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The long term Advanced Very High Resolution Radiometer (AVHRR)-

Normalized Difference Vegetation Index (NDVI) record provides a critical

historical perspective on vegetation dynamics necessary for global change

research. Despite the proliferation of new sources of global, moderate resolution

vegetation datasets, the remote sensing community is still struggling to create

datasets derived from multiple sensors that allow the simultaneous use of spectral

vegetation for time series analysis. To overcome the non-stationary aspect of

NDVI, we use an artificial neural network (ANN) to map the NDVI indices from

AVHRR to those from MODIS using atmospheric, surface type and sensor-

specific inputs to account for the differences between the sensors. The NDVI

dynamics and range of MODIS NDVI data at 1u is matched and extended

through the AVHRR record. Four years of overlap between the two sensors is

used to train a neural network to remove atmospheric and sensor specific effects

on the AVHRR NDVI. In this paper, we present the resulting continuous

dataset, its relationship to MODIS data, and a validation of the product.

1. Introduction

Consistent, long term vegetation data records are critical for analysis of the

impact of global change on terrestrial ecosystems. Continuous observations of
terrestrial ecosystems through time are necessary to document changes in

magnitude or variability in an ecosystem (Tucker et al. 2001, Eklundh and

Olsson 2003, Slayback et al. 2003). Satellite remote sensing has been the primary

tool for scientists to measure global trends in vegetation, as the measurements are

both global and temporally frequent. To extend measurements through time,

multiple sensors with different design and resolution must be used together in the

same time series. This presents significant problems as sensor band placement,

spectral response, processing, and atmospheric correction of the observations can
vary significantly and impact the comparability of the measurements (Brown et al.

2006). Even without differences in atmospheric correction, vegetation index values

for the same target recorded under identical conditions will not be directly

comparable because input reflectance values differ from sensor to sensor due to
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differences in sensor design and spectral response of the instrument (Teillet et al.

1997, Miura et al. 2006).

Several approaches have been taken to integrate data from multiple sensors.

Steven et al. (2003), for example, simulated the spectral response from multiple

instruments and with simple linear equations created conversion coefficients to

transform NDVI data from one sensor to another. Their analysis is based on the

observation that the vegetation index is critically dependent on the spectral response

functions of the instrument used to calculate it. The conversion formulas the paper

presents cannot be applied to maximum value NDVI datasets because the weighting

coefficients are land cover and dataset dependent, reducing their efficacy in mixed

pixel situations (Steven et al. 2003). Trishchenko et al. (2002) created a series of

quadratic functions to correct for differences in the reflectance and NDVI to

NOAA-9 AVHRR-equivalents (Trishchenko et al. 2002). Both the Steven et al.

(2003) and the Trishchenko et al. (2002) approaches are land cover and dataset

dependent and thus cannot be used on global datasets where multiple land covers

are represented by one pixel. Miura et al. (2006) used hyper-spectral data to

investigate the effect of different spectral response characteristics between MODIS

and AVHRR instruments on both the reflectance and NDVI data, showing that the

precise characteristics of the spectral response had a large effect on the resulting

vegetation index. The complex patterns and dependencies on spectral band

functions were both land cover dependent and strongly nonlinear, thus we see that

an exploration of a nonlinear approach may be fruitful.

In this paper we experiment with powerful, nonlinear neural networks to

identify and remove differences in sensor design and variable atmospheric

contamination from the AVHRR NDVI record in order to match the range and

variance of MODIS NDVI without removing the desired signal representing the

underlying vegetation dynamics. Neural networks are ‘data transformers’

(Atkinson and Tatnall 1997), where the objective is to associate the elements of

one set of data to the elements in another. Relationships between the two datasets

can be complex and the two datasets may have different statistical distributions.

In addition, neural networks incorporate a priori knowledge and realistic physical

constraints into the analysis, enabling a transformation from one dataset into

another through a set of weighting functions (Atkinson and Tatnall 1997). This

transformation incorporates additional input data that may account for

differences between the two datasets.

Our objective in this paper is to demonstrate the viability of neural networks as

a tool to produce a long term dataset based on AVHRR NDVI that has the data

range and statistical distribution of MODIS NDVI. Previous work has shown that

the relationship between AVHRR and MODIS NDVI is complex and nonlinear

(Gallo et al. 2003, Brown et al. 2006, Miura et al. 2006), thus this problem is well

suited to neural networks if appropriate inputs can be found. The impact of

atmospheric contamination, such as clouds, smoke, pollution and other aerosols,

variations in soil colour and exposure through vegetation, and land cover type has

a differential effect on AVHRR data as compared to MODIS data. Here we

explore how neural networks can be used to account for these impacts and create

an AVHRR NDVI dataset with similar characteristics as the MODIS dataset.

Overlapping years of observations are used to train the network. Examination of

the resulting MODIS-fitted AVHRR dataset both during the overlap period and

in the historical dataset enabled an evaluation of the efficacy of the neural
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net approach compared to other approaches to merge multiple-sensor NDVI

datasets.

2. Neural networks

Neural networks are algorithms used for either classification or function

approximation (Lippmann 1987). A good introduction to neural networks is given

by Lippmann (1987). Since their first introduction, they have been used for almost

two decades in remote sensing (Benediktsson et al. 1990). The most commonly used

type of neural network is the Multi-Layer Perceptron (MLP), of which Kalman

filters are one type. Artificial neural networks (ANNs) are made up of input layers,

hidden layers and output layers.

The MLP neural network has an input layer where the data samples are fed,

typically after being normalized. The data from the input layer is then fed into a

number of hidden layers, typically either one or two. The choice of how many

hidden layers and number of nodes per hidden layer that should be used is

currently an open research question. Several heuristics exist to assist in selecting

the number of nodes in the hidden layers, some of which developed explicitly in

the domain of remote sensing such as the Kanellopoulos–Wilkinson (1997) rule

(Stathakis and Vasilakos 2006). Finally the hidden layers feed one or more input

layers.

To summarize the ANN topology, a relation of x : y : z is frequently used. This

implies a neural network with x input nodes, one hidden layer with y hidden nodes

and z output nodes (for example, 7 : 20 : 1). The neural network is trained by

adjusting the values of the connections, called weights, between nodes. The most

commonly used training algorithm is back-propagation introduced by Rumelhart et

al. (1986). Several modifications to the original algorithm have greatly boosted

performance (Rumelhart et al. 1986). Neural networks can learn in an either

supervised or unsupervised mode depending on whether target vectors are presented

along with input vectors or not. In the supervised mode, several spectral bands (or in

this study, time series) per data sample are typically presented to the network. At the

same time the desired output is also used to modify the weights so that the deviation

between actual and obtained output is minimized. Typically the samples available,

i.e. input and output vectors, are split in order to train the network and

independently validate the results. A three-set strategy has been proposed to offer

a more objective validation by Bishop (1995). According to this strategy three

subsets are created, one for training, one for validation and one for testing (Bishop

1995).

One of the main advantages of neural networks is the fact that multiple sources,

including non-spectral data, can be used as input (Benediktsson et al. 1990,

Stathakis and Kanellopoulos 2008). This is because neural networks make no

assumptions, e.g. about statistical distributions, regarding the input data. One of

their main drawbacks is that they require experience in selecting values for the

numerous parameters that need to be set. Recent results show that global search

methods can be used to make near-optimal choices. Additionally, neural networks

are often accused of being black-box techniques because the knowledge learned can

not be expressed in a meaningful way. Several efforts have been made towards

building transparent neural networks. One way to do this is to deploy neuro-fuzzy

methods (Stathakis and Vasilakos 2006).
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3. Data

This study uses global NDVI products derived from AVHRR and MODIS NDVI

sensors at 1u resolution and for a monthly time window. Ancillary files are used in

this study to determine the impact of clouds and other atmospheric effects on the

vegetation measurement from different sensors through time. We have restricted the

number of inputs to six besides the AVHRR NDVI to reduce redundancy and over-

fitting of the neural network. There are three atmospheric products from TOMS—a

soil type map, a digital elevation model (DEM), and a land cover map.

3.1 NDVI datasets at 1u

AVHRR and MODIS NDVI products were downsampled to 1u resolution to reduce

the processing time of the artificial neural network and to match the resolution of

the atmospheric TOMS inputs. To further reduce processing time, average monthly

composites were made of the two products. The spatial and temporal downsampling

was done by averaging all pixels falling in a 1u cell for the two nearest periods in a

month (MODIS products do not respect month limits).

The maximum value AVHRR NDVI composites have an 8-km resolution

(Tucker 1979, Holben 1986) and were from the NASA Global Inventory

Monitoring and Modeling Systems (GIMMS) group at the Laboratory for

Terrestrial Physics (Tucker et al. 2005, Brown et al. 2006) from July 1981 to May

2004. A post-processing satellite drift correction has been applied to this dataset to

further remove artefacts due to orbital drift and changes in the sun-target-sensor

geometry (Pinzon et al. 2005). As a result of AVHRR’s wide spectral bands, the

AVHRR NDVI is more sensitive to water vapour in the atmosphere than MODIS.

An increase in water vapour results in a lower NDVI signal, which can be

interpreted as an actual change if no correction is applied (Pinheiro et al. 2004,

Pinzon 2002). The maximum value composite should lessen these artefacts (Holben

1986). The GIMMS operational dataset incorporates AVHRR data from sensors

aboard NOAA-7 through 14 with the data from the AVHRR on NOAA-16 and 17.

The Terra-MODIS 16 day L3 land surface NDVI product was selected. NDVI

data for MODIS was computed from the (White-Sky) Filled Land Surface Albedo

Map Product, which is a value-added product from the MODIS Atmospheres

group. The global, 1-km, 16-day MODIS NDVI composites from February 2000 to

December 2004 were used to create averaged 1u monthly data for this analysis. The

resulting 1u time series include only pixels with more than 50% land and conforms to

the International Satellite Land Surface Climatology Project (ISLSCP) convention

as described by Sellers et al. (1996).

3.2 Ancillary datasets

To account for the differences between the AVHRR and MODIS data, we use four

ancillary data products in the neural network: TOMS data which provide

information on water vapour in the atmosphere, soil maps, land cover maps and

elevation. Each of these accounts for an aspect of the sensor design differences and

provides key information so that the neural network can work. Preliminary work

(not described here) demonstrated that the most important factors controlling the

relationship between the NDVI of MODIS and that of AVHRR are the surface

reflectance, the land surface type, aerosols and total ozone column. Variations in

atmospheric contamination have direct impact on the AVHRR NDVI used here
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because no atmospheric correction was implemented during its processing, only

volcanic aerosols and maximum value compositing (Tucker et al. 2005). We know

that ozone is a key atmospheric absorber of light in the visible region, and water, as

measured by aerosols, in the infrared. The AVHRR NDVI, calculated using the

wide bands of the instrument, will therefore be influenced by these elements.

The Nimbus-7 TOMS data are the only source of high resolution global

information about the atmospheric composition (and hence depression of AVHRR

NDVI) for much of the AVHRR record. As an instrument that measures the

atmosphere back to 1981, TOMS has the advantage of being co-located for much of

its record on the same platform as AVHRR, which is particularly important as the

NOAA satellites from which the AVHRR NDVI are derived are subject to

nonlinear orbital drift through time (McPeters et al. 1998). The TOMS data, from

Version 8, include reflectance, aerosol and ozone measurements and are derived

from three sensors: Nimbus 7, Meteor 3 and Earth Probe (table 1). All three

products are used in order to capture the impact of atmospheric variations on the

uncorrected AVHRR NDVI data. During the missing period of 1994–1996, we use a

climatology created by taking the median value of the preceding 2, 4 and 6 years and

the following 2, 4 and 6 years. This approach was used as ozone has a quasi-biennial

oscillation (QBO). Although not optimal, this performed well and is required if we

want to use these datasets for a correction of the entire series.

The NASA Goddard Institute for Space Studies (GISS) soil type map is used to

account for the difference in sensitivity to underlying soil colour from AVHRR and

MODIS (Huete and Tucker 1991, Huete et al. 1994). The soil type map is at 1u
resolution and contains 26 soil units, and values for water and ice. The soil type data

file was derived from the highest level of the FAO soil units and is based on the work

of Zobler (1986).

A 1u ‘surface type’ land cover dataset was created from the SPOT Global Land

Cover (GLC) 2000 dataset (Giri et al. 2004). Previous research has shown that

variations in land cover affect the strength of the impact of atmospheric thickness

(Pinzon 2002). This dataset has 22 land cover classes based on the FAO land cover

classification system. We aggregated the data to a 1u resolution using a vote

procedure. We used the GLC2000 data instead of MODIS or AVHRR-based land

cover datasets as an independent surface classification for the ANN training. We use

a single land cover map to represent the land cover for the 25-year record. Even

though we acknowledge that land cover change may have occurred during this

period, they are unlikely to span an entire 1u61u pixel. The neural network uses this

parameter to identify regions with very low signal due to small amounts of

vegetation. These regions are approximately static through time globally.

A 1u DEM was used to ensure the identification and maintenance of mountainous

regions that may otherwise be confused with clouds or other atmospheric effects.

This DEM was derived from the USGS SRTM 90-m dataset, and has been

aggregated to 1u using averaging.

3.3 Global rainfall data

We used Global Precipitation Climatology Centre (GPCC) rain gauge data from the

Global Precipitation Climatology Project (GPCP). These data were used to evaluate

the ability of the NDVI data products for capturing inter-annual vegetation

dynamics related to rainfall. The GPCC data are area-averaged and time-integrated

precipitation fields based on surface rain gauge measurements. The GPCC collects
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Table 1. Global datasets used in this paper.

Sensor AVHRR NDVI MODIS NDVI GPCC rain TOMS reflectivity, ozone and aerosol

Data source GIMMS NDVIg
operational dataset

MODIS-land and
atmospheres

Gridded gauge data NASA GSFC ozone processing team

Native spatial resolution 8000 m 250 m 1u 26 km
Temporal resolution 15 day 16-day monthly daily
Period available July 1981–present

(NOAA 7, 9, 11, 14, 16 and 17)
February 2000– present April 1986–present November 1978–May 1993

(Nimbus 7)
May 1993–November1994
(Meteor 3)
July 1996–December 2005 (Earth
Probe)

Equatorial crossing ,9 am–,6 pm 10.30 am NA ,9 am–,6 pm
Field of view (FOV) ¡55.4u ¡55u NA ¡55.4u

7
1

4
6

M
.E

.
B

ro
w

n
et

a
l.



monthly precipitation totals received from the World Weather Watch Global

Telecommunication System (GTS) of the World Meteorological Organization

(WMO). The GPCC acquires monthly precipitation data from international/

national meteorological and hydrological services/institutions. Surface rain-gauge

based monthly precipitation data from 6700 meteorological stations are analysed

over land areas and gridded using a spatial objective analysis method (Rudolf et al.

1994).

4. Methods

4.1 Application of the ANN

When mapping AVHRR to MODIS NDVI using ANNs, factors that explain

differences in the sensors and their processing must be accounted for by the input

variables. Here we use historical data derived from the Total Ozone Mapping

Spectrometer (TOMS), which is available with some interruption back to 1978

(McPeters et al. 1998). The AVHRR is also more sensitive to differences in

background soil contamination than MODIS (Huete and Jackson 1988), thus we

use a soil type map (Zobler 1986), a DEM, and a land cover map to account for

these differences (see §3 for a description of the datasets).

The neural network used here is a fully-connected feed-forward MLP with

7 : 20 : 1 topology. Biases are connected to both hidden and output layers. The

selection of the nodes in the hidden topology conforms well to the Kanellopoulos–

Wilkinson rule commonly used in remote sensing. In this study we employed a feed-

forward ANN with 20 nodes in a single hidden layer using a Kalman filter training

algorithm. The Kalman filter algorithm provides rapid convergence for the weight

estimation and is described by Lary and Mussa (2004).

Besides the additional data sources, the neural net is trained with time-series data

of AVHRR and MODIS from the overlapping period of 2000–2003. Subsequently,

the resulting weighting functions were applied to the AVHRR data from 1982–2003,

using the ancillary files. The functions enable the correction of the entire dataset,

enabling the production of an AVHRR dataset with similar characteristics as the

MODIS dataset. For simplicity, throughout this paper this new dataset will be

referred to as NNndvi, or the neural net corrected AVHRR NDVI. The result is an

experimental product, whose objective is to demonstrate how a seamless AVHRR to

MODIS dataset may be created. We do not assume that the method used is the only

possible or even the most optimal method, but one that can produce a far closer

integration between the datasets than has been demonstrated before using the actual

processed data instead of the modelled data. For this feasibility demonstration we

operated on the 1u scale at a monthly resolution to reduce the neural net processing

time. The same training procedure could be conducted at a higher temporal and

spatial resolution with more computing time and/or for smaller areas.

4.2 Evaluation methods

The NNndvi dataset obtained is evaluated in two ways to determine if it is closer to

the target MODIS NDVI than the original AVHRR dataset, and if it retains

important interannual vegetation dynamics that have previously been identified in

the AVHRR data (Zeng et al. 1999, Bounoua et al. 2000). First, time series for

selected 1u boxes are presented to demonstrate the effect of the neural net procedure

on particular locations. Second, the NNndvi is compared to the GPCC dataset to
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determine whether or not the correction has changed the relationship with observed

rainfall.

5. Results

Figure 1 shows a schematic representation of the neural net mapping of the AVHRR

NDVI to the MODIS NDVI during the years of overlap. Table 2 shows that the

most important variable for linking the two datasets is the AVHRR NDVI (as

would be expected) followed by the surface reflectance and total ozone column. In

the TOMS data, the reflectance includes the degree of cloudiness. Given the wide

bands of the AVHRR sensor and the differences in processing, it is expected that the

TOMS reflectance is important for the correction (Cihlar et al. 2001).

Figure 2 shows the NDVI difference between the MODIS and AVHRR, and the

MODIS and the NNndvi by latitude band for a single image from December 2003.

The biggest differences are in the tropics, which have high concentrations of

atmospheric aerosols and water vapour that interfere more with the AVHRR NDVI

data than with the MODIS data (Huete et al. 2006). Another substantial difference

between the datasets is seen in the northern latitudes. The histogram is from January

2003, so the regions north of 40uN have little active photosynthetic activity; the

NDVI is largely measuring differences in ground cover and atmospheric thickness.

The GIMMS AVHRR NDVI reports data over snow, ice, and during periods when

there is no light, relying on the NDVI to correctly record the very low

photosynthetic activity during these months. MODIS NDVI data incorporate

Figure 1. Schematic representation of the neural network used in this paper.
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much more sophisticated snow and ice detection, which results in large differences

between the AVHRR and MODIS data. Since we have inputs into the neural net

that can account for these differences (soil type, monthly changes in reflectivity), the

differences between MODIS and AVHRR are considerably reduced by neural

network processing.

Figure 3(a) and (b) show the spatial average of all pixels in the same latitudinal

band for the difference between the AVHRR and MODIS (a) and NNndvi and

MODIS (b). The plots show that significant improvement in the correspondence

Table 2. Statistics of the MODIS, AVHRR, and NNndvi datasets for 48 months of data
(2000–2003).

Element Accumulated weight

AVHRR NDVI 0.6
TOMS reflectance 0.5
TOMS column ozone 0.3
Land surface type 0.3
TOMS aerosol index 0.2
Soil cover 0.2
Digital elevation model 0.2

Figure 2. Graph showing the latitudinal means of the difference between MODIS, AVHRR
and NNndvi for January 2003. The figure highlights the zones where the neural net correction
is the strongest.
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between the datasets in the tropics and in the northern latitudes seen in figure 2 is

present in all years. Differences at the beginning and end of the growing season in

the far north are clearly seen. These differences will be significant to scientists

attempting to measure changes in phenology through time due to a warming

climate. The northern latitudes have experienced the largest degree of warming, thus

these systematic differences are important to both recognize and remove if a

consistent, sensor-independent dataset is to be developed.

The neural network process provides coefficients that were applied to the input

data, to produce an NDVI fit to MODIS from AVHRR back to 1982. Figure 4

shows the zonal averages of the resulting dataset, displaying both seasonality and

interannual variability as expected. Table 3 shows the mean and standard deviation

of the MODIS, AVHRR and NNndvi datasets. The mean NNndvi is closer to the

MODIS data than to the original AVHRR data. The differences in the means can be

seen in figure 5, which shows the root mean square error (RMSE) in NDVI units

between the AVHRR-MODIS (figure 5(a)), and the NNndvi–MODIS (figure 5(b)).

The NNndvi dataset is on average within 0.2 NDVI units of the MODIS data,

removing the land-cover and regional differences that can be seen in the top panel.

The scatters above 0.2 RSME are seen in the map of the RMSE in figure 5(b) as

being concentrated along the coastlines and where a sharp land-cover gradient is

located, such as along the Himalayas and Andes mountain ranges. This is likely to

be due to differences in the original land cover map between MODIS, AVHRR and

TOMS and the other ancillary datasets, as well as averaging procedures to make the

1u datasets. This effect may be ameliorated by using a higher resolution, as at 1u
much mixing of vegetated and non-vegetated features occurs, particularly along

Figure 3. Zonal mean (averaged per latitude) of the difference between MODIS and
AVHRR (a) and MODIS and NNndvi (b) through time from 2000 to 2003.
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sharp land cover and topographic features, which reduces the effectiveness of the

neural network training.

Figure 6 shows the time series from MODIS, AVHRR, and the NNndvi from six

selected 1u pixels (Brown et al. 2006). These locations were selected from the Earth

Observing System land validation core sites described in Brown et al. (2006) and

were meant to display a range of ecosystems and climates. The figure shows that the

NNndvi is much closer to the MODIS series than the original GIMMS AVHRR,

particularly in areas with high humidity such as in the Cascades of Washington state

or Ji-Parana, Brazil. The NNndvi is higher than the GIMMS data, especially during

the winter months. In some regions where the match between MODIS and AVHRR

was fairly good originally, such as in the Harvard Forest, the fit between the

datasets is extremely good.

Figure 7 shows the correlation coefficient R, between the GPCC monthly gridded

rainfall product at 1u and the GIMMS AVHRR, NNndvi, and MODIS from 2000–

Figure 4. Latitude-averaged mean of NNndvi from 1982 to 2003.

Table 3. Global mean and standard deviation of the MODIS, AVHRR and NNndvi
datasets.

Sensor NNndvi AVHRR MODIS

Global mean
NDVI

0.4834 0.2982 0.4830

Global standard
NDVI

0.2384 0.2460 0.2522
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2003. The maps in the top two panels show that the NNndvi has a similar

relationship with rainfall in semi-arid regions as has been documented with the

GIMMS data (Brown et al. 2004). It demonstrates that at 1u, the correction

maintains the datasets’ basic integrity and relationship with rainfall in semi-arid

zones. Panel D shows the histogram of the global correlation, showing a similar

structure to the data for the three datasets.

The results of this procedure are fairly robust, but they are not sufficiently good

to be used for scientific investigations. To determine if the data are usable

immediately, we produced an anomaly for August 2003 from each dataset versus the

4-year August mean for MODIS. Figure 8 shows the histogram of the anomaly for

August 2003 (when there was a major drought in Europe), which shows the

improvement of the NNndvi over AVHRR, but the data is still quite a bit different

to the MODIS data. Depending on the user requirements, this may be sufficiently

similar. The bias in the AVHRR has been removed so that the NNndvi is far more

normally distributed. The Rp statistic, a modified version of the Shapiro-Wilks test,

measures the degree of normality of a dataset by correlating the data with the

standard normal distribution (Wilks 1995). The Rp for the MODIS anomaly shown

in figure 8 is 0.17, whereas the NNndvi anomaly has a value of 0.45, and the

AVHRR 0.47. So although the neural net correction has improved the data

significantly, there are still differences that are systematic for every pixel. The quality

of the corrected data is significantly better, however, as can be seen in figure 9. The

removal of cloud contamination in regions, such as the Gulf of Guinea, that have

always had depressed NDVI signals in the AVHRR dataset, is a contribution that

should not be underestimated.

Figure 5. Root mean square error from MODIS-AVHRR (above) and the MODIS-
NNndvi (below) from 2000 to 2003 in NDVI units.
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6. Discussion

The lack of reliable climate observations throughout the AVHRR record is a major

limitation in all attempts to correct the AVHRR data to match the quality of the

MODIS record. In order to remove the systematic difference between the AVHRR

and MODIS data due to atmospheric water vapour, we need accurate observations

of the amount of water vapour in the atmosphere at the time of data acquisition.

For AVHRR, the instrument that provides these data is derived from the Total

Ozone Mapping Spectrometer (TOMS) data (McPeters et al. 1998). TOMS data

have their own problems with data continuity and algorithms, which may reduce the

Figure 6. Time series plots of six latitude-longitude locations: Louga, Senegal (16, 216),
Tigray Ethiopia (14, 40), Bondville Illinois (10, 288), Cascades Washington (44,2122),
Harvard Forest Massachusetts (43,272), and Ji-Parana Brazil (211,262).
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effectiveness of the neural network because the issues may interfere with the NDVI
differences we are trying to remove.

One reason for the lack of strong results in this experiment is the use of

aggregated data. The temporal mismatch between the 15-day AVHRR data, the 16-

day MODIS data and the monthly TOMS datasets has consequences that are

difficult to identify. Although an effort was made to minimize these problems

through aggregation to the monthly time step, they may confound the neural net.

Aggregated data are much cleaner than daily observations, require far less

computational effort (a key factor in running neural networks), and are the most
widely used products. In addition, daily data for the AVHRR NDVI and

reflectances are currently not available, thus they are not used here.

An effort is being made in the context of a NASA funded collaborative project

called the Long Term Data Record at the University of Maryland. In this project,

daily AVHRR NDVI from NOAA-7 through -14 (1981 to 1999) will be combined

directly with MODIS data from 2000 onwards. The data from the year 2003 will be

used to relate the two datasets. The research presented in this paper will illuminate

the efforts of this project.

7. Conclusion

Remote sensing datasets are the result of a complex interaction between the design

of a sensor, the spectral response function, stability in orbit, the processing of the

Figure 7. Correlation coefficient of AVHRR (a), NNndvi (b), and MODIS (c) versus GPCC
rainfall data. (d) Shows the histogram of the correlation coefficient of the NDVI versus
gridded rainfall by percent.
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raw data, compositing schemes, and post-processing corrections for various

atmospheric effects including clouds and aerosols. The interaction between these

various elements is often nonlinear and non-additive, where some elements increase

the vegetation signal-to-noise ratio (compositing, for example) and others reduce it

(clouds and volcanic aerosols) (Los 1998). Thus, although other authors have used

simulated data to explore the relationship between AVHRR and MODIS

(Trishchenko et al. 2002, van Leeuwen et al. 2006), these techniques are not directly

useful in producing a sensor-independent vegetation dataset that can be used by

data users in the near term.

There are substantial differences between the processed vegetation data from

AVHRR and MODIS. In order to have a long data record that utilizes all available

data back to 1981, we must find practical ways of incorporating the AVHRR data

into a continuum of observations that include both MODIS and VIIRS. The results

in this paper show that the TOMS data record on clouds, ozone and aerosols can be

used to identify and remove sensor-specific atmospheric contaminants that

differentially affect the AVHRR over MODIS. Other sensor-related effects,

particularly those of changing BRDF, viewing angle, illumination, and other effects

that are not accounted for here, remain important sources of additional variability.

Although this analysis has not produced a dataset with identical properties to

MODIS, it has demonstrated that a neural net approach can remove most of the

atmospheric-related aspects of the differences between the sensors, and match the

Figure 8. The August 2003 anomaly, defined as the difference between the MODIS,
AVHRR and NNndvi image for August 2003 and the mean of four August MODIS images
(2000–2003).
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mean, standard deviation and range of the two sensors. A similar technique can be

used for the VIIRS sensor once the data is released.
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