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Optically thick films of MnPt3 were deposited on quartz using dc magnetron sputtering. The films were
covered with an SiOx protective overcoat and annealed in vacuum at 850 °C for 1 h toform the crystallineL12
~Cu3Au! cubic structure. These films have a high degree of long-range order and are highly textured with the
~111! axis along the film normal. Variable angle spectroscopic ellipsometry measurements were taken over the
spectral range of 1.2–4.2 eV to determine the optical constants of both MnPt3 and the SiOx overcoat. Spec-
troscopic magneto-optic Kerr rotation and ellipticity measurements at near normal incidence over the spectral
range of 1.4–3.6 eV were used to determine the off-diagonal dielectric tensor elements for MnPt3. First-
principles electronic-structure calculations were carried out for the ordered MnPt3 structure and from these the
dielectric tensor elements of MnPt3 were calculated. The experimental and theoretical values of the diagonal
components of the dielectric tensor components are in good agreement. The agreement for the off-diagonal
components of the dielectric tensor is only fair.@S0163-1829~97!04205-7#

I. INTRODUCTION

The complex Kerr angle~QK! fully describes the polar-
ization state of light reflected from a magnetized surface.
However,QK depends on both diagonal and off-diagonal el-
ements of the dielectric tensor in a rather complicated way,
so it is often difficult to make direct associations between the
calculated electronic structure and features observed in Kerr
rotation and ellipticity spectra. Further, the magnitudes of the
Kerr rotation and ellipticity can be greatly modified by inter-
ference effects in a multilayer structure.1 In view of this, the
connection between the macroscopic observations and mi-
croscopic theories of magneto-optic effects is perhaps best
investigated by comparison of the measured and calculated
dielectric ~conductivity! tensor. The aim of this paper is a
detailed investigation of the electronic structure of MnPt3 via
both experimental and theoretical studies of its complex di-
electric tensor.

The stoichiometric alloy MnPt3 is ferromagnetic with a
Curie temperatureTC of 380 K.2 Thin films of MnPt3 have
the cubic Cu3Au ~L12! structure with the Mn atoms located
on the cube corners and the Pt atoms on the face-center lat-
tice positions. With appropriate post-deposition annealing
these films have a high degree of long-range order~h51.03
60.05! and the magnetic moment is near 4mB per formula
unit ~3.6mB on the Mn atoms and the remainder on the Pt

atoms!.3–5 The films are highly textured with the~111! di-
rection perpendicular to the film plane. Katoet al.6 originally
showed that films of MnPt3 have a large magneto-optic re-
sponse~21.18° at 1.2 eV!. Since this system is highly tex-
tured and well ordered it is well suited for use in this inves-
tigation. Therefore we determine here the intrinsic dielectric
tensor for MnPt3 from ellipsometric and magneto-optic polar
Kerr data and compare it with the dielectric tensor derived
from the theoretical first-principles electronic-structure cal-
culations.

The complex dielectric tensor~«! for a magnetic medium
with threefold or higher rotational symmetry about thez axis
has the following form:

«5S «xx
2«xy
0

«xy
«xx
0

0
0

«zz
D , ~1!

where in general the diagonal and off-diagonal terms are
complex. Introducing the complex Voigt parameter (Q)

Q5
i«xy
«xx

, ~2!
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and considering that«zz is not much different from«xx we
obtain

«5«xxS 1
iQ
0

2 iQ
1
0

0
0
1
D . ~3!

The tensor given by Eq.~3! can be diagonalized using a
principal axis transformation, where the three principal axes
becomex1 iy , x2 iy , andz. Left- and right-circularly polar-
ized light are then the eigenpolarization states corresponding
to the first two principal axes. The complex indices of refrac-
tion for left- ~1! and right-~2! circularly polarized light are
in general different and expressed as

ñ65ñ~17 1
2 Q! ~4!

for light propagating along thez axis. As polarized light can
always be expressed as a linear combination of left- and
right-circularly polarized light, a change in the polarization
state of the reflected~transmitted! beam will be induced ifQ
is not zero. If linearly polarized light is normally incident on
a magnetized sample, the plane of polarization of the re-
flected beam will be rotated through the Kerr angle~uk! and
an ellipticity ~hk! will be introduced. For an optically thick
magnetic film with a thick nonmagnetic dielectric overcoat
the polar Kerr effect generated at nonmagnetic/magnetic in-
terface is given by7

uk1 ihk>2 i
ñ 22ñ 1

ñ 1ñ 22ñ n
2 ñn>2 i

QA«xx
«xx2«n

A«n, ~5!

where ñn and «n are the complex index of refraction and
dielectric constant, respectively, for the nonmagnetic me-
dium. As can be seen from Eq.~5! the polar Kerr effect
depends on the dielectric tensors of both the magnetic and
nonmagnetic media in a nontrivial fashion. However,uk and
hk also depend on the film structure, and optical interference
effects from the overcoat can play a major role in the mea-
sured Kerr effect and need be taken into account.

To obtain the dielectric tensor@Eq. ~3!# from experimental
data we must solve Maxwell’s equations for our thin-film
structure. The formalism for this procedure is outlined in
detail in Refs. 8, 9 and 10. The natural solutions to the wave
equation can be expressed in terms of the indices of refrac-
tion for left- and right-circularly polarized light as given by
Eq. ~4!. By utilizing variable angle spectroscopic ellipsom-
etry and magneto-optic Kerr effect measurement and analy-
sis techniques we can obtain the intrinsic indices of refrac-
tion (ñ5n1 ik) and magneto-optic Voigt parameter
(Q5Q81 iQ9) for MnPt3. These parameters can then be
related to the dielectric tensor by using Eq.~2! and the fol-
lowing relation:

«xx5~n22k2!1 i2nk. ~6!

II. DIELECTRIC TENSOR CALCULATIONS

The complex conductivity tensor~s! for interband transi-
tions in the random-phase approximation without allowance
for the local-field effects is given by11

sab~v!5
1

p E dv8I ~v8!S 1

v2v81 i /t
1

1

v1v81 i /t D ,
~7!

wheret is the relaxation time and the expression forI ~v! is
given below,

FIG. 1. Sample model used in optical/magneto-optical analysis.

FIG. 2. Ellipsometricc andd obtained from film side measure-
ments. Data for each angle of incidence given by: 65° open square,
70° open circle, and 75° open triangle. Full line represents modeled
fit for each corresponding angle of incidence.
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I ~v!5
pe2

2v (
klÞl8

d„\v2Ell8~k!…$u„El~k!2EF…

2u„El8~k!2EF…%@ j a
ll8~k! j b

l8l~k!# ~8!

Here,EF is the Fermi energy, andEll8~k! is the difference in
the energies of the one-electron statesukl& and ukl8&. The
Fermi function has been replaced with the step functionu
and the matrix elements of the current density operator are
given by

j a
ll8~k!5^klu¹aukl8&. ~9!

We use the linear-muffin-tin-orbital~LMTO! method12 in
the near-orthogonal representation to perform spin-polarized
self-consistent electronic-structure calculations with the
scalar-relativistic and spin-orbit correction terms included in
the Hamiltonian. The local-density LMTO calculations are
based on the atomic-sphere approximation corrected to first
order by the combined correction term.13 The details of the
calculation of the matrix elements of the current density op-

erator in terms of the LMTO method are given in Ref. 13.
The linear tetrahedron method is used to calculate the real
and imaginary parts ofs simultaneously, thereby avoiding
the numerical errors that can arise in a Kramers-Kronig
transformation.14,15 The dielectric tensor~«! can then be re-
lated to the conductivity tensor by

« i j5d i j1
i4p

v
s i j1xFC~v!d i j , ~10!

where the intraband contribution due to the free carriers
~xFC! to the diagonal component of the dielectric tensor is
given by the Drude model

xFC~v!52
vp
2

v~v1 ig!
. ~11!

Herevp is the plasma frequency andg is the collision fre-
quency. In the single-frequency approachvp is given by16

vp
25

4pe2

V (
kl

uVklu2d~Ekl2EF!, ~12!

whereV is the volume of the primitive cell and

Vkl5^klu¹ukl& ~13!

is the mean velocity of an electron in stateukl&.

FIG. 3. Indices of refraction for~a! SiOx protective overcoat,~b!
MnPt3. Dashed lines represent indices of refraction for SiO and
SiO2 obtained from Ref. 22.

FIG. 4. Kerr rotation~uk! and ellipticity~hk! of MnPt3 from film
side measurements. Different temperatures are represented by 300
K open square, 180 K open circle, and 95 K open triangle.

TABLE I. Sample parameters.

Samples

SiOx layer thickness
~t in nm!

MnPt3
~t in nm!

Nominal Fitted Nominal

1 100 98.7 100
2 50 49.9 100
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III. EXPERIMENTAL PROCEDURES
AND DATA ANALYSIS

A. Sample preparation

Samples of optically thick MnPt3 thin films on quartz sub-
strates were prepared by dc magnetron sputtering and cov-
ered with either a 50 or 100 nm SiOx protective overcoat.
The samples were annealed in vacuum at 850 °C for 1 h to
form the crystallineL12 ~Cu3Au! cubic structure. The crys-
talline structure was confirmed by x-ray diffraction. X-ray
fluorescence measurements on the as-deposited films showed
they were close to nominal compositions~62%!. A Curie
temperature of 37565 K was measured for each sample. To
further reduce the number of adjustable parameters a sample
consisting of a 300 nm thick SiOx layer deposited on a Si
~100! substrate was made. Ellipsometric measurements were
taken at three angles~65°, 70°, and 75°! near the pseudo-
Brewster angle, over the spectral range from 1.2–4.2 eV.
This maximizes the tradeoff between the magnitude of the
ellipsometric parameters and light intensity.

The indices of refraction for the SiOx layer were deter-
mined by analyzing the ellipsometric data from the SiOx/Si
sample. A Cauchy dispersion model was used to fit the el-
lipsometric data by varying the indices of refraction (n,k)
and thickness (t) of the SiOx layer. The indices of refraction
of the silicon substrate were taken from Ref. 22.

B. Ellipsometry

In general the amplitudes and phases of thes andp po-
larization components of the incident light are altered differ-
ently by a sample upon reflection or transmission. Variable
angle ellipsometry can be used to measure this change in the
polarization state over a wide range of wavelengths and
angles of incidence. For reflection the measurable ellipso-
metric parametersC andD at some nonnormal angle of in-
cidence are defined by

tancei¹[
r̃ p
r̃ s
, ~14!

wherer s andr p are the Fresnel reflection coefficients derived
from solving Maxwell’s equations of electrodynamics at the
interface between two optically distinguishable media ands
andp indicate the electric vector perpendicular and parallel
to the plane of incidence, respectively. A convenient formal-
ism embodying the solutions to Maxwell’s equations uses a
general 434 matrix whose form relates the propagation of
the electric and magnetic field through the layer. This 434
matrix, defined as the characteristic matrix, relates the con-
tinuous tangential components of the electromagnetic field at
any two planes in the system and contains the imposed
boundary conditions and material parameters.17 The charac-
teristic matrix of the multilayer stack is then simply the prod-
uct of the characteristic matrix for each individual layer and
substrate in the proper order.18 This procedure allows the
development of an optical/magneto-optical sample model
that accounts for all interface and interference optical effects.

The Fresnel coefficients are functions of the angle of in-
cidence, the complex indices of refraction of the sample, and
the layer thickness. It is not feasible to directly solve the
nonlinear equations, Eq.~14!, for the unknown indices of

refraction (n,k) and layer thicknesses from the measured
ellipsometric data. Instead the sample parameters are deter-
mined by a least-squares fitting to the observed ellipsometric
parametersc andD as follows. Predicted values forc andD
over the spectral range and angle of incidence are obtained
using the sample model as described above. A comparison
between the predicted and experimentalc and D is made
using a mean-squared-error~MSE! formula

MSE5F 1

2N2M (
i51

N
~vC2vM !2

jc i
2 1

~DC2DM !2

jD i

2 G 2,
~15!

whereC andM signify the calculated and measured param-
eters, respectively,N is the number of~c,D! pairs,M is the
number of variable parameters in the model, andji are the
standard deviations of the measurements.19 The Levenberg-
Marquardt multivariate regression algorithm is used to fit the
model to experimental data by varying the material param-
eters in order to minimize the difference between model and
experiment. To determine a set of parameters that provide a
good fit to the experimental data the correlation between
variable parameters must be minimized. This can be accom-
plished by analyzing several samples prepared under similar
conditions, but with different physical structures~i.e., the
determined optical constants of the materials are consistent
while the layer thicknesses are changed!.

A variable angle spectroscopic ellipsometric system based
on the rotating analyzer method was utilized to acquire the
experimentalc andD data over the 1.2–4.2 eV range~J. A.
Woollam Co., VASE®!.20 The c and D data thus obtained
were then analyzed using Levenberg-Marquardt algorithm
described earlier.

Once the indices of refraction and layer thicknesses for
SiOx and MnPt3 are determined, it is then possible to deter-
mine the Voigt parameter from the experimentaluk andhk .
The magneto-optic data were acquired using a home-built
instrument based on a photoelastic modulator~PEM!.21 The
PEM is a compensator with a time-varying phase retardation
and is used to rapidly oscillate, at 50 kHz, the polarization
state of the incident light. The accuracy of the system is
60.005° over the spectral range. The same sample model
used to analyze the ellipsometric data is used here to gener-
ate a predicted experimentaluk andhk . The same procedure
of using MSE and the Lavenberg-Marquardt algorithm as
described above is then applied to determine the intrinsic
magneto-optic Voigt parameter.

IV. RESULTS AND DISCUSSION

Figure 1 shows the layered structure for one MnPt3 film
sample. The ellipsometry measurements were then inter-
preted in terms of this model. The ellipsometry measure-
ments were made with light incident from both sides of the
film. In the case of light incident from the quartz substrate
side, multiple reflections were treated incoherently. For mea-
surements with the light incident from the SiOx side, the
values ofn andk determined for SiOx/Si were used as fixed
constants. Then andk values for the quartz substrate were
obtained from Ref. 22. The additional information provided
by reverse side measurements has been shown to reduce the

3096 55K. W. WIERMAN et al.



correlation between variable parameters.23 The variable pa-
rameters that are fitted are then andk of the MnPt3 layer and
the thickness of the SiOx layer.

Figure 2 shows the model fit to ellipsometric data ofc
andD for samples 1 and 2, with the SiOx layer fitted results
given in Table I. For both samples ellipsometric data fit well
to the derived optical constants. Figure 3 gives the experi-
mentally derivedn andk for SiOx and MnPt3. The real part
of the index of refraction for MnPt3 has a broad peak at 1.8
eV which is quite different than what is seen in bulk Pt and
Mn where a general decrease inn and k with decreasing
photon energy is shown in Ref. 22. Figure 4 shows the Kerr
rotation data at three different temperatures~95, 180, and
300 K!. There is a general monatomic decrease in the mag-
nitudes ofuk and hk with increasing temperature, and the
peak inhk between 1.5–2.0 eV decreases in magnitude with
increasing temperature. This spectral region corresponds to
the broad peak inn at 1.8 eV.

To present a qualitative understanding of the electronic
states involved in determining the magneto-optic properties
of MnPt3, the orbital magnetic quantum number (m) pro-
jected densities of states~DOS! for the spin-polarizedp and
d states of Mn and Pt are plotted in Fig. 5. These are the
states that primarily determine the Kerr rotation in this sys-
tem. It is interesting to note that Mn DOS shows an almost
half-metallic behavior in the spin-down state. Figure 5 also
shows that the unoccupied states consist primarily of a fairly
localized Mn minority band around 1.0 eV above the Fermi
energy (EF) and a corresponding Pt band in the same region
induced by the Mn band through hybridization. Thus the
Kerr rotation is determined mainly by the transitions from
the minority occupied states to the above-mentioned unoccu-
pied bands. A system has nonzero Kerr rotation if the dipole
matrix elements for the left-circularly-polarized light~Dm5
21! are different from those of the right-circularly-polarized
light ~Dm511!. This is possible when the projected DOS

FIG. 5. Spin-polarized Mn and Pt orbital-magnetic-quantum number (m) projected densities of states of MnPt3.
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for 1m is not equal to that of2m for a given orbital number
l in a ferromagnetic system. This condition is satisfied in
MnPt3 as can be seen from them-projected DOS in Fig. 5.

The real and imaginary parts of the diagonal component
of the dielectric tensor from experiment and theory are com-
pared in Fig. 6. The calculated results based on the inter- and
intraband~\/t50.5 eV,\g50.3 eV, and\vp55 eV! contri-
butions are in good agreement with the experimental data.
We will comment later on the structure in the experimental
data around 1.8 eV. Figure 7 shows the real and imaginary
parts of the off-diagonal component of the dielectric tensor.
The agreement is only fair in the sense that theory predicts
only the general trends in the experimental data. The theo-
retical results are shifted down in energy with respect to the
experimental data by approximately 0.5 eV, a result similar
to that found by Openeeret al.24 Openeeret al. also found
that this shift is not sensitive to the scaling of spin-orbit
interactions. The shift may be due to the failure of the local-
density theory~LDA ! to correctly predict the position of the
fairly localized unoccupied Mn band. The LDA underesti-
mates the position of similarly localized unoccupied 4f
bands in rare earths and 3d bands in insulating transition-
metal compounds~oxides, sulfides!.25,26This shortcoming of
LDA is not reflected in the diagonal tensor components~Fig.
5! because of their weak dependence on the energy in the
interband transition region. The off-diagonal components are
much more sensitive to the details of the electronic structure
than the diagonal components because the former depend on
the difference while the latter on the sum of the dipole matrix
elements of the left- and right-circularly-polarized light. Re-
garding the absence of the structure in the theoretical dielec-
tric tensor around 1.8 eV, the Drude model seems to be over-
estimating the intraband contribution as one goes to higher

energies. One can see from Fig. 6 that an upward shift in
energy of the theoretical curves by approximately 0.5 eV and
the above-mentioned modification of the intraband contribu-
tion will lead to a good agreement between the general shape
of the theoretical and experimental curves.

V. CONCLUSIONS

The complete complex dielectric tensor for MnPt3 has
been obtained by using a combination of ellipsometric and
magneto-optic techniques. The dielectric diagonal compo-
nents agree extremely well with theoretical calculations. The
agreement between the experiment and theory for the off-
diagonal component of the dielectric tensor is only fair. This
may be due to the limitations of the local-density approxi-
mation in electronic-structure calculations and the Drude
model for the intraband contributions. We plan to go beyond
the local-density approximation and find ways to include the
temperature effects on the magneto-optical properties in the
future.
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FIG. 6. Real and imaginary parts of«xx of MnPt3. Experimen-
tally derived values are given by open circles and squares, respec-
tively. Solid line gives the calculated results with interband contri-
butions only while the dashed line includes both interband and
intraband contributions,~\/t50.5 eV,\g50.3 eV, and\vp55 eV!.

FIG. 7. Real and imaginary parts of«xy of MnPt3. Experimen-
tally derived values for each temperatures are represented by 300 K
open square, 180 K open circle, and 95 K open triangle. Solid line
gives the calculated results with interband contributions only.
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