Å)) (using the

last containment in (2.7)), then [φ̂, φ̂t] is a classical solution of (2.15).
We note at this point that one can readily derive the trace estimate Lemma 4.5

(of the appendix below) for the plate component ∆φ̂|Γ0 of the solution [φ̂, φ̂t, ψ̂] of
(2.9). The proof of this is relegated to the appendix, since it is entirely analogous to
that shown for the forward problem in [3] and [4]. This estimate will be critical in
the proof of the following lemma, which gives an energy relation for the mechanical
variable.

Lemma 2.2. (a) The solution [φ̂, φ̂t, ψ̂] to (2.9) satisfies the following relation for
all s and τ ∈ [0, T ]:

E
φ̂
(t)
∣∣∣t=τ
t=s

= F(s, τ),(2.16)

where E
φ̂
(τ) is the mechanical energy function defined in (2.3) and F(·, ·) is a function

(defined below in (2.34)) that obeys the following estimate for all s and τ ∈ [0, T ] and
ε > 0:

F(s, τ) ≤ Cε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ ε

∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt

+ε
(
E
φ̂
(s) + E

φ̂
(τ)
)

+ l.o.t.(φ̂, φ̂tψ̂).(2.17)

(b) For ε > 0 small enough, the solution [φ̂, φ̂t, ψ̂] to (2.9) satisfies the following
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estimate for all s and τ ∈ [0, T ]:

E
φ̂
(τ) ≤

(
1 + ε

1− ε
)
E
φ̂
(s) + Cε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

+
ε

1− ε
∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt+ l.o.t.(φ̂, φ̂tψ̂).(2.18)

Above, the constant Cε is independent of time.
Proof. We take the duality pairing of the abstract equation (2.13) with φ̂t and

integrate in time and space so as to get

(2.19)

∫ τ

s

〈φ̂tt − γ∆φ̂tt − γÅG2γ1φ̂tt, φ̂t

〉
H−1

Γ0
(Ω)×H1

Γ0
(Ω)

+
〈
Åφ̂, φ̂t

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) dt
=

∫ τ

s

〈
γÅG2γ1

(
ξ2φ̂+ 2ξφ̂t

)
− αÅG1γ0ψ̂ + αλ ÅG2γ0ψ̂, φ̂t

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) dt
+

∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t

)
L2(Ω)

dt.

(Note that here we are using implicitly the fact that the terminal data [φ0, φ1, ψ0]

being in D(A∗γ) implies that Åφ̂+γÅG2γ1(ξ2φ̂+2ξφ̂t+φ̂tt)−αÅG1γ0ψ̂+αλÅG2γ0ψ̂

is an element of C([0, T ];H−1
Γ0

(Ω)).) Second, denoting A−1
D to be the inverse of the

elliptic operator defined in (1.12), we multiply the PDE (2.15) by − c1γ A−1
D ψ̂, and

subsequently integrate in time and space so as to get

−c1
γ

∫ τ

s

(
φ̂tt − γ∆φ̂tt + ∆2φ̂−

[
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂

]
, A−1

D ψ̂
)
L2(Ω)dt = 0.

(2.20)
(A1) Rewriting (2.19). Using equality (1.31) and the characterizations in (1.23),

we have upon the taking of adjoints that (2.19) may be rewritten as

E
φ̂
(t)
∣∣∣t=τ
t=s

=

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t

)
L2(Ω)

dt+

∫ τ

s

c1

(
ψ̂t, φ̂t

)
L2(Ω)

dt

−
∫ τ

s

(γξ2 ∂φ̂

∂ν
+ 2γξ

∂φ̂t
∂ν

+ αλγ0ψ̂, φ̂t

)
L2(Γ1)

+ α

(
ψ̂,
∂φ̂t
∂ν

)
L2(Γ1)

 dt .
(2.21)

(A2) Rewriting (2.20). (i) An integration by parts, the use of the heat equation

(2.11), and the fact that ARψ̂ = −∆ψ̂ + ∆Dγ0ψ̂ + σ
η ψ̂ = AD( I−Dγ0)ψ̂ + σ

η ψ̂ yield

(2.22) ∫ τ

s

−c1
γ

(
φ̂tt, A

−1
D ψ̂

)
L2(Ω)

dt =

[
−c1
γ

(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

+
c1
γ

∫ τ

s

(
φ̂t, A

−1
D ψ̂t

)
L2(Ω)

dt
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=

[
−c1
γ

(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

+
c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt

−c1
γ

∫ τ

s

(
φ̂t,

αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

dt.

(ii) An integration by parts and employment of Green’s theorem yield

(2.23) ∫ τ

s

c1

(
∆φ̂tt, A

−1
D ψ̂

)
L2(Ω)

dt = −
∫ τ

s

c1

(
∇φ̂tt,∇A−1

D ψ̂
)
L2(Ω)

dt

= −c1
[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

(
∇φ̂t,∇A−1

D ψ̂t

)
L2(Ω)

dt

= − c1
[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

(
φ̂t, ADA

−1
D ψ̂t

)
L2(Ω)

dt

+ c1

∫ τ

s

(
φ̂t,

∂A−1
D ψ̂t
∂ν

)
L2(Γ1)

dt

= −c1
[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

(
φ̂t, ψ̂t

)
L2(Ω)

dt

+ c1

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν
+
η

β

∂(I−Dγ0)ψ̂

∂ν

)
L2(Γ1)

dt

− c1
∫ τ

s

(
φ̂t,

αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂(I−Dγ0)φ̂t
∂ν

)
L2(Γ1)

dt.

(iii) Through the use of Green’s theorem (1.9) and the boundary conditions in
(2.15), we obtain

(2.24)

−
∫ τ

s

c1
γ

(
∆2φ̂, A−1

D ψ̂
)
L2(Ω)

dt

= −c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
dt− αc1

γ

∫ τ

s

(
ψ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

+
c1
γ

∫ τ

s

(
∆φ̂,

∂A−1
D ψ̂

∂ν

)
L2(Γ0)

dt

(where we have used the fact that φ̂|Γ0
= ∂φ̂

∂ν |Γ0
= 0 implies B1φ̂|Γ0

= 0; see [11]).

Jointly then, equalities (2.20) and (2.22)–(2.24) give the relation

(2.25)
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0 = −c1
∫ τ

s

(
φ̂t, ψ̂t

)
L2(Ω)

dt− c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt

+
c1
γ

∫ τ

s

(
φ̂t,

αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

dt

− c1
∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν
+
η

β

∂(I−Dγ0)ψ̂

∂ν

)
L2(Γ1)

dt

+ c1

∫ τ

s

(
φ̂t,

αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂(I−Dγ0)φ̂t
∂ν

)
L2(Γ1)

dt

+
c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
dt+

αc1
γ

∫ τ

s

(
ψ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

− c1
γ

∫ τ

s

(
∆φ̂,

∂A−1
D ψ̂

∂ν

)
L2(Γ0)

dt

−
∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,

c1
γ
A−1
D ψ̂

)
L2(Ω)

dt

+ c1

[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

+
1

γ

(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

.

Summing the relations (2.21) and (2.25), we obtain

(2.26)

E
φ̂
(t)
∣∣∣t=τ
t=s

=

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t − c1

γ
A−1
D ψ̂

)
L2(Ω)

dt

−
∫ τ

s

(γξ2 ∂φ̂

∂ν
+ 2γξ

∂φ̂t
∂ν

+ αλγ0ψ̂, φ̂t

)
L2(Γ1)

+ α

(
ψ̂,
∂φ̂t
∂ν

)
L2(Γ1)

 dt
− c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt+ c1

[(
∇φ̂t,∇A−1

D ψ̂
)
L2(Ω)

]τ
s

+ c1

∫ τ

s

( φ̂t
γ
,
αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

−
(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν
+
η

β

∂(I−Dγ0)ψ̂

∂ν

)
L2(Γ1)

 dt
+ c1

∫ τ

s

(
φ̂t,

αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂(I−Dγ0)φ̂t
∂ν

)
L2(Γ1)

dt+
c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
L2(Ω)

dt

+
c1
γ

∫ τ

s

(αψ̂, ∂A−1
D ψ̂

∂ν

)
L2(Γ1)

−
(

∆φ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ0)

 dt+
c1
γ

[(
φ̂t, A

−1
D ψ̂

)
L2(Ω)

]τ
s

(note the cancellation of the high order term
∫ τ
s

(ψ̂t, φ̂t)L2(Ω)dt).
We now proceed to estimate the right-hand side of this relation. In so doing, we

will be using implicitly, in (B1)–(B7) below, the inequality ab ≤ εa2 + Cεb
2.
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(B1) We have by trace theory

−
∫ τ

s

(γξ2 ∂φ̂

∂ν
+ 2γξ

∂φ̂t
∂ν

+ αλγ0ψ̂, φ̂t

)
L2(Γ1)

+ α

(
ψ̂,
∂φ̂t
∂ν

)
L2(Γ1)

 dt
≤C

∫ T

0

∥∥∥∥∥∂φ̂t∂ν

∥∥∥∥∥
2

L2(Γ1)

dt+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.27)

(B2) As A−1
D is a bounded operator, we have∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, φ̂t − c1

γ
A−1
D ψ̂

)
dt

≤ ε

6

∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.28)

(B3) As Dγ0 ∈ L(Hs(Ω)) for s > 1
2 (by standard elliptic theory), and A−1

D

∈ L(L2(Ω), D(AD)), we then have in conjunction with trace theory

(2.29)

−c1
γ

∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
A−1
D ψ̂ +

η

β
(I−Dγ0) ψ̂

)
L2(Ω)

dt

+
c1
γ

∫ τ

s

(
φ̂t,

αξ

β
(I−Dγ0) φ̂+

α

β
(I−Dγ0) φ̂t

)
L2(Ω)

dt

−c1
∫ τ

s

(
φ̂t,

(
σ

β
− ξ
)
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

+
c1
γ

∫ τ

s

a
(
φ̂, A−1

D ψ̂
)
dt+

αc1
γ

∫ τ

s

(
ψ̂,
∂A−1

D ψ̂

∂ν

)
L2(Γ1)

dt

≤ ε

6

∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

(B4) Using the fact that Dγ0 ∈ L(Hs(Ω)) for s > 1
2 , and ∂ψ̂

∂ν (t)|Γ = −λψ̂(t)|Γ, we
have along with trace theory that

c1

∫ τ

s

(
φ̂t,− η

β

∂ψ̂

∂ν
+
αξ

β

∂(I−Dγ0)φ̂

∂ν
+
α

β

∂φ̂t
∂ν

)
L2(Γ1)

dt

≤ C
∫ T

0

∥∥∥∥∥∂φ̂t∂ν

∥∥∥∥∥
2

L2(Γ1)

dt+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.30)

(B5) By [1, p. 311, Theorem 3] and trace theory we deduce that ∂
∂νDγ0 ∈

L(H1(Ω), H−
1
2 (Γ)), and so accordingly we have

c1

∫ τ

s

(
φ̂t,

η

β

∂Dγ0ψ̂

∂ν
− α

β

∂Dγ0φ̂t
∂ν

)
L2(Γ1)

dt ≤ Cε
∫ T

0

∥∥∥φ̂t∥∥∥2

H
1
2 (Γ1)

dt

+
ε

6

∫ T

0

[∥∥∥P 1
2
γ φ̂t

∥∥∥2

L2(Ω)
+
∥∥∥A 1

2

Rψ̂
∥∥∥2

L2(Ω)

]
dt.(2.31)
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(B6) As A−1
D ∈ L(H−1(Ω), H1

0 (Ω)), by the characterizations of elliptic operators
given in [7] , we then have for all t ∈ [0, T ](

∇φ̂t(t),∇A−1
D ψ̂(t)

)
L2(Ω)

≤ C
∥∥∥∇φ̂t(t)∥∥∥

L2(Ω)

∥∥∥∇A−1
D ψ̂(t)

∥∥∥
L2(Ω)

≤ ε

6

∥∥∥P 1
2
γ φ̂t(t)

∥∥∥2

L2(Ω)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

We thus have

c1

[(
∇φ̂t(t),∇A−1

D ψ̂
)
L2(Ω)

]t=τ
t=s

+

[
c1
γ

(
φ̂t(t), A

−1
D ψ̂(t)

)
L2(Ω)

]t=τ
t=s

≤ ε

6

(∥∥∥P 1
2
γ φ̂t(τ)

∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ φ̂t(s)

∥∥∥2

L2(Ω)

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.32)

(B7) Finally, we can use the trace result Lemma 4.5 of the appendix and the fact

that A−1
D ∈ L(H−

1
2 +ε(Ω), H

3
2 +ε(Ω) (again by [7]) to have

(2.33)

−c1
γ

∫ τ

s

(
∆φ̂,

∂A−1
D ψ̂

∂ν

)
L2(Γ0)

dt

≤ C
∫ τ

s

∥∥∥∆φ̂
∥∥∥
L2(Γ0)

∥∥∥ψ̂∥∥∥
H−

1
2

+ε(Ω)
dt ≤ ε

6C0

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt+ Cε

∫ T

0

∥∥∥ψ̂∥∥∥2

H−
1
2

+ε(Ω)
dt

(where the constant C0 above is the very same as that in ( 4.13))

≤ ε

3

∫ T

0

E
φ̂
(t)dt+

ε

3

[
E
φ̂
(s) + E

φ̂
(τ)
]

+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.

Therefore, if we define F(s, τ) to be

F(s, τ) ≡ right-hand side of (2.26) ,(2.34)

estimates (2.27)–(2.33), then we have

F(s, τ) ≤ Cε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ ε

∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt

+ε
[
E
φ̂
(s) + E

φ̂
(τ)
]

+ l.o.t.
(
φ̂, φ̂t, ψ̂

)
,(2.35)

where the constant Cε does not depend on time T . This and equality (2.26) prove
(a).

To prove (b), we combine (2.16) and (2.17) and subsequently take ε > 0 small
enough. The proof of Lemma 2.2 is concluded.

With the radial vector field h defined in (1.3) , one has the following relation,
which is essentially demonstrated in [12] (the complete proof is carried out in Propo-
sition 4.6 of the appendix below).

Proposition 2.3. With the vector field h as defined in (1.3), the solution

[φ̂, φ̂t, ψ̂] to (2.15), corresponding to terminal data [φ0, φ1, ψ0] ∈ D(
[A∗γ]2), satisfies

the following equality for arbitrary ε0 ∈ [0, T ):

(2.36)
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ε0

E
φ̂
(t)dt =

∫ T−ε0

ε0

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt

− c1
∫ T−ε0

ε0

(
ψ̂, h · ∇φ̂t − 1

2
φ̂t

)
L2(Ω)

dt+
1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt

−
∫ T−ε0

ε0

∥∥∥φ̂t∥∥∥2

L2(Ω)
dt+

1

2

∫ T−ε0

ε0

∫
Γ0

h · ν
(

∆φ̂
)2

dΓdt

−
∫ T−ε0

ε0

[
α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂− 1

2
φ̂

))
L2(Γ1)

+

(
γ
∂

∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

 dt
−
[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

+

[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

+ c1

(
ψ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

−
∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)
+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ.

So as to derive another intermediate energy inequality, we will now estimate the
right-hand side of the relation (2.36). In the course of this work, we will make critical
use of the following trace estimate for (uncoupled ) Kirchoff plates, which was derived
in [15]. It is this regularity result that allows the controlled portion Γ1 of the boundary
to be free of geometric constraints.

Trace theorem (see [15]). Let the function ϕ(t, x) satisfy the following Kirchoff
equation on an open, bounded domain Ω⊂Rn, with smooth boundary Γ, Γ = Γ0 ∪Γ1,
where each Γi is open and nonempty, with Γ0 ∩ Γ1 = ∅:

ϕtt − γ∆ϕtt + ∆2ϕ = f on (0, T )× Ω,

ϕ =
∂ϕ

∂ν
= 0 on (0, T )× Γ0,

∆ϕ+ (1− µ)B1ϕ = g1

∂∆ϕ

∂ν
+ (1− µ)

∂B2ϕ

∂τ
− γ ∂ϕtt

∂ν
= g2

on (0, T )× Γ1

(2.37)

(here the boundary operators B1 and B2 are as given in (1.2)). Let 0 < ε0 <
T
2 and

ε > 0 be arbitrary. Then the following inequality holds true for the solution ϕ:

(2.38) ∫ T−ε0

ε0

[∥∥∥∥∂2ϕ

∂τ2

∥∥∥∥2

L2(Γ1)

+

∥∥∥∥∂2ϕ

∂ν2

∥∥∥∥2

L2(Γ1)

+

∥∥∥∥ ∂2ϕ

∂τ∂ν

∥∥∥∥2

L2(Γ1)

]
dt
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≤ CT,ε0,γ
{[∫ T

0

‖f‖2
[H

3
2
−ε(Ω)]′

+ ‖g1‖2L2(Γ1) + ‖ϕ‖2
H

3
2

+ε(Γ1)
+ ‖|∇ϕt|‖2L2(Γ1)

+ ‖ϕt‖2L2(Γ1)

]
dt+ ‖g2‖2H−1(0,T×Γ1)

}
.

Remark 2.4. In the original statement of this theorem (see Theorem 2.1 in [15]),

the term
∫ T

0
‖f‖2

[H
3
2
−ε(Ω)]′

dt in the inequality (2.38) is replaced by ‖f‖2[Hq(0,T×Ω)]′ ,

where q < 1
2 . However, if one replaces theH−q(0, T×Ω) spaces with L2(0, T ; [Hq(Ω)]′),

the values of allowed parameters extend to q < 3/2 + ε. This is in line with elliptic
theory corresponding to free boundary conditions.

By the use of this trace result in part, we have the following energy estimate.
Lemma 2.5. For all ε0 ∈ (0, T2 ) and ε̃ > 0 arbitrary, the solution [φ̂, φ̂t, ψ̂] to

(2.15) satisfies∫ T−ε0

ε0

E
φ̂
(t)dt ≤ C∗

(
E
φ̂
(T − ε0) + E

φ̂
(ε0)

)
+ CT

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+ ε̃

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
+ l.o.t. (φ̂, φ̂t, ψ̂),(2.39)

where the (time independent) constant C∗ ≥
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣ (where, again,

µ is Poisson’s ratio and h satisfies 1.3).
Proof. We proceed to majorize the right-hand side of (2.36).

(A.1) Handling the term
∫ T−ε0
ε0

(c0ψ̂ + c2φ̂ + c3φ̂t + c4∆φ̂, h · ∇φ̂ − 1
2 φ̂)L2(Ω)dt:

First, by Green’s theorem and the fact that ∇ ∈ L (Hs(Ω), Hs−1(Ω)
)

and ∇ (h · ∇) ∈
L (Hs(Ω), Hs−2(Ω)

)
, we obtain(

∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

= −
(
∇φ̂,∇

(
h · ∇φ̂

)
− 1

2
∇̂φ
)
L2(Ω)

+

(
∂φ̂

∂ν
,∇φ̂− 1

2
φ̂

)
L2(Γ1)

= −
(
∇φ̂,∇

(
h · ∇φ̂

)
− 1

2
∇̂φ
)
Hε(Ω)×H−ε(Ω)

+

(
∂φ̂

∂ν
,∇φ̂− 1

2
φ̂

)
L2(Γ1)

≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
,

where in the last step we have also used Cauchy–Schwarz and the trace theory. We
thus have∫ T−ε0

ε0

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt ≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.40)

(A.2) Likewise using Sobolev trace theory, the fact that ∂ψ̂
∂ν = −λψ̂, and the

divergence theorem, we have

(2.41)
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−
∫ T−ε0

ε0

[
c1

(
ψ̂, h · ∇φ̂t − 1

2
φ̂t

)
L2(Ω)

+
∥∥∥φ̂t∥∥∥2

L2(Ω)

]
dt

+

∫ T−ε0

ε0

−(γ ∂
∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

+
α

2

(
ψ̂,
∂φ̂

∂ν

)
L2(Γ1)

 dt
≤ c1

∫ T−ε0

ε0

(
ψ̂, h1φ̂tx + h2φ̂ty

)
L2(Ω)

dt+ C

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t. (φ̂, φ̂t, ψ̂)

= −c1
∫ T−ε0

ε0

∫
Ω

div
(
ψ̂h
)
φ̂tdΩdt

+ c1

∫ T−ε0

ε0

∫
Γ1

h · ν ψ̂φ̂tdΓdt+ C

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t. (φ̂, φ̂t, ψ̂)

≤ C
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ ε̃

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
+ l.o.t. (φ̂, φ̂t, ψ̂).

(A.3) Using (1.3), we have

1

2

∫ T−ε0

ε0

∫
Γ0

h · ν
(

∆φ̂
)2

≤ 0.(2.42)

(A.4) We now estimate the terms

−
[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

+

[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

+ c1

(
ψ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

.(2.43)

First, as h · ∇φ̂(t) ∈ H 1
2−ε(Ω) for all t ∈ [0, T ], we have

(2.44)(
ψ̂(t), h · ∇φ̂(t)− 1

2
φ̂(t)

)
L2(Ω)

=

〈
ψ̂(t), h · ∇φ̂(t)− 1

2
φ̂(t)

〉
H−

1
2

+ε(Ω)×H 1
2
−ε(Ω)

≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.

Second, we have pointwise in time

γ
(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

+
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

=
√
γ

∫
Ω

√
γ∇φ̂t(x, y) · [(x− x0)φxx + (y − y0)φxy, (x− x0)φxy + (y − y0)φyy] dxdy

+
3γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

.(2.45)

Now, to handle the first term on the right-hand side of (2.45), we use the inequality
ab ≤ δ

2a
2 + 1

2δ b
2 with δ ≡√2 (1− µ) (where, again, Poisson’s ratio µ ∈ (0, 1

2 ))

(2.46)
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Ω

√
γ∇φ̂t(x, y) · [(x− x0)φxx + (y − y0)φxy, (x− x0)φxy + (y − y0)φyy] dxdy

=

∫
Ω

(x− x0)
√
γ∇φ̂t · [φxx, φxy] dxdy +

∫
Ω

(y − y0)
√
γ∇φ̂t · [φxy, φyy] dxdy

≤ max
[x,y]∈Ω

∣∣h(x, y)
∣∣{ γ√

2 (1− µ)

∫
Ω

|∇φt|2 dΩ +

√
(1− µ)√

2

∫
Ω

[
φ2
xx + φ2

yy

]
dΩ

+
√

2 (1− µ)

∫
Ω

φ2
xydΩ

}
≤ 1√

2 (1− µ)
max

[x,y]∈Ω

∣∣h(x, y)
∣∣ {∥∥∥P 1

2
γ φ̂t

∥∥∥2

L2(Ω)
+ (1− µ)

∫
Ω

[
φ2
xx + φ2

yy

]
dΩ

+ 2(1− µ)

∫
Ω

φ2
xydΩ

}
.

From this inequality, the definition of a(·, ·) in (1.10), and the characterization in
(1.11), we obtain

(2.47)∫
Ω

√
γ∇φ̂t(x, y) · [(x− x0)φxx + (y − y0)φxy, (x− x0)φxy + (y − y0)φyy] dxdy

≤ 1√
2 (1− µ)

max
[x,y]∈Ω

∣∣h(x, y)
∣∣ {∥∥∥P 1

2
γ φ̂t

∥∥∥2

L2(Ω)
+
∥∥∥Å 1

2 φ̂
∥∥∥2

L2(Ω)

}
.

To deal with the second term on the right-hand side of (2.45), we can use the fact
that ∇ ∈ L (Hs(Ω), H1−s(Ω)

)
for all real s, so as to have(

∇φ̂t(t),∇φ̂(t)
)
L2(Ω)

=
〈
∇φ̂t(t),∇φ̂(t)

〉
H−ε(Ω)×Hε(Ω)

≤ C
∥∥∥φ̂t(t)∥∥∥

H1−ε(Ω)

∥∥∥φ̂(t)
∥∥∥
H1+ε(Ω

≤ l.o.t.
(
φ̂, φ̂t, ψ̂

)
.(2.48)

Combining (2.45), (2.47), and (2.48) with the definition of E
φ̂

in (2.3), we then obtain

γ
(
∇φ̂t(t),∇

(
h · ∇φ̂(t))

))
L2(Ω)

+
γ

2

(
∇φ̂t(t),∇φ̂(t)

)
L2(Ω)

≤
√

2γ

1− µ max
(x,y)∈Ω

∣∣h(x, y)
∣∣E

φ̂
(t) + l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.49)

Coupling (2.44) and (2.49) in turn, we arrive at the estimate

(2.50)

(2.43) ≤
√

2γ

1− µ

{
max

(x,y)∈Ω

∣∣h(x, y)
∣∣}(E

φ̂
(T − ε0) + E

φ̂
(ε0)

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

(A.5) Handling the term − ∫ T−ε0
ε0

α(ψ̂, ∂∂ν (h · ∇φ̂)) and noting that

∂

∂ν

(
h · ∇φ̂

)
= ν1φ̂x + ν1 (x− x0) φ̂xx + ν1 (y − y0) φ̂xy + ν2 (x− x0) φ̂xy

+ν2φ̂y+ ν2 (y − y0) φ̂yy,(2.51)
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we then have by Cauchy–Schwarz, the trace estimate (2.38) for the Kirchoff plates
above, the use of the forcing data in (2.15), and the standard Sobolev trace theory
that

(2.52)

−
∫ T−ε0

ε0

α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂

))
L2(Γ1)

dt

≤ C
∫ T−ε0

ε0

[∥∥∥ψ̂∥∥∥2

H
1
2

+ε(Ω)
+
∥∥∥φ̂xx∥∥∥2

L2(Γ1)
+
∥∥∥φ̂yy∥∥∥2

L2(Γ1)
+ 2

∥∥∥φ̂xy∥∥∥2

L2(Γ1)

+
∥∥∥φ̂x∥∥∥2

H
1
2

+ε(Ω)
+
∥∥∥φ̂y∥∥∥2

H
1
2

+ε(Ω)

]
dt

= C

∫ T−ε0

ε0

∥∥∥ψ̂∥∥∥2

H
1
2

+ε(Ω)
+

∥∥∥∥∥∂2φ̂

∂τ2

∥∥∥∥∥
2

L2(Γ1)

+

∥∥∥∥∥∂2φ̂

∂ν2

∥∥∥∥∥
2

L2(Γ1)

+ 2

∥∥∥∥∥ ∂2φ̂

∂τ∂ν

∥∥∥∥∥
2

L2(Γ1)

+
∥∥∥φ̂x∥∥∥2

H
1
2

+ε(Ω)
+
∥∥∥φ̂y∥∥∥2

H
1
2

+ε(Ω)

]
dt

≤ CT
∫ T

0

∥∥∥c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂
∥∥∥2[
H

3
2
−ε(Ω)

]′ +
∥∥∥ψ̂∥∥∥2

H
1
2

+ε(Ω)

+

∥∥∥∥γ ∂∂ν (ξ2φ̂+ 2ξφ̂t

)∥∥∥∥2

L2(Γ1)

]
dt

+

∫ T

0

[∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+
∥∥∥φ̂∥∥∥2

H
3
2

+ε(Ω)
+
∥∥∥φ̂t∥∥∥2

H
1
2

+ε(Ω)

]
dt

)

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+
∥∥∥c1ψ̂t + c4∆φ̂

∥∥∥2[
H

3
2
−ε(Ω)

]′ +
 dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

To handle the term
∫ T

0
‖c1ψ̂t + c4∆φ̂‖2

[H
3
2
−ε(Ω)]′

dt, we use Proposition 4.4 in the

appendix below and the fact that ψ̂t = −ξψ̂(t) + e−ξtψt(t) and φ̂(t) = e−ξtφ(t) to
have

(2.53)∫ T

0

∥∥∥c1ψ̂t + c4∆φ̂
∥∥∥2[
H

3
2
−ε(Ω)

]′ dt
=

∫ T

0

∥∥∥−ξc1ψ̂(t) + c1e
−ξtψt(t) + c4e

−ξt∆φ(t)
∥∥∥2[
H

3
2
−ε(Ω)

]′ dt
≤ C

∫ T

0

[∥∥∥ψ̂∥∥∥2

L2(Ω)
+ ‖φ‖2

H
3
2

+ε(Ω)
+ ‖ψ‖2

H
1
2

+ε(Ω)
+ ‖φt‖2

H
1
2

+ε(Ω)
+

∥∥∥∥∂φt∂ν

∥∥∥∥2

L2(Γ1)

]
dt

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.
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Collectively, estimates (2.52) and (2.53) then give

−
∫ T−ε0

ε0

α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂

))
L2(Γ1)

dt

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.54)

(A.6) In the same way as in (A.5) we have

(2.55)

−
∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)

+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ

≤ CT
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

(A.7) Finally,

(2.56)

1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt ≤ C
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.

Estimate (2.39) now comes about by stringing together (2.36), (2.40)–(2.42), (2.50),
and (2.56), and taking ε > 0 small enough.

Lemma 2.6. For T > T0 ≡ 2
√

2γ
1−µ max(x,y)∈Ω |h(x, y)|, the solution [φ̂, φ̂t, ψ̂] of

(2.15) satisfies the following estimate:∫ T

0

E
φ̂
(t)dt+ E

φ̂
(T ) +

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(2.57)

Proof. We have for any ε0 ∈ (0, T ),∫ T

0

E
φ̂
(t)dt =

∫ ε0

0

E
φ̂
(t)dt+

∫ T

T−ε0
E
φ̂
(t)dt+

∫ T−ε0

ε0

E
φ̂
(t)dt

≤ 2ε0 (1 + ε)

1− ε E
φ̂
(T ) +

2ε0ε

1− ε
∫ T

0

[
E
φ̂
(t) +

∥∥∥A 1
2

Rψ̂(t)
∥∥∥2

L2(Ω)

]
dt+

∫ T−ε0

ε0

E
φ̂
(t)dt

+Cε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂)

(after applying Lemma 2.2(b) twice)

≤ C∗
(
E
φ̂
(T − ε0) + E

φ̂
(ε0)

)
+

2ε0 (1 + ε)

1− ε E
φ̂
(T ) +

2ε0ε

1− ε
∫ T

0

E
φ̂
(t)dt

+
2ε (1 + ε0)

1− ε
∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂),(2.58)
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after applying Lemma 2.5 with C∗ ≥
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣, and ε̃ ≡ 2ε

1−ε therein.

Applying Lemma 2.2(b) twice more to the right-hand side of (2.58) yields now

(2.59) ∫ T

0

E
φ̂
(t)dt ≤ 2 (ε0 + C∗)

1 + ε

1− εEφ̂(T ) +
2ε (ε0 + C∗)

1− ε
∫ T

0

E
φ̂
(t)dt

+
2ε (1 + ε0 + C∗)

1− ε
∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

+ l.o.t.(φ̂, φ̂t, ψ̂).

Moreover, we have by (2.16)∫ T

0

E
φ̂
(t)dt = TE

φ̂
(T ) +

∫ T

0

F(T, t)dt,(2.60)

where the function F is as defined in (2.34). Combining (2.59) and (2.60) yields

(2.61)

TE
φ̂
(T ) +

∫ T

0

F(T, t)dt ≤ 2 (ε0 + C∗)
1 + ε

1− εEφ̂(T ) +
2ε (ε0 + C∗)

1− ε
∫ T

0

E
φ̂
(t)dt

+
2ε (1 + ε0 + C∗)

1− ε
∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).

To use this inequality, we integrate both sides of (2.17) (with s = T therein) so as to
have ∫ T

0

F(T, t)dt ≤ ε (T + 1)

∫ T

0

E
φ̂
(t)dt+ εTE

φ̂
(T ) + εT

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt

+CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).(2.62)

Combining (2.61) and (2.62), we thus obtain

(2.63)

TE
φ̂
(T ) ≤

[
2 (ε0 + C∗) (1 + ε)

1− ε + εT

]
E
φ̂
(T )

+ ε

[
2 (ε0 + C∗)

1− ε + (T + 1)

] ∫ T

0

E
φ̂
(t)dt

+ ε

[
2 (1 + ε0 + C∗)

1− ε + T

] ∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

+ l.o.t.(φ̂, φ̂t, ψ̂).

Taking now T > 2(ε0+C∗)(1+ε)
(1−ε)2 , or what is the same, T > 2C∗ for ε and ε0 small

enough, we then have

E
φ̂
(T ) ≤ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃T

[∫ T

0

E
φ̂
(t)dt+

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt

]
+ l.o.t.(φ̂, φ̂t, ψ̂),(2.64)
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where throughout C̃T will denote a constant independent of ε and ε0 (small enough).
In turn, applying this to (2.59), we have

∫ T

0

E
φ̂
(t)dt ≤ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+

2ε (ε0 + C∗)
[
(1 + ε) C̃T + 1

]
1− ε

∫ T

0

E
φ̂
(t)dt

+
2ε
[
(ε0 + C∗) (1 + ε) C̃T + (1 + ε0 + C∗)

]
1− ε

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂)

from which follows the estimate, for ε, ε0 > 0 small enough,

(2.65)∫ T

0

E
φ̂
(t)dt ≤ CT,ε

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃T

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).

Coupling together (2.64) and (2.65), we have the following preliminary inequality
for the mechanical energy, again for T > 2C∗:∫ T

0

E
φ̂
(t)dt+ E

φ̂
(T )

≤ CT,ε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃T

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂).(2.66)

It remains to estimate the thermal component. To this end, we can multiply
(2.11) by ψ̂, integrate in time and space, use the characterization (1.15) and (2.8) to
have

η

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt =

[
β

2

∥∥e−ξtψ(t)
∥∥2

L2(Ω)

]t=T
t=0

+ ξ

∫ T

0

(
βψ̂ − α∆φ̂, ψ̂

)
L2(Ω)

dt

+ α

∫ T

0

(∇φ̂t,∇ψ̂)
L2(Ω)

−
(
∂φ̂t
∂ν

, ψ̂

)
L2(Γ1)

 dt.(2.67)

Majorizing this expression results in

η

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt ≤ C

ε̃

(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+

∫ T

0

E
φ̂
(t)dt

)

+ε̃

∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt+ l.o.t.(φ̂, φ̂t, ψ̂),

and taking ε̃ > 0 small enough above, this becomes∫ T

0

∥∥∥A 1
2

Rψ̂
∥∥∥2

L2(Ω)
dt ≤ C1

(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+

∫ T

0

E
φ̂
(t)dt

)
+ l.o.t.(φ̂, φ̂t, ψ̂),(2.68)

where C1 = Cε̃
η−ε̃ .

Combining (2.66) and (2.68), we have

(2.69)
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0

E
φ̂
(t)dt+ E

φ̂
(T )

≤ CT,ε
∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt+ εC̃TC1

(
‖ψ0‖2L2(Ω) +

∫ T

0

E
φ̂
(t)dt

)
+ l.o.t.(φ̂, φ̂t, ψ̂),

from which we obtain for ε > 0 small enough

(2.70)∫ T

0

E
φ̂
(t)dt+ E

φ̂
(T ) ≤ CT,ε

(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

)
+ l.o.t.(φ̂, φ̂t, ψ̂).

The final estimate (2.57) finally comes about by combining (2.70) and (2.68).
Conclusion of the proof of Theorem 2.1. Assume initially that [φ0, φ1, ψ0] ∈

D(A∗γ). Through the change of variable φ̂(t) = e−ξtφ(t) and ψ̂(t) = e−ξtψ(t),

where again [φ̂, φ̂t, ψ̂] solves (2.15) and ξ ≡ α2

2γη > 0, we have for T > T0 ≡
2
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣

(2.71)∫ T

0

Eφ(t)dt+

∫ T

0

∥∥∥A 1
2

Rψ(t)
∥∥∥2

L2(Ω)
dt+ Eφ(T )

=

∫ T

0

[∥∥∥Å 1
2 eξtφ̂(t)

∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ

(
eξtφ̂t(t) + ξeξtφ̂(t)

)∥∥∥2

L2(Ω)
+
∥∥∥A 1

2

Re
ξtψ̂(t)

∥∥∥2

L2(Ω)

]
dt

+
∥∥∥Å 1

2 eξT φ̂(T )
∥∥∥2

L2(Ω)
+
∥∥∥P 1

2
γ

(
eξT φ̂t(T ) + ξeT φ̂(T )

)∥∥∥2

L2(Ω)

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∥∇φ̂t∥∥∥2

L2(Γ1)
dt

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
(after using estimate (2.57))

≤ CT
(
‖ψ0‖2L2(Ω) +

∫ T

0

∥∥∇ (e−ξtφt(t)− ξe−ξtφ(t)
)∥∥2

L2(Γ1)
dt

)
+ l.o.t.

(
e−ξtφ, e−ξtφt − ξe−ξtφ, e−ξtψ

)
≤ CT

(
‖ψ0‖2L2(Ω) +

∫ T

0

‖∇φt(t)‖2L2(Γ1) dt

)
+ l.o.t. (φ, φt, ψ) .

This gives the desired inequality (2.5).

2.3. Conclusion of the proof of Theorem 1.2. For [φ0, φ1] ∈ D(L∗TΠ∗), we
immediately have from Theorem 2.1 the following corollary.

Corollary 2.7. For [φ0, φ1] ∈ D(L∗TΠ∗) and T > T0 ≡ 2
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣,

the corresponding solution [φ, φt, ψ] of (1.60) satisfies the following inequality:

(2.72)∫ T

0

Eφ(t)dt+ Eφ(T ) +

∫ T

0

∥∥∥A 1
2

Rψ
∥∥∥2

L2(Ω)
dt ≤ CT

∫ T

0

‖∇φt‖2L2(Γ1) dt+ l.o.t. (φ, φt, ψ) .
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We will have the desired inequality (2.2) upon the elimination of the tainting
lower order terms in (2.72). To this end, we invoke a (by now) classical compactness–
uniqueness argument (see, e.g., [13] and [2]), which makes crucial use of the new
Holmgren-type uniqueness result for the thermoelastic system recently derived by
Isakov in [10]. It is at this point that the boundary trace ψ|Γ2

, corresponding to the
control u3, comes into play.

Lemma 2.8. Let T ∗ be as defined in (1.6). Then for T > T ∗ and initial data
[φ0, φ1] ∈ D(L∗TΠ∗), there exists a CT such that the following estimate holds true for
the solution of (1.60):

‖φ‖2
L∞(0,T ;H

3
2

+ε(Ω))
+‖φt‖2

L∞(0,T ;H
1
2

+ε(Ω))
+‖ψ‖2

L∞(0,T ;H−
1
2

+ε(Ω))
+

∫ T

0

‖ψ‖2
H

1
2

+ε(Ω)
dt

≤ CT
(∫ T

0

‖∇φt‖2L2(Γ1) dt+ ‖ψ‖2[Hs((0,T )×Γ2)]′

)
.(2.73)

Proof. If the proposition is false, then there exists a sequence {[φ(n)
0 , φ

(n)
1 ]}∞n=1 ⊆

D(L∗TΠ∗), and a corresponding solution sequence {[φ(n), φ
(n)
t , ψ(n)]}∞n=1 to (1.60),

which satisfies∥∥∥φ(n)
∥∥∥2

L∞
(

0,T ;H
3
2

+ε(Ω)

) +
∥∥∥φ(n)

t

∥∥∥2

L∞
(

0,T ;H
1
2

+ε(Ω)

) +
∥∥∥ψ(n)

∥∥∥2

L∞
(

0,T ;H−
1
2

+ε(Ω)

)
+

∫ T

0

∥∥∥ψ(n)
∥∥∥2

H
1
2

+ε(Ω)
dt = 1 ∀n,(2.74)

lim
n→∞

∫ T

0

∥∥∥∇φ(n)
t

∥∥∥2

L2(Γ1)
dt+

∥∥∥ψ(n)
∥∥∥2

[Hs((0,T )×Γ2)]′
= 0.(2.75)

As T > 2
√

2γ
1−µ max[x,y]∈Ω

∣∣h(x, y)
∣∣, we have the existence of the inequality (2.72).

This and (2.74)–(2.75) then imply the boundedness of the sequence
∫ T

0

∥∥∥∥[ φ(n)(t)

φ
(n)
t (t)

]∥∥∥∥2

D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)

+
∥∥∥A 1

2

Rψ
(n)(t)

∥∥∥2

L2(Ω)

 dt
+

∥∥∥∥∥
[
φ

(n)
0

φ
(n)
1

]∥∥∥∥∥
2

D

(
Å

1
2

)
×H1

Γ0,γ
(Ω)


∞

n=1

.(2.76)

There thus exists a subsequence, still denoted here as {[φ(n)
0 , φ

(n)
1 ]}∞n=1, and [φ̃0, φ̃1] ∈

D(Å
1
2 )×H1

Γ0,γ
(Ω), such that

φ
(n)
0 → φ̃0 in D(Å

1
2 ) weakly,(2.77)

φ
(n)
1 → φ̃1 in H1

Γ0,γ(Ω) weakly.(2.78)

If we further denote [φ̃, φ̃t, ψ̃] as the solution to (1.60), corresponding to initial data

[φ̃0, φ̃1, 0], then a fortiori,[
φ(n), φ

(n)
t , ψ(n)

]
→
[
φ̃, φ̃t, ψ̃

]
in L∞(0, T ; Hγ) weak star.(2.79)
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From Proposition 4.3 of the appendix, we have that {φ(n)
tt }∞n=1 is bounded in

L∞(0, T ; [D(Å
1
2P−1

γ )]′), inasmuch as {‖[φ(n)
0 , φ

(n)
1 ]‖

D(Å
1
2 )×H1

Γ0,γ
(Ω)
}∞n=1 is bounded in

D(Å
1
2 )×H1

Γ0,γ
(Ω). Also, from Proposition 4.4 we have that ψ

(n)
t ∈ L2(0, T ; [H

3
2−ε(Ω)]′)

for all n, with the estimate

∫ T

0

∥∥∥ψ(n)
t

∥∥∥2

[H
3
2
−ε(Ω)]′

dt ≤ C
∫ T

0

∥∥∥∇φ(n)
t

∥∥∥2

L2(Γ1)
dt+ l.o.t. (φ, φt, ψ) ,(2.80)

and this combined with (2.74)–(2.75) yields that {ψ(n)
t }∞n=1 is bounded in

L2(0, T ; [H
3
2−ε(Ω)]′). This boundedness of {[φ(n)

tt , ψ
(n)
t ]}∞n=1, and that for the se-

quence posted in (2.76), allows us to deduce through a compactness result of Simon’s
in [24] that

φ(n) → φ̃ strongly in L∞(0, T ;H
3
2 +ε(Ω)),

φ
(n)
t → φ̃t strongly in L∞(0, T ;H

1
2 +ε(Ω)),

ψ(n) → ψ̃ strongly in L2(0, T ;H
1
2 +ε(Ω)),

ψ(n) → ψ̃ strongly in L∞(0, T ;H−
1
2 +ε(Ω)).

These convergences and (2.74) thus give∥∥∥φ̃∥∥∥2

L∞
(

0,T ;H
3
2

+ε(Ω)

) +
∥∥∥φ̃t∥∥∥2

L∞
(

0,T ;H
1
2

+ε(Ω)

) +
∥∥∥ψ̃∥∥∥2

L∞
(

0,T ;H−
1
2

+ε(Ω)

)
+

∫ T

0

∥∥∥ψ̃∥∥∥2

H
1
2

+ε(Ω)
dt = 1.(2.81)

Moreover, the explicit representation of L∗TΠ∗ in (1.59) and the convergences

posted in (2.75) and (2.77)–(2.79) give that [φ̃0, φ̃1] ∈ D(L∗TΠ∗), with∫ T

0

∥∥∥∇φ̃t∥∥∥2

H1(Γ1)
dt+

∥∥∥ψ̃∥∥∥2

[Hs((0,T )×Γ2)]′
= 0.(2.82)

Now if we make the change of variable

z = φ̃t, v = ψ̃t,

then using (2.82), [z, v] solve the system

{
ztt − γ∆ztt + ∆2z + α∆v = 0

βvt + η∆v − σv − α∆zt = 0
on (0,∞)× Ω,

z =
∂z

∂ν
= 0 on (0,∞)× Γ,


∆z + (1− µ)B1z + αv = 0

∂∆z

∂ν
+ (1− µ)

∂B2z

∂τ
− γ ∂ztt

∂ν
+ α

∂v

∂ν
= 0

on (0,∞)× Γ1,

∂v

∂ν
+ λv = 0 on (0,∞)× Γ,

v = 0 on (0,∞)× Γ2.

(2.83)
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Now by Isakov’s theorem in [10, p. 3, Corollary 1.2], we have for

T > 2
√
γ · sup

[x,y]∈Ω

d ([x, y],Γ2)

that the uniqueness property for the thermoelastic system is obtained, so that the
solution [z, v] of (2.83) is necessarily zero. Consequently φ̃ and ψ̃ are each constants.

From the essential boundary condition on Γ0 in (1.60), we then have φ̃ = 0 on (0, T )×
Ω. In turn, the free boundary conditions on Γ1 give that ψ̃ = 0 on (0, T )× Ω. Thus

[φ̃, ψ̃] = [0, 0], which contradicts the equality given in (2.81). This concludes the proof
of the lemma.

Corollary 2.7 and Lemma 2.8 in combination give inequality (2.2), the estab-
lishment of which verifies the surjectivity of the control to partial state map ΠLT :
D(LT ) ⊂ Us → D(Å

1
2 )×H1

Γ0,γ
(Ω). This completes the proof of Theorem 1.2.

3. The proof of Theorem 1.1. Given the space Cr(Σ2,T ), we consider system
(1.1) under the influence of boundary controls in Ur+1, as defined in (1.37). The
controlled PDE is then approximately controllable in Ur+1 for T > 2

√
γ · sup[x,y]∈Ω

d ([x, y],Γ2). Indeed, if we take arbitrary [φ0, φ1, ψ0] from the null space of L∗T , then
using the form of this operator given in (1.55), we have necessarily that φt|Γ1

=
∂φt
∂ν |Γ1

= 0, and ψ|Γ2
= 0, where [φ, φt, ψ] is the solution to (1.51). We can then use

the uniqueness theorem of Isakov, in a fashion similar to that employed in Lemma 2.8,
to show that [φ, φt, ψ] = [0, 0, 0] on (0, T )×Ω and, in particular, [φ0, φ1, ψ0] = [0, 0, 0].

A preliminary step (a regularity property of LT ). With the designated
control space Ur+1 we then take T > T ∗ so as to ensure both the approximate con-
trollability of the entire system (1.1) and the exact controllability with respect to the
displacement (see Theorem 1.2). In this event, we have the observability inequal-
ity (2.2), and therewith one can show in a manner identical to that done in [14,
Appendix B] that the operator

ΠLTL∗TΠ∗ is an isomorphism from D(L∗TΠ∗) into [D(L∗TΠ∗)]′,(3.1)

where the projection Π onto D(Å
1
2 )×H1

Γ0,γ
(Ω) is as defined in (1.46). Consequently,

we have

ΠLTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π ∈ L

(
Hγ , D(Å

1
2 )×H1

Γ0,γ(Ω)
)
.(3.2)

Moreover, if we denote the mapsL(1), L(2) by

L(1)

[
u1

u2

]
(t) =

∫ t

0

eAγ(t−s)B
 u1(s)
u2(s)

0

 ,
L(2)u(t) =

∫ t

0

eAγ(t−s)B
 0

0
u(s)


(cf. (1.42)), then by a standard energy method one can show that

L(2) : L2(0, T ;H−
1
2 (Γ2))→ C([0, T ]; Hγ) continuously.(3.3)
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To handle L(1) on the other hand, one must appeal to a new regularity result in [17],
which gives

L(1) : L2(0, T ;L2(Γ1)×H−1(Γ1))→ C([0, T ];H
3
2 (Ω)×H 1

2 (Ω)×L2(Ω)) continuously.
(3.4)
Combining (3.3) and (3.4) (at terminal time T ) with (3.2), we thus deduce that the
mapping

(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π ∈ L (Hγ) ,(3.5)

where I : Hγ → Hγ denotes the identity.
Combining (3.2) and (3.5) thus gives

LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π ∈ L(Hγ).(3.6)

Step 1. For arbitrary ε > 0 we select a u1 ∈ D(LT ) ⊂ Ur+1, so that for arbitrary

terminal state [ωT0 , ω
T
1 , θ

T
0 ] ∈ Hγ , the corresponding solution [ω(1)(t), ω

(1)
t (t), θ(1)(t)]

to (1.1), with [u1, u2, u3] ≡ u1 and zero initial data, satisfies∥∥∥∥∥∥
 ω(1)(T )− ωT0
ω

(1)
t (T )− ωT1
θ(1)(T )− θT0

+ eAγT

 ω0

ω1

θ0

∥∥∥∥∥∥
Hγ

<
ε

1 +
∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1

Π
∥∥∥
L(Hγ)

(3.7)

(where the fact that (I-Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π is due to (3.6)).

Step 2. We now select u2 ∈ D(LT ) to be the “minimal norm steering control”

with respect to the (partial) terminal state [ωT0 − ω(1)(T ), ωT1 − ω(1)
t (T )]. That is to

say, u2 satisfies

ΠLTu2 + ΠeAγT

 ω0

ω1

θ0

 =

[
ωT0 − ω(1)(T )

ωT1 − ω(1)
t (T )

]
(3.8)

and minimizes the functional 1
2 ‖u‖2Us , over all u ∈ Us, which satisfies

ΠLTu =

[
ωT0 − ω(1)(T )

ωT1 − ω(1)
t (T )

]
−ΠeAγT

 ω0

ω1

θ0

 .
(By Theorem 1.2. we know there exists at least one such u.) By convex optimization
theory and Lax–Milgram, the minimizer u2 can be given explicitly by

u2 = L∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π

 ωT0 − ω(1)(T )

ωT1 − ω(1)
t (T )

θT0 − θ(1)(T )

− eAγT
 ω0

ω1

θ0

(3.9)

(see (B.20) of [14, p. 288]). With this representation, we then have from (3.7) the
norm bound

‖(I−Π∗Π)LTu2‖Hγ
≤

∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1
Π
∥∥∥
L(Hγ)

· ε

1 +
∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1

Π
∥∥∥
L(Hγ)

.(3.10)
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Step 3. Set the control u∗ = u1 + u2. Consequently, there is the equality

LTu∗ + eAγT

 ω0

ω1

θ0

 = LTu1 + LTu2 + eAγT

 ω0

ω1

θ0

 =

 ωT0
ωT1

θ(1)(T )


+ (I−Π∗Π)

LTu2 + eAγT

 ω0

ω1

θ0

 .(3.11)

Letting [ω∗, ω∗t , θ
∗] denote the solution of (1.1) corresponding to the chosen control

u∗, we then have from (3.11) that [ω∗(T ), ω∗t (T )] = [ωT0 , ω
T
1 ]. Moreover, from (3.11),

(3.7), and (3.10) we obtain the estimate

∥∥θ∗(T )− θT0
∥∥
L2
σ+λ

(Ω)
≤
∥∥∥∥∥∥
 0

0
θ(1)(T )− θT0

+ (I−Π∗Π)

eAγT
 ω0

ω1

θ0

∥∥∥∥∥∥
Hγ

+ ‖(I−Π∗Π)LTu2‖Hγ

<
ε

1 +
∥∥∥(I−Π∗Π)LTL∗TΠ∗ (ΠLTL∗TΠ∗)−1

Π
∥∥∥
L(Hγ)

+ ‖(I−Π∗Π)LTu2‖Hγ
< ε.

(3.12)

Thus, the constructed control u∗ = [u∗1, u
∗
2, u
∗
3] ∈ Ur+1 satisfies the desired exact–

approximate controllability property. Moreover, the Sobolev embedding theorem gives
that u∗3 ∈ Cr(Σ2,T ). This concludes the proof of Theorem 1.1.

4. Appendix.

Proposition 4.1. The operator AR − σ
η + λÅG2γ0−ÅG1γ0 is an element of

L(L2(Ω), [D(Å
1
2 )]′) and (AR − σ

η + λÅG2γ0 − ÅG1γ0)∗ = AD(I −Dγ0) as elements

of L(D(Å
1
2 ), L2(Ω)).

Proof. For every ϑ ∈ D(AR) and $ ∈ D(Å
1
2 ), we have〈(

AR − σ

η
+ λÅG2γ0 − ÅG1γ0

)
ϑ,$

〉[
D

(
Å

1
2

)]′
×D|
(

Å
1
2

)
= (−∆ϑ,$)L2(Ω) +

〈
λÅG2γ0ϑ,$

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − 〈ÅG1γ0ϑ,$
〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)
= (∇ϑ,∇$)L2(Ω) −

(
∂ϑ

∂ν
,$

)
L2(Γ1)

+ λ
(
γ0ϑ,G

∗
2Å$

)
L2(Γ1)

− (γ0ϑ,G
∗
1Å$

)
L2(Γ1)

(after the use of Green’s formula and the taking of adjoints)

= (∇ϑ,∇$)L2(Ω) −
(
γ0ϑ,G

∗
1Å$

)
L2(Γ1)

= (ϑ,−∆$)L2(Ω)

(after one more use of Green’s theorem and the characterization (1.23))

= (ϑ,AD(I −Dγ0)$)L2(Ω) .

As D(AR) is dense in L2(Ω), this equality proves the assertion.
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Lemma 4.2. The Hilbert space adjoint A∗γ of Aγ , as defined in (1.36), is given
to be

A∗γ =

 I 0 0
0 P−1

γ 0
0 0 I


 0 −I 0

Å 0 −α(♣)

0
α

β
AD(I−Dγ0) − η

β
AR

 ,

with D(A∗γ) =
{

[φ0, φ1, ψ0] ∈ D
(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR)

such that Åφ0 + αÅG1γ0ψ0 ∈ H−1
Γ0,γ

(Ω)
}

(above, (♣) is the same denotation made in (1.35)).
Proof. We define S ⊆ Hγ to be

S ≡
{

[φ0, φ1, ψ0] ∈ D
(
Å

1
2

)
×D

(
Å

1
2

)
×D(AR)

such that Åω1 + α ÅG1γ0θ ∈ H−1
Γ0,γ

(Ω)
}

and proceed to show that D(A∗γ) = S. Indeed, if [ω1, ω2, θ] ∈ D(Aγ) and [ω̃1, ω̃2, θ̃] ∈
S, we have by using (1.36)Aγ

 ω1

ω2

θ

 ,
 ω̃1

ω̃2

θ̃


Hγ

=
(
Å

1
2ω2, Å

1
2 ω̃1

)
L2(Ω)

+

(
P−1
γ

(
−Åω1 + αARθ − ασ

η
θ − αÅG1γ0θ + αλÅG2γ0θ

)
, ω̃2

)
H1

Γ0,γ
(Ω)

−
(
αAD(I −Dγ0)ω2, θ̃

)
L2(Ω)

− ηβ

β

(
ARθ, θ̃

)
L2(Ω)

=
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − 〈ω1, Åω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − α (∆θ, ω̃2)L2(Ω)

−α 〈ÅG1γ0θ, ω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + αλ
〈
ÅG2γ0θ, ω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)
+α

(
∆ω2, θ̃

)
L2(Ω)

− β
(
θ,
η

β
ARθ̃

)
L2(Ω)

(after using the equality posted in (1.32))

=
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) − 〈ω1, Åω̃2

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + α (∇θ,∇ω̃2)L2(Ω)

−α
(
∂θ

∂ν
, γ0ω̃2

)
L2(Γ1)

− α
(
γ0θ,

∂ω̃2

∂ν

)
L2(Γ1)

− αλ (γ0θ, γ0ω̃2)L2(Γ1)

−α
(
∇ω2,∇θ̃

)
L2(Ω)

+ α

(
∂ω2

∂ν
, γ0θ̃

)
L2(Γ1)

− β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

(after using Green’s theorem and (1.23))

= −
(
Å

1
2ω1, Å

1
2 ω̃2

)
L2(Ω)

+
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + β

(
θ,−α

β
∆ω̃2

)
L2(Ω)
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+α
(
ω2,∆θ̃

)
L2(Ω)

− α
(
γ0ω2,

∂θ̃

∂ν

)
L2(Γ1)

+ α
(
G∗1Åω2, γ0θ̃

)
L2(Γ1)

−β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

= −
(
Å

1
2ω1, Å

1
2 ω̃2

)
L2(Ω)

+
〈
ω2, Åω̃1

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

)
+α

(
ω2,−ARθ̃ +

σ

η
θ̃

)
L2(Ω)

− αλ
(
G∗2Åω2, γ0θ̃

)
L2(Γ1)

+α
〈
ω2, ÅG1γ0θ̃

〉[
D

(
Å

1
2

)]′
×D
(

Å
1
2

) + β

(
θ,
α

β
AD(I −Dγ0)ω̃2

)
L2(Ω)

−β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

= −
(
Å

1
2ω1, Å

1
2 ω̃2

)
L2(Ω)

+

(
P

1
2
γ ω2, P

1
2
γ P
−1
γ

[
Åω̃1 + α

(
−ARθ̃ +

σ

η
θ̃ + ÅG1γ0θ̃ − λÅG2γ0θ̃

)])
L2(Ω)

+β

(
θ,
α

β
AD(I −Dγ0)ω̃2

)
L2(Ω)

− β
(
θ,
η

β
ARθ̃

)
L2(Γ1)

(after again using (1.32), (1.23), and the fact that
[
ω̃1, ω̃2, θ̃

]
∈ S)

=

 ω1

ω2

θ

 , T
 ω̃1

ω̃2

θ̃


Hγ

,

where

T ≡
 I 0 0

0 P−1
γ 0

0 0 I


 0 −I 0

Å 0 −α(♣)

0
α

β
AD(I−Dγ0) − η

β
AR

 .

Thus,

S ⊆ D(A∗γ) and A∗γ
∣∣
S = T .(4.1)

To show the opposite containment, one can straightforwardly compute the inverse
A−1
γ ∈ L(Hγ , D(Aγ)) as

A−1
γ =


−α

2

η
Å
−1

(♣)A−1
R AD(I −Dγ0) −Å

−1
Pγ −αβ

η
Å
−1

(♣)A−1
R

I 0 0

−α
η
A−1
R AD(I −Dγ0) 0 −β

η
A−1
R

 .(4.2)

In turn, one can use this quantity and Proposition 4.1 to compute the Hilbert space
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adjoint
(A∗γ)−1

of A−1
γ as

(A∗γ)−1
=


−α

2

η
Å
−1

(♣)A−1
R AD(I −Dγ0) Å

−1
Pγ −αβ

η
Å
−1

(♣)A−1
R

−I 0 0

−α
η
A−1
R AD(I −Dγ0) 0 −β

η
A−1
R

 .(4.3)

With this quantity in hand, we then have that for arbitrary [φ0, φ1, ψ0] ∈ D(A∗γ) and
corresponding  ω0

ω1

θ0

 = A∗γ

 φ0

φ1

ψ0

 ∈ Hγ ,

 φ0

φ1

ψ0

 =
(A∗γ)−1

 ω0

ω1

θ0



=


−α

2

η
Å
−1

(♣)A−1
R AD(I −Dγ0)ω0 + Å

−1
Pγω1 − αβ

η
Å
−1

(♣)A−1
R θ0

−ω0

−α
η
A−1
R AD(I −Dγ0)ω0 − β

η
A−1
R θ0

 .
(4.4)

A fortiori then, [φ0, φ1] ∈ [D(Å
1
2 )]2 and ψ0 ∈ D(AR). Moreover, (4.4) and the

definition of the operator (♣) in (1.35) gives

Åφ0 + αÅG1γ0φ1 ∈ H1
Γ0,γ(Ω).(4.5)

Thus, D(A∗γ) ⊆ S, and this combined with (4.1) concludes Lemma 4.2.
Proposition 4.3. For arbitrary terminal data [φ0, φ1, ψ0] ∈ Hγ , the solution

[φ, φt, ψ] to (1.51) has the following additional regularity:

‖φtt‖
L∞(0,T ;[D(Å

1
2 P−1

γ )]′)
≤ C ‖[φ0, φ1, ψ0]‖Hγ

,

where Å
1
2P−1

γ is taken as a closed and densely defined operator, Å
1
2P−1

γ : D( Å
1
2P−1

γ ) ⊂
L2(Ω)→ L2(Ω), with D(Å

1
2P−1

γ ) = {ϕ ∈ L2(Ω) : P−1
γ ϕ ∈ D(Å

1
2 )}.

Proof. For terminal data [φ0, φ1, ψ0] ∈D(A∗γ), we have for all$ ∈ L1(0, T ;D(Å
1
2P−1

γ )),
upon using the abstract equation (1.52), the characterizations in (1.23) , the fact that

P−1
γ $ ∈ L1(0, T ;D(Å

1
2 ) ∩ D(AN )) (recall the definition of AN in (1.16) and Pγ in

(1.24)), and ∂ψ
∂ν |Γ = −λψ|Γ, that

(4.6)∫ T

0

($,φtt)L2(Ω) dt =

∫ T

0

(
$,P−1

γ

[−Åφ− αÅG1γ0ψ + αλ ÅG2γ0ψ − α∆ψ
])
L2(Ω)

dt

=

∫ T

0

[
−
(
Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

− α (G∗1ÅP−1
γ $, γ0ψ

)
L2(Γ1)
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+ αλ
(
G∗2 ÅP−1

γ $, γ0ψ
)
L2(Γ1)

− α (P−1
γ $,∆ψ

)
L2(Ω)

]
dt

=

∫ T

0

[(
−Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

+ α

(
P−1
γ $,

∂ψ

∂ν

)
L2(Γ1)

− α (P−1
γ $,∆ψ

)
L2(Ω)

]
dt

=

∫ T

0

[(
−Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

+ α
(∇P−1

γ $,∇ψ)
L2(Ω)

]
dt

=

∫ T

0

[(
−Å

1
2P−1

γ $, Å
1
2φ
)
L2(Ω)

− α (∆P−1
γ $,ψ

)
L2(Ω)

]
dt.

Estimating the far side of this expression by using the fact that P−1
γ ∈ L(L2(Ω), D(AN )),

followed by the contraction of the semigroup {eA∗γt}t≥0, one has the estimate

∫ T

0

($,φtt)L2(Ω) dt ≤ C
∥∥∥∥∥∥
 φ0

φ1

ψ0

∥∥∥∥∥∥
Hγ

‖$‖
L1(0,T ;D(Å

1
2 P−1

γ ))
dt.(4.7)

A density argument concludes the proof.
Proposition 4.4. If [φ, φt, ψ] denotes the solution to (1.51), corresponding to

terminal data [φ0, φ1, ψ0], we have the following estimates.
1. The map [φ0, φ1, ψ0] → ∆φ is an element of L(Hγ , L

2(0, T ; [H1(Ω)]′)), with
the norm bound

‖∆φ‖L2(0,T ;[H1(Ω)]′) ≤ l.o.t. (φ, φt, ψ) .(4.8)

2. The map [φ0, φ1, ψ0]→ [∆φt, ψt] is an element of L(D(L∗T ), [L2(0, T ; [H
3
2−ε(Ω)]′)]2),

with the norm bound

‖[∆φt, ψt]‖[
L2

(
0,T ;

[
H

3
2
−ε(Ω)

]′)]2 ≤ C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ) .(4.9)

Proof of (i). For all $ ∈ L2(0, T ;H1(Ω)), we easily have

(4.10) ∫ T

0

(∆φ,$)L2(Ω) dt = −
∫ T

0

(∇φ,∇$)L2(Ω) dt+

∫ T

0

(
∂φ

∂ν
,$

)
L2(Γ1)

dt

≤ C
∫ T

0

[
‖∇φ‖L2(Ω) ‖∇$‖L2(Ω) + ‖φ‖

H
3
2

+ε(Ω)
‖$‖H1(Ω)

]
dt

≤ C ‖φ‖
L2

(
0,T ;H

3
2

+ε(Ω)

) ‖$‖L2(0,T ;H1(Ω)) ,

and this estimate gives the asserted result.
Proof of (ii). If [φ0, φ1, ψ0] ∈ D(A∗γ), then [φ, φt, ψ] ∈ C([0, T ];D(A∗γ))∩C1([0, T ];

Hγ), and so in particular ∆φt ∈ L2(0, T ;L2(Ω)). Taking the L2-inner product with

respect to arbitrary $ ∈ L2(0, T ;H
3
2−ε(Ω)), we have upon the use of Green’s theorem

and the definition of AR in (1.14) that

(4.11)
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−
∫ T

0

(∆φt, $)L2(Ω) dt

=

∫ T

0

(
A

1
2

Rφt, A
1
2

R$
)
L2(Ω)

dt

−
∫ T

0

[
λ (φt, $)L2(Γ) +

σ

η
(φt, $)L2(Ω) +

(
∂φt
∂ν

,$

)
L2(Γ1)

]
dt

=

∫ T

0

(
A

1
4 + ε

2

R φt, A
3
4− ε2
R $

)
L2(Ω)

dt

−
∫ T

0

[
λ (φt, $)L2(Γ) +

σ

η
(φt, $)L2(Ω) +

(
∂φt
∂ν

,$

)
L2(Γ1)

]
dt

≤
∫ T

0

(∥∥∥A 1
4 + ε

2

R φt

∥∥∥
L2(Ω)

∥∥∥A 3
4− ε2
R $

∥∥∥
L2(Ω)

+
(
C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ)

)
‖$‖

H
1
2

+ε(Ω)

)
dt

≤
(
C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ)

)
‖$‖

L2

(
0,T ;H

3
2
−ε(Ω)

) .
Moreover, as [φ0, φ1, ψ0] ∈ D(A∗γ), we can take the L2-inner product of ψt with

arbitrary $ ∈ L2(0, T ;H
3
2−ε(Ω)) and use (1.53) and (4.11) to obtain∫ T

0

(ψt, $)L2(Ω) dt = β−1

∫ T

0

(ηARψ + α∆φt, $)L2(Ω) dt

= β−1

∫ T

0

[(
ηA

1
4 + ε

2

R ψ,A
3
4− ε2
R $

)
L2(Ω)

+ (α∆φt, $)L2(Ω)

]
dt

≤
(
C ‖∇φt‖L2(0,T ;L2(Γ1)) + l.o.t. (φ, φt, ψ)

)
‖$‖

L2

(
0,T ;H

3
2
−ε(Ω)

) .(4.12)

Having obtained estimates (4.11) and (4.12) with smooth data [φ0, φ1, ψ0], a
density argument (see Remark 1.8) and a recollection of the form of the adjoint
L∗T in (1.55) will allow us to obtain the norm bound (4.9) for all terminal data
in D(L∗T ).

Lemma 4.5. Concerning the component φ̂ of the solution [φ̂, φ̂t, ψ̂] of (2.9), one

has that ∆φ̂|Γ0 ∈ L2(0, T ;L2(Γ0)) with the following estimate valid for all s and
τ ∈ [0, T ]:

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt ≤ C0

(∫ T

0

E
φ̂
(t)dt+ E

φ̂
(s) + E

φ̂
(τ)

)
+ l.o.t.

(
φ̂, φ̂t, ψ̂

)
.(4.13)

Proof. So as to obtain the inequality (4.13), we multiply the first equation of

(2.15) by the quantity m · ∇φ̂, where m(x, y) ≡ [m1(x, y),m2(x, y)] is a
[
C2(Ω)

]2
vector field,1 which satisfies

m|Γ =

{
[ν1, ν2] on Γ0,
0 on Γ1,

(4.14)

1Here we make use of the fact that Γ0 and Γ1 are separated.
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and follow this by an integration from s to τ ; i.e., we will work with the equation∫ τ

s

(
φ̂tt − γ∆φ̂tt + ∆2φ̂,m · ∇φ̂

)
L2(Ω)

dt

=

∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt.(4.15)

To handle the left-hand side of (4.15), perform the following steps.
(i) First,

(4.16)∫ τ

s

(
φ̂tt,m · ∇φ̂

)
L2(Ω)

dt =
(
φ̂t,m · ∇φ̂

)
L2(Ω)

∣∣∣∣τ
s

−
∫ τ

s

(
φ̂t,m · ∇φ̂t

)
L2(Ω)

dt

=
(
φ̂t,m · ∇φ̂

)
L2(Ω)

∣∣∣∣τ
s

− 1

2

∫ τ

s

∫
Ω

div
(
φ̂2
tm
)
dtdΩ

+
1

2

∫ τ

s

∫
Ω

φ̂2
t [m1x +m2y] dtdΩ

=
(
φ̂t,m · ∇φ̂

)
L2(Ω)

∣∣∣∣τ
s

+
1

2

∫ τ

s

∫
Ω

φ̂2
t [m1x +m2y] dtdΩ,

after making use of the divergence theorem and the fact that φ̂t = 0 on Γ0.
(ii) Next,

(4.17)∫ τ

s

(
−∆φ̂tt,m · ∇φ̂

)
L2(Ω)

dt =
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

∣∣∣∣τ
s

−
∫ τ

s

(
∇φ̂t,∇

(
m · ∇φ̂t

))
L2(Ω)

dt

=
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

∣∣∣∣τ
s

− 1

2

∫ τ

s

∫
Ω

div

(∣∣∣∇φ̂t∣∣∣2m) dtdΩ

−
∫ τ

s

∫
Ω

[
φ̂2
txm1x

2
+
φ̂2
tym2y

2

]
dtdΩ−

∫ τ

s

∫
Ω

[
φ̂txφ̂tym2x + φ̂txφ̂tym1y

]
dtdΩ

+

∫ τ

s

∫
Ω

[
φ̂2
txm2y

2
+
φ̂2
tym1x

2

]
dtdΩ

=
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

∣∣∣∣τ
s

+

∫ τ

s

∫
Ω

[
φ̂2
txm2y

2
+
φ̂2
tym1x

2
− φ̂2

txm1x

2
− φ̂2

tym2y

2

]
dtdΩ

−
∫ τ

s

∫
Ω

[
φ̂txφ̂tym2x + φ̂txφ̂tym1y

]
dtdΩ,

after again using the divergence theorem and the fact that
∫

Ω
div(|∇φ̂t|2m)dΩ =∫

Γ0
|∇φ̂t|2dΓ0 = 0 (as φ̂t(t) ∈ H2

Γ0
(Ω)).
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(iii) To handle the biharmonic term, we use Green’s theorem (1.9), the given

boundary conditions of (2.15), (4.14), and the fact that φ̂ ∈ H2
Γ0

(Ω) to obtain

(4.18) ∫ τ

s

(
∆2φ̂,m · ∇φ̂

)
L2(Ω)

dt =

∫ τ

s

a
(
φ̂,m · ∇φ̂

)
dt

+α

∫ τ

s

∫
Γ1

ψ̂ · ∂m · ∇φ̂
∂ν

dΓ1dt −
∫ τ

s

∫
Γ0

(
∆φ̂+ (1− µ)B1φ̂

) ∂2φ̂

∂ν2
dΓ0dt.

We note at this point that we can rewrite the first term on the right-hand side of
(4.18) as

(4.19) ∫ τ

s

a
(
φ̂,m · ∇φ̂

)
dt

=
1

2

∫ τ

s

∫
Ω

m · ∇
[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
,

where O(
∫ T

0
‖Å

1
2 φ̂‖2L2(Ω)dt) denotes a series of terms that can be majorized by the

L2(0, T ;D(Å
1
2 ))-norm of φ̂. We consequently have by the divergence theorem that

(4.20) ∫ τ

s

a
(
φ̂,m · ∇φ̂

)
dt

=
1

2

∫ τ

s

∫
Ω

m · ∇
[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)

=
1

2

∫ τ

s

∫
Ω

div
{
m
[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]}
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)

=
1

2

∫ τ

s

∫
Γ0

[
φ̂2
xx + φ̂2

yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2
xy

]
dtdΓ0

+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)

=
1

2

∫ τ

s

∫
Γ0

(
∆φ̂
)2

dt+O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
,

where in the last step above, we have used the fact (as reasoned in [11, Chapter 4])

that φ̂|Γ0 = ∂φ̂
∂ν |Γ0 = 0 implies that φ̂2

xx + φ̂2
yy + 2µφ̂xxφ̂yy + 2(1− µ)φ̂2

xy = (∆φ̂)2 on
Γ0.
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To handle the last term on the right-hand side of (4.18), we note that B1φ̂ = 0
on Γ0, which implies that

∆φ̂ = ∆φ̂+ (1− µ)B1φ̂ =
∂2φ̂

∂ν2
on Γ0 .(4.21)

We consequently have upon the insertion of (4.20) into (4.18), followed by the con-
sideration of (4.21) that∫ τ

s

(
∆2φ̂,m · ∇φ̂

)
L2(Ω)

dt = −1

2

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt

+α

∫ τ

s

∫
Γ1

ψ̂ · ∂m · ∇φ̂
∂ν

dΓ1dt + O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
.(4.22)

(iv) To handle the right-hand side of (4.15), an integration by parts yields∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt

= c1

[(
ψ̂,m · ∇φ̂

)
L2(Ω)

]τ
s

− c1
∫ τ

s

(
ψ̂,m · ∇φ̂t

)
L2(Ω)

dt

+

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt.

As m · ∇φ̂ ∈ C([0, T ];H1
Γ0,γ

(Ω)), we have for all t ∈ [0, T ],(
ψ̂(t),m · ∇φ̂(t)

)
L2(Ω)

=
〈
ψ̂(t),m · ∇φ̂(t)

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

.

Accordingly, we have

(4.23)∫ τ

s

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt

= c1

[〈
ψ̂,m · ∇φ̂

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

]τ
s

−c1
∫ τ

s

(
ψ̂,m · ∇φ̂t

)
L2(Ω)

dt+

∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt.

To finish the proof, we rewrite (4.15) by collecting the relations given above in
(4.16), (4.17), (4.22), and (4.23) to attain

(4.24)

1

2

∫ τ

s

∥∥∥∆φ̂
∥∥∥2

L2(Γ0)
dt = α

∫ τ

s

∫
Γ1

ψ̂ · ∂m · ∇φ̂
∂ν

dΓ1dt

+ O
(∫ T

0

∥∥∥Å 1
2 φ̂
∥∥∥2

L2(Ω)
dt

)
+

1

2

∫ τ

s

∫
Ω

φ̂2
t [m1x +m2y] dtdΩ
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−
∫ τ

s

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂,m · ∇φ̂

)
L2(Ω)

dt

+ γ

∫ τ

s

∫
Ω

[
φ̂2
txm2y

2
+
φ̂2
tym1x

2
− φ̂2

txm1x

2
− φ̂2

tym2y

2

]
dtdΩ

− γ

∫ τ

s

∫
Ω

[
φ̂txφ̂tym2x + φ̂txφ̂tym1y

]
dtdΩ + c1

∫ τ

s

(
ψ̂,m · ∇φ̂t

)
L2(Ω)

dt

+

[(
φ̂t,m · ∇φ̂

)
L2(Ω)

+ γ
(
∇φ̂t,∇

(
m · ∇φ̂

))
L2(Ω)

− c1
〈
ψ̂,m · ∇φ̂

〉
H−1

Γ0,γ
(Ω)×H1

Γ0,γ
(Ω)

]τ
s

.

The desired inequality (4.13) now comes about by majorizing the right-hand side of
this expression (note that in this majorization we are using implicitly the fact that
∂m·∇φ̂
∂ν |Γ1

is a “lower order term,” as m|Γ1
= 0).

Proposition 4.6. With the vector field h as defined in (1.3), the solution

[φ̂, φ̂t, ψ̂] to (2.15), corresponding to terminal data [φ0, φ1, ψ0] ∈ D([A∗γ ]2), satisfies
equality (2.36) for arbitrary ε0 ∈ [0, T ).

Proof. We multiply (2.15) by h · ∇φ̂− 1
2 φ̂ and subsequently integrate in time and

space; i.e., we will consider the equation∫ T−ε0

ε0

(
φ̂tt − γ∆φ̂tt + ∆2φ̂−

[
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t

]
, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt = 0.

(4.25)

First, using directly the computations performed in [12] for the quantity
∫ T−ε0
ε0

(φ̂tt−
γ∆φ̂tt + ∆2φ̂, h · ∇φ̂− 1

2 φ̂)L2(Ω)dt, in the case that h is a radial vector field (see the
relations (3.12) and (3.16) of [12]), we have

(4.26)∫ T−ε0

ε0

(
φ̂tt − γ∆φ̂tt + ∆2φ, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt

=

[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

−
[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

− 1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt

+

∫ T−ε0

ε0

1

2

∥∥∥P 1
2
γ φ̂t

∥∥∥2

L2(Ω)
+
∥∥∥φ̂t∥∥∥2

L2(Ω)
− γ

(
h · ∇φ̂− 1

2
φ̂,
∂φ̂tt
∂ν

)
L2(Γ1)

 dt
+

∫ T−ε0

ε0

[
1

2

∥∥∥ Å
1
2 φ̂
∥∥∥2

+
1

2

∫
Γ0

h · ν
(

∆φ̂
)2

dΓ−
(

∆φ̂,
∂

∂ν

(
h · ∇φ̂

))
L2(Γ0)

]
dt

+

∫ T−ε0

ε0

(∂∆φ̂

∂ν
+ (1− µ)

∂B2φ̂

∂τ
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

−
(

∆φ̂+ (1− µ)B1φ̂,
∂

∂ν

(
h · ∇φ̂− 1

2
φ̂

))
L2(Γ1)

]
dt
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+

∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)

+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ.

Using the boundary conditions in (2.15) and the fact that ∂(h·∇φ)
∂ν |Γ0 =

(h · ν)∆φ|Γ0 , this equation becomes

(4.27)∫ T−ε0

ε0

(
φ̂tt − γ∆φ̂tt + ∆2φ, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt =
1

2

∫ T−ε0

ε0

E
φ̂
(t)dt

+

[
(φ̂t, h · ∇φ̂)L2(Ω) + γ

(
∇φ̂t,∇

(
h · ∇φ̂

))
L2(Ω)

− 1

2
(φ̂t, φ̂)L2(Ω)

]t=T−ε0
t=ε0

−
[
γ

2

(
∇φ̂t,∇φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

− 1

2

∫ T−ε0

ε0

∫
Γ1

h · ν
(
φ̂2
t + γ

∣∣∣∇φ̂t∣∣∣2) dΓdt

+

∫ T−ε0

ε0

[∥∥∥φ̂t∥∥∥2

L2(Ω)
− 1

2

∫
Γ0

h · ν
(

∆φ̂
)2

dΓ

]
dt

+

∫ T−ε0

ε0

[
α

(
ψ̂,

∂

∂ν

(
h · ∇φ̂− 1

2
φ̂

))
L2(Γ1)

+

(
γ
∂

∂ν

(
ξ2φ̂+ 2ξφ̂t

)
− α∂ψ̂

∂ν
, h · ∇φ̂− 1

2
φ̂

)
L2(Γ1)

 dt
+

∫ T−ε0

ε0

∫
Γ1

h · ν
2

(∂2φ̂

∂x2

)2

+

(
∂2φ̂

∂y2

)2

+ 2µ

(
∂2φ̂

∂x2

)(
∂2φ̂

∂y2

)

+ 2(1− µ)

(
∂2φ̂

∂x∂y

)2
 dtdΓ.

Second, we multiply [c0ψ̂+c1ψ̂t+c2φ̂+c3φ̂t+c4∆φ̂] by h ·∇φ̂− 1
2 φ̂ and integrate

by parts to obtain

(4.28) ∫ T−ε0

ε0

(
c0ψ̂ + c1ψ̂t + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt

= c1

[(
ψ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

]t=T−ε0
t=ε0

− c1
∫ T−ε0

ε0

(
ψ̂, h · ∇φ̂t − 1

2
φ̂t

)
L2(Ω)

dt
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+

∫ T−ε0

ε0

(
c0ψ̂ + c2φ̂+ c3φ̂t + c4∆φ̂, h · ∇φ̂− 1

2
φ̂

)
L2(Ω)

dt.

To now obtain (2.36), we combine the expressions (4.25) and (4.27)–(4.28) and follow
this by a rearrangement of terms.
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