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Complex energy shift and background phase shift for simulated
electron-molecular shape resonances

G. A. Gallug
Department of Physics and Astronomy, University of Nebraska—Lincoln, Lincoln, Nebraska 68588-0111, USA
(Received 19 August 2004; published 17 February 2005

Feshbach-Fano resonance the@tRT) is used to determine the energy dependence of the complex energy
shift function, consisting of the real energy shift and the resonance width, and the background phase shift for
several simulated molecular shape resonances. Attention is paid to the way the choice of the quasibound state
(@BYS) function required in the FFRT affects these energy dependencies. An overlap criterion for choosing an
optimal QBS function is proposed. Using our treatment-buitylchloride, carbon tetrachloride, ethylene, and
benzene, we give numerical results for specific casels=af through 4. We find that the real energy shift
function does not vary greatly over the width of the resonance, although the magnitude of the shift can be fairly
large. We also find that the behavior of the background phase shift due to orthogonality scattering is sensitive
to the presence of long-range potentials.

DOI: 10.1103/PhysRevA.71.022710 PACS nuntber34.80.Bm, 34.80.Ht, 34.80.Gs

[. INTRODUCTION tion at energies near the resonance. This function, which
When low-energy electrons impinge on molecules, theNust be square-integrable, is usually viewed as representing
two most important inelastic processes are vibrational exci@ quasibound stat®BS) embedded in the continuum. The
tation (VE) and dissociative electron attachme(@EA). principal difficulty arises because there is no clear-cut crite-
Both of these involve transfer of electron kinetic energy torion for choosing this QBS function. Although exact results
the nuclei and, because of the disparate masses of electromfust be independent of the choice, real calculations with
and nuclei, such transfer was traditionally expected to bepproximations are usually not so fortunate, and one of our
small. Nevertheless, it does occur with considerable probyoais here is to examine how the normal approximations that
ability because of resonant processes due to the potentigl,s; he made in any practical calculation affect the results

energy of interaction between the electron and the molecule,  yeiy jikely differences from exact answers. This requires
Core excited resonances also occur and can produce VE and i - .
act results, and to facilitate obtaining such, we use spheri-

DEA, but these tend to appear at higher energies, and exci?[( . . :
for one instance we restrict the discussion in this article td-@ Piecewise constant potentials. Although real molecules
the shape resonance regime. never have spherically symmetric potentials, experiment
The discussion of nuclear motion in molecules typically Shows there are cases when resonance states are sufficiently
uses the Born-Oppenheimer or adiabatic approximation telosely approximated by a singlavave that our calculations
separate electronic and nuclear motion and to relate the elecan give a useful picture of their behavior.
tronic energy at fixed nuclear positions to the nuclear poten- Our potentials should have some similarity to real sys-
tial energy. When dealing with resonances, the electroniecems, and we use a potential with an arbitrary number of
state is decaying with a certain lifetime, and the resultingsegmentd5]. In this way, the effects of long-range forces
nuclear potential energy function is nonlocal and complexmay be included up to the limitations of the approximations.
Most treatments of these resonances have_ used the F_eshbaghuch piecewise spherical potentials may always be solved
Fano resonance proceduféFRP [1-4], which results in 2  analytically and the wave functions written in a finite number

Iifetim.e and an energy shift that are functions of th_e nucleapf terms. Nevertheless, for a potential of any considerable
coordinates and the total energy of the wave function. Thesg,mper of segments, such expressions would have little

quantities are important parys'of the nc_)nlpcal complex pme.”bractical utility. Therefore, most of our examples are worked
tial the nuclei react to, and it is the principal purpose of this

icle to analvze the exact scatterin lutions for simulat &ut and displayed in numerical form only. The exception is
article 1o analyze€ the exact scatlering solutions for simuiateg, study on the plane wave where the relatively simple form
potentials to gain further insight into how lifetimes and en-

ergy shifts vary with energy at a given nuclear geometryOf the analytical expressions has considerable informational

Thus, in this article we focus on the behavior of the eIec-Coment‘

tronic parts of the theory and do not directly address matters X€S0nant behavior of square-well potentials has been
of nuclear dynamics. studied beford6—10], with much of the emphasis on the

The FFRP must start with a choice for an approximate?€havior ofSmatrix poles. Our goal, however, is somewhat
representation of the inner part of the continuum wave funcdifferent—we are particularly interested in how the choice of
the quasibound resonant state affects the results of the calcu-
lation. For this reason, unlike some earlier studies, we focus
*Electronic address: ggallup@unlserve.unl.edu; on states of >0 where shape resonances produced by cen-

URL: http://physics.unl.edtiggallup/gallup.html trifugal barriers occur.
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Il. THEORY HP — sin(g, + 5), (11)

The FFRP has been described by a number of workers in
various forms[1-4,10-12, and although the details differ
somewhat, the basic theory is the same. It is assumed that the @ =kr— /2, (12)
system has a resonance that may be viewed as a @BS
bedded in the continuurthe inner part of the wave function
at energies near resonance, the QBS function itself, is synwhere (6") and (§)) are the phase shifts for the homoge-
bolized by|g) and is assumed normalizable. Separate frommeous and the background equations, respectivélis the
this and orthogonal to it, we have the background continuuntotal phase shift for the problem, of course. One sees here the

function, ¢ . These functions have the properties incongruous situation in which we find ourselves. In order to
formulate the problem of the nuclear motion in the Born-

(dagy=1, (1) Oppenheimer or adiabatic approximations, we need to ex-

press the electronic wave function in a resonance form. Sepa-

<q|¢,(b) (2) rating the description into resonance and background parts

requires us to solve the exact problem in the first place. Nev-
ertheless, the direct use of thﬁ matrix elements in the
nuclear problem appears difficult. Of course, if one is plan-
ning an approximate partly phenomenological treatment,
The matrix elements of the Hamiltonian for this basis are_ =" ¢ o quantities will be obtained using physical argu-
assumed to take the form

ments, and an exact solution is skirted.

Dl = S(E' —E) ok - k). &)

E’k’

(qH|g) = Eq» (4) The primary result of FFRP gives formulas for the width
and energy shift of the resonance. The width functioB) is
(clMl g = Vek, (5) givenby
$or IH| g ~E)ak' - k). (6) 4 -
I(E) = KalHI 4P (13)

Of course, Eq(6) does not imply thatbg is an eigen-

function of H. Rather, because of Eq®) and (5), we have
and the energy shift function is

b

(H-E)gor = (7)
Thus, d’g is a solution of an inhomogeneous Schrddinger AE) _ifoc I[\(E")dE' 14
equation. We now letG4(i",/)=(H-E)™! be the Green’s = o E-F

function with some specified asymptotic behavior, and the
function d)g may be written

(ol o
(b) _ (h)
be; [ -G¥q > (8)

Bk~ <Q|Ga|q> tar(éfres)) - r|(E)/2 (15)
where qsf:ﬁ is a solution to the homogeneous Schrodinger E-Ey—A(B)
equation, and\N must be adjusted so that E@®) is satisfied,
which requires thaN=coss. This phase shift will be de-
fined below. Equatior2) is clearly satisfied by the solution
of Eq. (8). If we introduce the projection operatofsand Q
such thatP+Q=I andQ=|g)(q|, one sees that

P(H - E)Pd)(b) 0, 9) 5fh): 5fb)+ 6fres). (16)

In terms of these quantities, the resonant phase shift is

where E;=(q|H|q) is the eigenvalue of the Hamiltonian in
the Q subspace. These results also imply

and it is a solution to the Schrddinger equation projected
onto theP space.

. Lo . . I1l. CALCULATIONAL PROCEDURE
We do not use the full three-dimensiorizk designations

in our considerations, since the actual potentials in the A. General considerations
Hamiltonians are spherical. Thus, ke basis version of Egs. -
(1)~(8) is used, and we may work within an individukl Domcke [10] has suggested a specific three-step proce-

subspace. Asymptotically, in this representation we have dure, practical with realistic systems, for applying the FFRP
to shape resonances in molecules. We show a “flow chart”

¢ — sin(g + oM), (100 that contains his recommended steps.
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Free Particle Final Solution

50 = 0 Full V — 50

Resonance '
Orthogonalize ) ) Orthogonalize
, interaction
! l
T

Orthogonalit

TS _ Y Background

scattering Ful V — 50

509

We label the stages in the diagram with a symbol for theregular solution. We also need the irregular solution, which
phase shift that exists at that point. we denotel;. These are arranged to have the asymptotic

(i) 89: This represents the free particle, which has noPenaviors

phase shiff(from itself).

(i) 8V: This represents the final solution, which has the
actual total phase shift. This is directly obtained from the
solution of the Schrddinger equation with the potental L t)

(iii) 6°9: This represents the free continuum orthogonal- é coder+ (Sf ), (20
ized to the QBS function chosen to represent the resonancg .o
This has been called the orthogonality scattering phase shift.

(iv) &®: This represents the background solution obtained
by solving the Schrédinger equation with the potental o =kr——.
under the orthogonality constraint. 2

g — sin(g + "), (19)

Using these symbols, Domcke’s suggestion is 8" in these is the total phase shift in chanhébr our sys-

8 509, 5 _, 50 tem. It is this quantity that we will be partitioning into a
background and resonant part. In terms of these solutions,
going around the bottom of the diagram. The reader is rethe standing-wave Green’s function is
ferred to Domcke’s discussion for a rationale to justify this
apparently roundabout procedure. 2
Since we consider single-particle potential scattering sys- G?(r,r’) =——h(ro)g(rs). (21
tems in this article, a slightly less circuitous process is sim- K

ler. This i ted by th t dded to the right
pler. This I represented by the extratep adde 0 e Nan s we shall see, once the specific form of the QBS function

'B; chosen, the width, energy shift, and background phase-
shift functions may all be written quite simply in terms of the
matrix element of this Green’s functiofg|Gl|q,) and the

the behavior of the exact resonance width, energy shift, an
background phase-shift functions for exactly solvable poten
tials, we may, in principle, proceed from the final solution to

the background function rather than using the opposite direc@veriap(a| ). . _
tion, which is Domcke'’s final step. We need now to orthogonalize the total solution to the

QBS function. The usual way to orthogonalize an arbitrary
_ function, ¢, to a given one is to use the Schmidt procedure,
B. Present mathematical procedure yielding ¢—q,(q| ¢) for a result. We must do this so that our

The total wave function must satisfy thiesubspace function is also a solution of
Schradinger equation,

P(H -E)P¢$=0, 22
(Hi—E)gr =0, 17) (H-BE)Po (22)
2 10+1 P=1-|gXal, (23
H| P ﬁ + 2r2 + V(r), (18)

and one accomplishes this with a simple generalization of the
and to carry out the separation we will need the Green’sSchmidt procedure. Considering any third function,lin-
function associated with Eq17) from which we obtain the early independent ob, we see that

022710-3
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TABLE |. Roots of j; Riccati-Bessel functions.
Root j1 j2 ja ia
1 4.49340946 5.76345920 6.98793200 8.18256145
7.72525184 9.09501133 10.41711855 11.70490715
PR IE) = 4_1( <Q||¢|>N¢)2 .
(gla) k\(alG¢la)

is properly orthogonal tg,. The Schmidt result occurs when
g=q,. We satisfy both of our requirements by usi@ to
constructg, and the result is

(ailw) } 24

<Q||G?|Q|>

whereN,, is a normalization constant defined below.
From the definition ofG?, we see that

b= Nd,{l/ﬂ - GJlay

2
G?|Q|>H—E§|<¢||Q|> (25
for larger, and

¢ — Nsin(g + %) -Kcodg + 8],  (26)

2(|a)?
=, 27
K(alGYa) 27
N,y= (14K, (28)

Furthermore, the well known formula for the resonant phase
shift is

I'(E)/2
E-Eq—A(E)’
and combining all of these results allows us to calculate the
energy shift simply as

tan g™ = - (37)

cogs"d
(qlGla)”

Bermanet al.[13] have emphasized the importance and con-
venience of determining\(E) without using a formula like
that of Eq.(14), which requires a knowledge &f(E) up to
high enough energies to converge. Our result has the same
convenience.

The peak of the resonance part of the cross section is near
an energyE,.s Wwhen§™®=m/2, i.e.,,E.is the root of the
equation

A(E)=E-Eq+ (39)

Eres— Eq —A(Ered =0, (39

and this root must be a simple zero. Using E(®8) and

whereK is the tangent of the angle that when subtracted39. we see that

from &Y gives 8. Therefore,

co$s™ |
(@lGflay e,

also. The numerator of this fraction has a quadratic zero at
E.es therefore the denominator must have a simple zero at
this energy, and we have the interesting result that

(A|GP(Eredla) =0,
which we discuss further in Sec. VI.

(40)

(41)

tan 89 = K, (29)
2 2
_ <lﬂ||(g|> , (30
k(a|G¢la)
Ng= cos&™, (3D
According to the usual prescriptions of the FFRP, one has
I'(E) = 27|V,J?, (32

(33)

2
V= '\/F(<QI|HI|¢>,
JE—

where \/(2/7K) is the factor required to “energy-normalize”
the function,¢. Because of the orthogonality,

(aiH||#) = (a[H, - E[#), (34)

<CI||'//|>N¢
=, 35
(|Gl (39

IV. THE QUASIBOUND STATE FUNCTIONS

For the segmented piecewise constant potentials we treat,
it is natural to follow earlier workers and, for thg) func-
tions, use Riccati-Bessel functions truncated at one of the
zeros. Table | gives the first two roots of the regular func-
tions forl=1 to 4. Thus, ifj;(7,) =0, 7,>0 is thenth root
corresponding to the function of order

Perhaps a word of caution is called for here. QBS func-
tions of this sort aré&?, but have a discontinuous first deriva-
tive, and the kinetic energy operator is not Hermitian in
mixed integrals between these and continuum functions. For
complete rigor, the function with the discontinuous first de-
rivative must be treated as the limit of one with an increas-
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ingly sharp exponential fall-off. The kinetic energy operator 2
then behaves correctly. Go=- EJ|(kF<)Y|(kr>), (47)

where the asymptotic specifications fprandy, are those of
V. MODEL CALCULATIONS Abramowitz and Stegufil4]. All of the integrations are fa-

The first system we treat is one with no potential, i.e., am|I|ar, being of Bessel function products. One obtains

free | wave. Considering the flow diagram, for this case @i [2 aj(B)
aly=-\—

=0, and the two columns represent the same pair of systems. ra?— K2’ (48)
Our example here is thus equivalent to the initial step in 0

Domcke's procedurd10] of using orthogonalized plane 2 423%5,(B)yi(B)

waves as the starting point of the FFRP treatment of more @Gy =55 - — 5, (49)
complicated systems. He has illustrated this withsamave a” -k Bla” =k

example. We give results for a genelalalue. o _
In addition to the treatment of the free particle, we show Gla) — = alipyi(kr)/k, (50)

results from calculations of several simple well and segs,heare B=kr,, We also note that the matrix element
mented potentials. These inclu@ga resonance analysis of a (q/G%q) gi\%n by Eq.(49) is not singular atk=a, but '
simple well parametrized to match the properties of a C—C ather ’ ’

o p-wave resonance(ii) a resonance analysis of a seg-
H H H H + ! ’

mer;ted potential parametrllzed to_fiupllcate the propertle_s of lim ([l = - 3+ 2arj| (arg)y, (arg)

the “T, p-wave resonance in CgI(iii) a resonance analysis g I 202 '

of a segmented potential parametrized to duplicate the prop- _ o _ _

erties of theszg d-wave resonance in £, and(iv) areso-  wherej| andy, are the derivative functions corresponding to

nance analysis of segmented potentials parametrized to dihe Bessel functions.

plicate the properties in gl of both the ’E,, f-wave After some simplification, one obtains

resonance and the hypothetical shape_part o_?ﬁg&g-\_/vave _ ) i (BB

resonance. The details of the potentials will be given with tan&® = — > o , (51
each example. K72 =12+ (BB B

We emphasize that the calculations we describe are madghich agrees with Domcke’s result for the cas® and aQ
with spherical potentials, and the states in such systems ha¥@ace of one function. Since the result of the resonance treat-

an actual degeneracy of £1. Nevertheless, when we asso- ment must be to return the phase shift to zero, we obviously
ciate a system with an actual molecule, we use the corregigye 59 =-5b).

degeneracy of the molecular state when giving results that The threshold law fos® is
depend upon that quantity. This refers principally to graphs

|
of cross sections in the following. 50 ~ - 2p™ (52)
(21 -1l +3)1°
A. The FFRP app“ed to a free partide and tané(b)ﬂo askE— . ThUS, depending Upon the quad'

rant we assume for the arctangent functiéf), varies from 0

As described in Sec. IV, th® space is based upon the to —7 or from 7r to 0. Previous workers have usually chosen

function the former alternative for the background phase shift. The
q(r) =Nj(ar), r<ro, (42)  rate at whichs'® approaches  varies withr, as predicted
by Wigner’s resulf15], limiting the derivative of the phase
0 ra<r (43) shift with respect tdk to values>-r,. Figure 1 shows this
no= for four cases andi=1.
- (44) We now change notation slightly and uaﬂéb) for our
a=mfo, normalized background function corresponding,tand we
now find that the resonance width for this systeljn is
/2
N = v/ —Yi(ary), (45) 4
SV I(E) = KalH|#)P, (53)
wherer is the radius of théq) function. There is, of course,
no reason inherent in this system for choosing a particular 4 cog8P(qylj)? 54
value ofry. Our Hamiltonian is simply KqlG%q)?
2
H=H = - &+ (46  Finally, using Eq(38) we obtain

2dr?2 = 2r?

It is now a straightforward calculation to determine the back- Here is where the non-Hermitian problem of the Hamiltonian
ground function from Eq{(8). We use the standing-wave arises for theb functions used. It will be seen thaybfb)|H||b>:o if
Green'’s function evaluated directly sinckl||b) is proportional to|b).
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0 T T T T
05 E
at o= § %\
a i
)
SERS 1 g
_ =3
B S
73 & J
2t ] &
5
= 4 &)
25 1 i
3 o= ]
0 L I L L N
1 2 3 4 5 6 7 8
3.5 1 1 ! L .
0 2 4 6 8 10 Radius (A)
Energy (eV)

FIG. 3. The centrifugal potential fdrvalues 1 to 4. The hori-
zontal dotted line is placed at 1.5 eV, and wells with radii outside
each crossing point will not have barriers above the “resonance
energy.”

FIG. 1. The variation of® with energy for a free electron for
four values ofrg (in A) and forl=1.

b)
ﬂ_ (55)  spectroscopfETS) method[16], which yields the negative
(a1 Gy of the first derivative of the total cross section with respect to

Figure 2 shows how several of these quantities vary witheEr9Y- The presence of a resonant peak in the total cross

electron energy for the special casergE3 A andI=1. It section g';'es a S|gn_a:_ure s]:[rucégreflrl} thedelsctron tr?(nsr_?rl]s-
may be noted in particular thét|G%q,) has one simple zero sion spectrum consisting ot a dip followed by a peak wi

. N . . ._increasing energy. Since one is determining the derivative of
in the range of the graph. This is in line with the discussion

leading up to Eq(41). We will discuss these results further the cross section, dip and peak extrema correspond to inflec-

in Sec. VI after we have examined systems with potentialstlon points. The experimental quantity of interest here is the

that support centrifuaal barrier shape resonances dip-to-peak energy separation, since, in simple cases, it is
PP 9 P ' closely related to the lifetime of the resonarida.our work,

B. Influence of well size on dip-to-peak separation however, we determine the resonance cross section and dif-
Eerentiate it to obtain the derivative curve and the dip-to-peak
paration directly.
Before starting to examine cases with particular param-
- eters, we wish to show how the radius of the well is related
to the dip-to-peak distance of the resonance produced, and
. since the shape resonances we discuss are the result of an-
gular momentum barriers, the height of the barrier for a
givenl is determined principally by the size of the system.
To show an example of the influence of this on dip-to-
peak separation, we somewhat arbitrarily choose an energy
of 1.5 eV/(this is reasonably typical of molecular shape reso-

A(E)=E-E4+

Most of the measurements of molecular resonances hav b
because of its sensitivity, used the electron transmissioR

Various

2For a narrow resonance, with essentially constant lifetime and
energy shift and not overlapped by others, the Breit-Wigner single
level formula may be used to represent the total cross section. Un-
der these circumstances, the cross seationay be written as

B (I'12)?
7 E(E-Ep2+ (T/2)7]

(56)

0 20 40 60 80 100 120 140 A straightforward calculation then shows that the dip and peak en-
Energy (eV) ergies are

FIG. 2. The graphs of several integrals, matrix elements, or T 2 )
phase shifts for,=3 A and|=1 for a free electron. The energies Eo+ 556 o5 " I' X O[(I'/Ep)7]. (57
; . . . V3 0
are all in eV, the phase shift is in radians, and the others are in a.u.
Only 8" is shown sinced™ is its negativeE, is also shown by a  Thus, through first order if/E,, the dip-to-peak separation is
vertical arrow. /3.
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1.6

0.934 | E
14
0.932 | E
12
0.930 | E

1.0
0.928 | E

Overlap

08
0.926 b
06
0924 b

Dip-to—peak separation (eV)

04

0922 | E
02

0.920 1 1 1 1 1
14 1.5 1.6 1.7 1.8 1.9 2.0

0 1 2 3 4 5 6 7 8 1o (A)
Well radius (A)

0.0

FIG. 6. The overlafgsquared criterion for the “best” QBS func-
FIG. 4. The dip-to-peak separations for 1.5 eV resonance antlon plotted vsrg for (CH3)3CCl andl =1.
different well radii and different values. The arrows show the radii o ) )
where the centrifugal barrier equals 1.5 ésee Fig. 3 C. An overlap criterion for choosing the QBS function
We now examine a simple square well and include se-
Qcted results of several calculations. As mentioned above,

function of the radius of the well. The depth of the well must, one of our goals IS to mvespga_te hO\.N one might .dete.rmme
of course, be varied here to produce such results. Figure \ghen a par.tlcullar QBS. fu.nct|c_>n IS Opt'm?" for the situation at
shows graphs of the centrifugal potential for values=f to hand. An intuitive criterion is to require a function Fhat

4 as a function of the distance from the origin. This showsmatChes most closely the inner part of the wave function at

that if the well radius is large enough, the centrifugal barriel! €N€rgy close to the cross-section peak, and we implement

height is less that our chosen resonance position. th|?f|n thﬁ foIIow[[ngtV\;ay. tioft K functior]
The results are shown in Fig. 4, and one sees that the we have a test functiort), an unknown functionx),

5 . ; .
width of the resonance peak, as measured by its dip-to-peaqlpd both arelL“ functions normalized to 1, calculating the

. : : ._averlap provides a simple test for how close they are to being
separation, shows the expected behavior as the barrier helg%éual. That is|ty=|x) if and only if (t|x)=1. Our problem is

decreases. We also see that this measure of the width contiﬁ_ g ) . ]

ues to increase smoothly for a short distance above the ba§1'91ht2Iy more complicated in that one of our functionf, is

rier, at least. The arrows in Fig. 4 show the radii at whichnOtL". Therefore, we proceed slightly differently.

each barrier is 1.5 eV, Let w(r) be a weight function that guarantees the conver-
The most noteworthy aspect of the results shown in Fig. £4€nce of our integral, and define the weighted mean-square

is that the dip-to-peak energy separation behaves qualitélifference between the two functions as

nance$ and calculate the dip-to-peak energy separation as

tively just as the threshold behavior of the spherical Bessel 2.5
function that is the inner portion of the solution for edc¢h 20l
. | -
ie.,r. w2
8 15F 4
— —— £ 10} _
8 8
% 05+ §es) 50 i
6 6 g 00
&
L q = — -
4 4 E 0.5
s £ -0t
_ 2 /\- 2 Nz % 0
< 0 0 = 2 A5 (E-EAB) eV ]
° Ll 1, 3 £ 20 -
T 25 .
-4 4 -4
3.0 e . .
%l 1 00 05 10 15 20 25 30 35 40
Energy (eV)
-8t {-8
00 05 10 15 20 25 30 35 40 FIG. 7. The three phase shift§®d, 5, and §® vs energy for
Energy (eV) the simple potential fofCH3);CCI. In order to guide the eye, a

dotted line atw/2 is drawn across the graph. In additidasEg
FIG. 5. The cross section and the negative of its derivative with-A(E) is plotted, and it crosses theaxis atEs where &9 also
respect to energy for the C—@I orbital of (CH;);CCl andI=1. intersects ther/2 line.
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FIG. 8. TheI'(E) and A(E) functions near the resonance peak
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30 35 40
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1.0 20

30 40 50 60 7.0 80
Energy (eV)

FIG. 10. The resonant and background phase shifts for the

for the (CH3);CCI potential. The vertical dotted line is added to (CHs)sCCl potential treated with a range of diffuse QBS functions.
The results are for four values of: a, 3.0;b, 5.0;c, 7.0;d, 9.0. All
of the distances are in As¥ is also shown for comparison.

guide the eye to the energy of the resonance maximum.

D= inf{f [b(r) - Cl//|(r)]2W(r)dr},

asC is varied. It is straightforward to show that requiribg
to be a minimum is equivalent to having a maximum in thebutyl chloride[17] shows a resonance in ETS around 1.86

guantity

IS

functions,(b|w|b)=(b|b)=1 and({b|w|)=(b|y;). We use this

criterion below.

(blw]i)?
(ilwlyn)

The obviously most simple/(r) function for our application

w(r)=S(ro—r),

< (b|w|b).

1000

40 T T T T
30 + I(E) E
20 + k
N
L
Es 10 E
&
= A/
TV
-10 F\ fAE) E
20 L L L .
0 200 400 600 800
Energy (eV)

FIG. 9. (CHg)3CCI. Thel'(E) andA(E) functions up to 1000 eV.

Otherwise, see the caption of Fig. 8.

(59

(60)

(58)

Some of the best examples among molecules of this case
arise with the alkyl chlorides. In particuldiCH3);CCl, tert-

D. An I=1 case

eV. This has been assigned to the C—lorbital and is
expected to be predominanthwave. The observed dip-to-

peak separation is 1.18 eV. The C—CI bond distance is near
1.85 A, and in order to simulate such a situation we choose a

spherical well of radius 1.0 A, a little larger than half the

actual internuclear distance. If the potential in the well is

taken as—33.0 eV, we arrive at @-wave resonance peak at

1.85 eV, close to the experimental value. The corresponding
theoretical dip-to-peak separation of 0.89 eV ido+dE is
somewhat smaller than the experimental separation. In light
whereS(x) is the unit step function. For the truncated QBS Of the results shown in Fig. 4 and the discussion leading up
to it, we would expect to be able to make the theoretical

Energy (¢V)

10.0

8.0
6.0
4.0

2.0

0.0

20 FTTR <

40
6.0
80 |

-10.0
0.0

1.0 20 30 40 50 60 70 80

Energy (eV)

FIG. 11. The lifetimes and energy shifts for tf@H;);CCl po-

tential treated with a range of diffuse QBS functions. The results are
for four values ofry: a, 3.0;b, 5.0;c, 7.0;d, 9.0. All of the distances

are in A.
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TABLE Il. Model potential for CC}.

C bond Cl Polarizability tail

0.¢7 0.4 1.2 2.2 4.15 6.1 10.0 A
-61.0 —35.8 —126.49 —0.27193 —0.05825 —0.00806 0.0 eV

0.4 1.2 2.2 4.15 6.1 10.0 o A

4n each column of the table the first line gives the left boundaries of a segment, the second line gives the
energy of a segment, and the third line gives the right boundaries of a segment.

dip-to-peak separation match the experimental value. Thisrtheless, the dip-to-peak distance of 0.89 eV given above is
would require an increase of the well radius by approxi-slightly less than half of the resonance width produced by the
mately 0.3 A. Such a match should not actually be expectedsFRP for these parameters. Since the energy shift formula in
since the present theoretical treatment makes no provisiothe form of Eq.(14) involves an integral over all energies,
for the “Franck-Condon widthT18] contribution. Our cur- we plotI" andA to higher energies in Fig. 9 as an indication
rent selection of the well size is expected to yield qualita-of how such integrals might converge.
tively correct results. The cross section and its energy deriva-
tive are shown in Fig. 5. E. More diffuse QBS functions: The dependence upomg
Choosing the energy 1.85 eV at the peak of the cross
section, we plot in Fig. 6 the “overlap” criterion of EG9)
as a function of the, of the QBS function. The maximum i
atry=1.6852 A, and we use this value for the remainder o
}2; e:ta Ezle&]z;gi#‘rsrg ?ﬁ;u%yeﬂgls Sitg:jf Sigug'g%gfthvih?gﬁ consistent-field calpulations_for mole(_:ules. It has been dis-
shows that there is a great deal of similarity between the tw .overed that the virtual orbital energies from such calcula-

functions where they are both defined. For this QBS funciions can be used to guide the assignment of resonances to
; _ ' electronic states of the molecules involving particular anti-
tion, E;=10.881 eV.

Figure 7 shows how the three phase shifts vary with enponding orbitals{19]. Using Koopmans' theorerf20], the

ergy in the vicinity of the cross-section peak. We see that th inual orblta_l ener?:es fré)m thes]e (I‘al_cﬁulatlonls corre_s_por|1d to
background phase shift is small for the parameters we ar €Eq quantity we have been calculating partly empirica

using. The actual slope the curve would have if plotted ver-SC"jIling procedur¢21] has also been suggested that is de-

sus k is —0.613 bohr, which is considerably above the signed to compensate for the fact thab) as well ask,

Wigner limit of —3.18 bohr corresponding to the radius of must be known for a successful comparison of theory with
the QBS function. experiment for temporary negative ions.

- . . To work, the Hartree-Fock treatments for molecules must
We finish this example now by showing tH&E) and S . _ .
A(E) functions for the potential. These are given for low be carried out with basis sets that are not too diffuse. When

energies in Fig. 8. The values at the resonance peak a?ene is dealing with atable negative igrthe standard injunc-

= _ . on that “the bigger the basis, the better” certainly stands.
I'(Ered =1.974 eV andi(Erd =—9.011 eV. It is seen that the With temporary negative ions, however, large basis sets with

energy shift is almost constant at this energy and the W'dﬂpnany diffuse functions merely exhibit variational collapse of

function changes little over the width of the resonance. Nev-the virtual orbital energies, and the corresponding orbitals

R — show little relation to the inner part of the resonant wave
function being sought.Unfortunately, over the years a num-
ber of studies have appeared in which this error has occurred.
In spite of its inappropriateness, such a collapsed energy or-
bital could still be used in the FFRP, and it is important to
see how such overdiffuse functions behave when that proce-
dure is applied. To show this, we have calculated results for
this simple well for the four values of,: 3.0, 5.0, 7.0, and
800 | ; 9.0 A. The corresponding values Bf, are 6.68, 2.90, 1.53,
and 0.94 eV, respectivelyCompare with the 10.88 eV value

During the past 25 years, a number of computational
s packages for molecular structure calculations have become
1available. These typically use Gaussian orbital basis sets and
IIypically will carry out ab initio Hartree-Fock self-

0.0

-20.0

o >
Carbon
Bonds
Polarization

Potential Energy (eV)

-1000 f E above from the optimum,.) The resonant and background
2 phase shifts are shown in Fig. 10, and the computed lifetime
-1200 ) . N .
and energy shift values are in Fig. 11.
1400 o
00 05 10 15 20 25 30 35 40

rd) 3As an alternative to using Koopmans' theorem, the total energy
of the negative ion may be directly determined.
FIG. 12. The inner portion of the potential used for the calcula- “*Another method for dealing with this problem is the stabilization
tions on CCJ. procedurg22,23.
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o I(E
150 3 2t -
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100 g 0
~— 50 -
) o 3 .
g g ~ 2} 4
S 5 >
g 0 0 5 ° N
@ 14 o 4
8 50 § g
O -50 E 2 6l J
{-10073
2
=]
-100 © L F g
-150%" 8
. oy -10 | .
-150 -200
AE)
00 05 10 15 20 25 30 35 40
Energy (eV) 12 2 L N
0.0 10 2.0 3.0 40 5.0
FIG. 13. The cross section in the 1 channel and the negative Energy (V)
of its first derivative for CGJ. A vertical dotted line is drawn at the
cross-section maximum. FIG. 15. The graphs of (E) and A(E) for the T, resonance of

CCl, at lower energies. A vertical dotted line is drawn at the cross-

. . . section maximum.
Using these more diffuse functions cauggdo decrease,

principally because the kinetic energy of the electron is in-
versely proportional to the square nf. At the same time,
however, the resonant phase shift deviates more strong

The outer “surface” of the molecule is set at 2.2 A. ¢ClI
as threer, orbitals that are linear combinations of C—Cl

onding orbitals, and ETS measurements have found a shape

from the t.otal phase shift, and, COnsgquentIy, the backgrounlggnance close to 1.0 eV that has been assigned to the three
phase shift becomes larger in magnitude. TGE) andA(E) T combinations of the C—Cl antibondirig”) orbitals. The

functions also develop much more structure at lower energiegctuau relative values of the inner part of the potential of

asry increases. Except for the behavior i, these other  rapje || were based upon a spherical average of the calcu-
changes are undesirable. lated electric potential of CGlbut the depths were modified

empirically so that there are two triply degenerate bound

F. A simulated potential for CCl, states ofl=1 symmetry and a shape resonance with cross

section peaking at 1.0 eV. This is consistent with Koopmans’

C_a_lrb_on tetrachloride, CQ.;“S a tetrahedral molec_ule In I1ts theorem calculations of th€, QBS, which show two radial
equilibrium geometry and is the closest to spherical of our

examples. The equilibrium C—Cl distance is close to 1.8 Anodes. The bound states representTthénear combinations

It has a long-range polarization tail produced by a static |Oo--Olc the four C—Clo bonding orbitals and four of the non-

larizability of 75.6 boh# [24]. In this case, we use for our bonding orbitals on CIl. Figure 13 shows the cross section

simulated potential one with the seven constant se men%nd its derivative. The dip-to-peak separation is 0.824 eV.
P 9 The QBS for the resonance analysis, which in this case

g:\étetgd'r:nTé?le 1”2 The inner portion of the potential is also must be made orthogonal to the lower states, is arranged to
P 9. 12 have two radial nodes and terminatesrg&2.91 A. This

3.5 r r r r 40 r r r r r 400
3r 1 30 300 %
g %
g T e | 20t 200 B
& 2
g 2 - < 5
5 nf2 <10 | 100
gg 15 F ] .g 'g
5 5© g0 0 £
-§ 1 h 2 2
L E - - 10 -100 g
§ 05 [E-E-AB)] eV &10 00 g
= [
2 o 20} 200 5
2 2
8§ .05 . !
£ -30 3002

-1
§® —40 . L L . L _400
15 . , A . 00 05 10 L5 20 25 30
0.0 1.0 2.0 3.0 4.0 50 Energy (eV)

Energy (eV)
FIG. 16. The cross section and the negative of its first derivative
FIG. 14. The phase shifts for thg, resonance in CGl The  for the 2Blg resonance of gH,. A vertical dotted line is drawn at
energy differencé&e—E,—A(E) is also shown. the cross-section maximum.
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TABLE lll. Model potential for GH,.

Bond C

Polarizability tail

0.0°
—54.29
0.33

0.33
—73.65
1.0

1.0
—0.7836
2.5

2.5
—0.04898
5.0

5.0 10.0
—0.00306 0.0
10.0 %o

angstrom
eV
angstrom

aSee footnote “a” in Table II.

S(t)
S(reS)

2 e

8(b)

Phase shifts and energy(eV)

[E-E;-A(B)] eV L

3 1 1 L 1 1
0.0 0.5 1.0 15 2.0 2.5 3.0

Energy (eV)

FIG. 17. Various phase shifts and the energy differelaeds,
—-A(E) for the 2B1g resonance of gH, as a function of energy. A
vertical dotted line is drawn at the cross-section maximum.

0 I'(E)
21 i
4} i
T 6} ]
3
Eos| -
53]
210 F i
12 F i
A(E)
-14 -_\\-
_16 1 1 L I 1 1 L
00 05 10 15 20 25 30 35 40
Energy (eV)

FIG. 18. Thel'(E) andA(E) functions for theZB1g resonance of

value maximizes the overlap with the scattering wave func-
tion at 1 eV and gives a value of 0.950, which shows a
reasonable match. The phase shifts are shown in Fig. 14
along with the quantitfg-E,—A(E). The expectation value

of the energy for the projected QBS function [,
=12.616 eV. Figure 15 shows(E) andA(E) at lower ener-
gies. The behavior of these two functions at high energy is
qualitatively the same as that of our previdusl calcula-
tions and, consequently, is not shown.

G. A simulated potential for Co,H,

Ethylene, GH,, is the simplest of the olefins and has a
single low-energy resonance that has been measured by ETS
[25]. From the vibrational structure, the 0-0 peak of the reso-
nance was found to be at 1.55 eV and the electronic state has
been assigned to%‘islg symmetry.(see Fig. 16 The leading
| value in this case is 2. The C—C internuclear separation is
close to 1.34 A. The segmented potential used is shown in
Table Ill. We include a polarizability tail corresponding to an
average polarizability of 28.69 bohi24]. The potential has
been adjusted to give a resonance at the experimental value,
and results in a calculated dip-to-peak separation of 0.067
eV. With ETS, the effects of vibration prevent a reliable de-
termination of an experimental separation based purely upon
the electronic lifetime.

Following our earlier procedure, we maximized the over-
lap of the QBS function with the exact wave function at 1.55
eV and obtain a cutoff position of 1.37 A with an overlap of
0.982 76, which indicates a good match between the func-
tions. For this QBS functionfE,=15.65 eV. We show the
various phase shifts in Fig. 17. Unlike our earlierl calcu-
lations, the background phase shift?, does not start out in
a negative direction immediately et 0, but, rather, it takes
on very small positive values at first. For larger values,of
not shown on the graph, it becomes negative and heads to-
ward -, as it must.

The values of the lifetime and energy shift functions are
shown in Fig. 18I'(E) is here clearly within its threshold
region andA(E) is close to constant over the region around
the resonance.

H. Simulated potentials for CgHg

We finish with an illustration of a spherical potential with
parameters based upon the physical properties of benzene,
CgHe. Treating benzene as spherical will certainly be more
approximate than it was for Cglbut atl=3 and 4, GHg has
two of the highestl-value shape resonances known. The

C,H,. A vertical dotted line is drawn at the cross-section maximum.€lectron transmission spectrum was determined by Sanche
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TABLE IV. Model potential f0r2E2u CgHg resonance. 150 |
10000 %‘
Center C Polarizability tail 100 £ %
8
0.0° 11 18 3.85 5.9 100 A < sof 008
0.0 —40.2 -0.32770 —0.05942 -0.00720 0.0 eV E §
11 18 385 5.9 10.0 o A g ° ° s
2 2
®See footnote “a” in Table Il S -s0 £
-5000 g
£
and Schulz[26]. The upperg-wave resonance is generally -l $
believed to be a mixed shape-core excited state, but calcula- sl I

tions indicate that a QBS function predominately of the

. 098 099 1.00 1.01 1.02 1.03 104 105 1.06
shape sorf=80%) is reasonablé.

Energy (eV)

1. The?E,, resonance FIG. 19. The cross section and the negative of its first derivative

In thi h ial i Ve B for the °E,, resonance of gHg. A vertical dotted line is drawn at
n this case, the potential Is set to give Bwave reso- . ~ross-section maximum.

nance around 1 eV, and the values are given in Table IV.
Benzene has an average polarizability of 67.5 bqBe],

and a region of the potential is adjusted to reflect this value. 35 : :

Figure 19 shows the cross section and the negative of its ¥

derivative. The dip-to-peak separation is only 0.006 eV. Such N i 3 1

a small number suggests that the electronic lifetime in the § 25| 1

actual molecule probably is also affected by inelastic pro- & 2 | i

cesses. In addition, the measurements show significant vibra- “;0 T2

tional structure that obscures an estimate of the electronic g 57 )

lifetime. s 1} ]
When we consider the FFRP, we find the optimum QBS B oosh i

function to have an overlap witty of 0.987 31, which shows 8

a high match. The cutoff radius is 2.35 A, and the corre- f:; 0 &

sponding energy i&;=6.99 eV. In this case, the background & wos) _

phase shift is very small and is negligible in the range of the B [E-E-AE)] eV

resonance. As is the case withHg, & is slightly positive T |

in the neighborhood of 1.0 eV, but it takes on the expected -L5 o 0'5 1 1'5 5

behavior of heading towardat energies above those on
the graph. The various phase shifts are shown in Fig. 20, and

the I'(E) and A(E) functions are shown in Fig. 21. FIG. 20. The phase shifts and the energy difference foffhg
resonance of gHs.

Energy (eV)

2. The B, resonance

In this case, we set the potential to produceg-avave 1 : : : : : :
resonance at the place where a pure shape resonance, un- I'E)
mixed with any core excited component, might hypotheti- 0
cally occur in benzene. It is shown in Table V. The center of
the resonance is=6.0 eV and the dip-to-peak separation is Lr 7

0.17 eV. The cross section and the negative of its derivative
are shown in Fig. 22.

When we consider the FFRP, we find the optimum QBS
function to have an overlap witly of 0.987 26, which again
shows a high match. The cutoff radius is now 2.27 A, and the
corresponding energy i&;=13.760 eV. The various phase
shifts are shown in Fig. 23. Again, the background shows a ST ]
lower energy region of small positive values before heading AE |
to its —7 destiny. Finally, the values df(E) andA(E) for the W
resonance are shown in Fig. 24. Clearly, even at 6.0 eV and 7 ! ! . . . .
with the relatively large size of the molecule, théE) func- 00 05 1.0 15 20 25 30 35 40
tion is still well in the threshold region. Energy (eV)

Cross section (A)
&

- FIG. 21. The width and energy shift functions for fﬂ'ﬁzu reso-
®Unpublished calculations. nance of GHe.
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TABLE V. Model potential l‘orszgJ CgHg resonance.

Center C Polarizability tail
0.08 1.1 1.8 3.85 5.9 10.0 A
-5.0 -51.1 —0.32770 —0.05942 —0.00720 0.0 eV
1.1 1.8 3.85 5.9 10.0 © A

aSee footnote “a” in Table II.

VI. DISCUSSION gested above, a two-segment QBS function can be con-
structed with a regular Bessel function piece from the origin
We have illustrated electronic resonant scattering behavout to a fixed radius with an exponentially decreasing seg-
ior with a number of examples. Although physical data fromment(provided by a modified Bessel functipaffixed so that
several actual molecules were used in contriving the potenthe function is smooth at the breaking point rather than
tials, actual comparison with experimental data is precludegnerely continuous. The oscillations Fi{E) occur as much in
by the the fact that our examples treat only elastic scatteringhat case as they do with the sort of function used in the
in the electronic state, with no effects due to nuclear motiorgpgoyve examples. It is, however, fairly straightforward to
or inelasticity. Nevertheless, several interesting points conshow that the oscillations do disappear if functions of the
cerning the behavior of the electronic state have been uncoy+1 exp(—ar) sort are used to represent the QBS functions.
ered. Of course, exponential functions are known to be very
First we take note of the fact that, for all of the potentials gmgoth.
shown here, the value af(E) is relatively constant in the  The oscillations are affected only slightly by the sharp
region up to and past the resonance. Energy shift functionsreaks in the potentials as seen by their presence in the
determined for other systems tend to show behavior crossinglane-wave example. The segmented potentials do appear to
into the positive region at lower energig®7], whereI'(E)  make the oscillations somewhat irregular at low energies.
functions determined from electronic structure and scattering |n our examples that demonstrate behavior Iforl, we
calculations have been fit empirically to exponential func-find that the background phase shift is quite close to zero at
tions. This suggests that olifE) functions have, in general, the low energies we have investigated. This fact suggests that
a slower fall-off with higher energies than do those deter-igher| values will be easier to deal with in semiempirical
mined from more realistic potential§See, particularly, Ref. considerations, since it is unlikely that background phase
[13].) At present, we can only conjecture that the step funcshifts must be dealt with. Fdr 1, however, it can be sizable.
tion nature of our potentials may be involved. We have pointed out thai” for I>1 has a substantial
The I'(E) function in these examples oscillates throughregion of small positive values at low energy before it be-
positive values for all energies. It is well known that seg-comes negative. Even for CCandl=1, close examination
mented potentials like those we use can sometimes produggiows that there is a very short region of positive excursion.
what might be considered spurious oscillatory behavior inThis disappears when a QBS function is used that is too
quantum-mechanical calculations. With these examples, thgiffuse. These positive excursions appear to be due to the
oscillations are more the result of the form of the QBS func-simulated long-range polarization tail on the potentials. The
tion used here than of the nature of the potentials. As sugsimple well example of Sec. V D does not show it.

10 , . 40 6 T T : :
{305
30«:& 8 4r 50
< 5
L { 2
’ . % 2t gn [ 8 |
) . : /
g 8 g 0
£ 5 @ O
g 0 0 % % 5®
o
2 2 g ol i
3 5
=Sr 20 G 4 -
=1 Q
B ] [E-E,-AE)] eV
1-302 £ 4
z 6} .
-10 . . —40
5.0 5.5 6.0 6.5 7.0 8 L L . .
Energy (eV) 0.0 2.0 4.0 6.0 8.0 10.0
FIG. 22. The cross section and the negative of its first derivative Energy (eV)
for the 2B2g resonance of gHg. A vertical dotted line is drawn at FIG. 23. The phase shifts and the energy difference fo?lﬂg&
the cross-section maximum. resonance of gHg.
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2 y - - lations, since an orthogonalization to the bound-state func-
1t / tions was required for that system. Thus it is not constrained
0 T'(E) to be zero forr>r, as other cases are. Nevertheless, the
projected function still has a discontinuous first derivative at
-1r T ro, and the qualitative nature of the phase shifts and (i
2t - andA(E) functions is seen to be similar to the results in other
3 sl i cases.
2 In many molecules, the resonances result from antibond-
g AT i ing orbitals that are restricted to a fractional portion of the
S5+ 1 molecule. These calculations suggest that, in those reso-
6| _ nances where there is also a dominkewmtlue, there should
L AB) | b_e relations similar_to those shov_vn in Fig. 4 bef[ween the
\ dip-to-peak separation and the size of that portion of the
8 ] molecule supporting the potential that gives the resonance.
9 L : : Many resonances, however, are not expected to have domi-
0 2 4 6 8 10 nantl values.
Energy (V) Finally, we make a more mathematical observation. Re-

FIG. 24. The width function and the energy shift for t‘r’Bazg turning to Eg. (41), the root of the matrix element,
resonance of gHg. A vertical dotted line is drawn at the cross- (q|Gy(E)|q), has an interesting interpretation if we use the

section maximum. spectral representation of the Green’s function,
Although the background phase shift can be small, none 2|z/f(‘)><</f(‘>|dE’
of our examples indicate that the energy shift is small for the Go(E) = KE-E) ' (61)

optimum QBS determined using our criterion, and the size of
this quantity depends strongly upon thgvalue taken for " N2
|g). In Sec. V E, where we discuss the application to our (G (E)|q>:f 2|(bly")PdE (62)
t-butylchloride potential of several QBS functions with 0 7k(E-E') °
larger ry values, one sees that several undesirable features
develop when using functions that are too diffuse. These inThus the square of the overlap divided bgnd weighted by
clude maxima and minima iR(E) andA(E) as well as reso- the reciprocal ofE—E’ may be thought to have equal areas
nant phase shifts that are very different from the total phasen either side ok, with, however, the correct recognition
shift, and background phase shifts that are very differenof the fact that the integral is the Cauchy principal value of
from zero. Therefore, one concludes that the description othe integrand.
resonance processes is likely to be complicated to a consid-
erable extent by using a QBS function that is too diffuse. ACKNOWLEDGMENTS
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