September 1992

GAS PHASE INTERSTITIAL MODIFICATION OF RARE-EARTH INTERMETALLICS

J.M.D. Coey
Trinity College, Dublin, Ireland

Ralph Skomski
University of Nebraska-Lincoln, rskomski2@unl.edu

S. Wirth
Trinity College, Dublin, Ireland

Follow this and additional works at: https://digitalcommons.unl.edu/physicsskomski

Part of the Physics Commons

https://digitalcommons.unl.edu/physicsskomski/1

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ralph Skomski Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
GAS PHASE INTERSTITIAL MODIFICATION OF RARE-EARTH INTERMETALLICS

J.M.D. Coey, R. Skomski, and S. Wirth

Department of Pure and Applied Physics, Trinity College, Dublin 2, Ireland

Abstract - The gas phase interstitial modification of rare-earth intermetallics is studied. Net reaction energies for nitrogen in Sm$_2$Fe$_{17}$ and Nd(Fe$_{11}$Ti) are $U_0 = -57$ kJ/mole and $U_0 = -51$ kJ/mole, respectively. The equilibrium nitrogen concentration is calculated as function of temperature and gas pressure using a simple lattice gas model.

For nitrogen in Sm$_2$Fe$_{17}$, refined diffusion parameters $D_0(N) = 1.02$ mm2/s and $E_a(N) = 133$ kJ/mole, determined by thermophoresic analysis of the initial stage of nitrogen absorption, are used to calculate nitrogen profiles and the time dependence of the mean nitrogen content during nitrogenation. Similar values are obtained for nitrogen in Nd(Fe$_{11}$Ti), whereas the activation energies for hydrogen in Sm$_2$Fe$_{17}$ and Nd(Fe$_{11}$Ti) are 31 kJ/mole and 45 kJ/mole, respectively.

The elastic stress and strain profiles during nitrogenation are calculated. Important results are a large uniaxial strain near the surface of non-uniformly nitrided particles, and core expansion even in the absence of any nitrogen there. Curie temperature and K_1 profiles are calculated and suggestions are made regarding the influence of stress on coercivity and disproportionation of the material.

INTRODUCTION

Since the discovery that nitrogen can be introduced into Sm$_2$Fe$_{17}$ from the gas to form new interstitial nitrides Sm$_2$Fe$_{17}$N$_3$-6 with useful hard magnetic properties [1], extensive studies of the structure, intrinsic magnetic properties, hysteresis and electronic structure of 2:17 nitrides have been published [1-9].

Nitrogen typically occupies octahedral interstitial sites in these compounds, coordinated by two rare-earth and four iron atoms. In Sm$_2$Fe$_{17}$, the interstitial site is the 9e site shown in Fig. 1, and the ideal composition is Sm$_2$Fe$_{17}$N$_3$. The nitride has the same crystal symmetry as the parent compound (space group R3m), but the unit cell volume is expanded by about 6%. Usually, the 9e sites are not fully occupied, hence the practice of writing the formula as Sm$_2$Fe$_{17}$N$_3$-6.

Gas-phase nitrogenation has been extended to other structural families of rare-earth intermetallics, e.g. R(Fe$_{11}$Ti)N. Carbon can equally well be introduced by gas phase reaction using hydrocarbon gas [2].

From the point of view of iron magnetization, the dramatic effect of the interstitial atoms is a large increase in Curie temperature (from 389 K to 749 K for Sm$_2$Fe$_{17}$N$_3$-6), due to the dilation of the lattice. Additionally, the interstitial

Fig.1. Crystal structure of Sm$_2$Fe$_{17}$N$_3$. Sm occupies 6c sites, N occupies 9e sites, and the other sites are occupied by Fe.

Received February 17, 1992
Interaction between interstitial atoms

A key question is whether the quasi-equilibrium nitride is a simple gas-solid solution with continuous range of intermediate nitrogen contents or a two-phase mixture of nitrogen-poor α-Sm$_2$Fe$_{17}N_y$ and nitrogen-rich β-Sm$_2$Fe$_{17}N_y$ phases.

There are two energies involved: the net reaction energy U_0 and the interatomic long-range interaction U_1. Phase segregation occurs below a critical temperature T_c and is due to attractive interaction U_1 caused by the lattice deformation around the interstitial atoms [13]. Below T_c the attractive interaction dominates and the interstitial atoms form macroscopic clusters, which shape the thermodynamic and magnetic properties of the nitride (Fig. 2). To avoid the coexistence of easy-plane α and easy-axis β phases, nitrogenation has to be carried out above T_c. Quenching may be used to fix the nitrogen distribution.

THE GAS-SOLID REACTION

Interaction between interstitial atoms

Then we present and discuss the diffusion parameters E_a and D_0 for the diffusion of nitrogen and hydrogen in Sm$_2$Fe$_{17}$ and Nd(Fe$_{17}$T). The values for nitrogen are used to calculate nitrogen concentration profiles and the time dependence of the mean nitrogen content during nitrogenation.

Finally, we discuss the influence of the inhomogeneous nitrogen concentration, and the corresponding mechanical stress and strain profiles, on the magnetic properties of the nitride.

![Fig. 3. (113) X-ray diffraction lines for different Sm$_2$Fe$_{17}N_y$ samples. From right to left: pure Sm$_2$Fe$_{17}$, nitrogenated at 500 °C and 13 mbar, nitrogenated at 500 °C and 1 bar.](image)

At present, all available definitive experiments indicate a low T_c so that Sm$_2$Fe$_{17}N_y$ is a gas-solid solution at typical nitrogenation temperatures [10]. In particular it is possible to prepare samples with intermediate lattice parameters which are typical for gas-solid solutions. The intermediate X-ray diffraction peak in Fig. 3. was obtained at 500 °C and corresponds to the nominal composition Sm$_2$Fe$_{17}N_y$ with $y = 1.8$. Note that long-time annealing (87 h at 300 °C) does not change the situation. At temperatures below 300 °C the nitrogen diffusivity is too low to get definitive information within reasonable measuring times.

The interatomic interaction U_1 is proportional to the concentration of the interstitial atoms in the lattice and to the square of the lattice expansion $\Delta \gamma$ per interstitial atom [13]. Table 1 shows that $\Delta \gamma$ for nitrogen is larger than for hydrogen. On the other hand, comparing the nominal compositions of Sm$_2$Fe$_{17}N_3$ and the classical gas-solid system palladium hydride PdH with $T_c = 565$ K [11] there are more than six times fewer gas atoms per metal atom in the nitride. A T_c estimation for Sm$_2$Fe$_{17}N_y$ which takes into account this dilution effect yields a value of about room temperature [12].

We now neglect the interatomic interaction and model the Sm$_2$Fe$_{17}N_y$ system as an ideal gas-solid solution with U_0 negative and $U_1 = 0$.

Equilibrium nitrogen concentrations

The solubility of gases in metals is determined by two factors. One one hand, the gas tends to occupy interstitial sites if they are energetically favourable, i.e. if $U_0 < 0$. On the other hand, thermal activation tends to create disorder in the gas-solid system. In the extreme high temperature limit, $kT \gg U_0$, this dominates the binding interaction and the solubility approaches a low, energy-independent value when

![Fig. 2. Schematic phase diagram for Sm$_2$Fe$_{17}N_y$. Below T_c two phases can be distinguished.](image)
all phase space configurations have the same probability.

Nitrogen in R₂Fe₁₇ shows a large solubility even at moderately elevated temperatures. At 500 °C and 1 bar nitrogen pressure the majority of octahedral sites are occupied [1,3], which indicates a strong gas-metal binding.

To investigate the gas-solid reactions

\[\frac{1}{2} y \text{Z}_2[\text{g}] + \text{R}_2\text{Fe}_{17}[\text{s}] \leftrightarrow \text{R}_2\text{Fe}_{17}\text{Z}_2[\text{s}] \]

and

\[\frac{1}{2} y \text{Z}_2[\text{g}] + \text{R(Fe}_{11}\text{Ti)}[\text{s}] \leftrightarrow \text{R(Fe}_{11}\text{Ti)}\text{N}_y[\text{s}] \]

a lattice-gas model is used, which consists of a solid with \(n \) octahedral sites in contact with a large but constant volume of gas \(V \) divided into \(N_0 = V/V_0 \) cubic cells [Fig. 4]. \(V_0 \) is the cube of the atomic diameter of molecular nitrogen, 1.33 Å. The partition function for the corresponding gas-solid equilibrium can be calculated, yielding the equation of state

\[c_0 = \left(1 + \sqrt{\frac{\delta k T}{V_0^3}} e^{U_0/kT}\right)^{-1} \]

(1)

with being \(c_0 \) the number of nitrogen atoms per interstitial site. Details of the calculation are given in [10]. Note that Eq. (1) was used to predict the position of the intermediate peak in Fig. 3.

The values \(U_0 = -57 \pm 5 \text{ kJ/mole} \) and \(U_0 = -51 \pm 10 \text{ kJ/mole} \) for Sm₂Fe₁₇ and Nd(Fe₁₁Ti), respectively, were derived from long-time isothermal absorption experiments, using Eq. (1). For hydrogen in Y₂Fe₁₇ (octahedral interstices) an energy of \(U_0 = -35 \pm 15 \text{ kJ/mole} \) is obtained. Typical \(c_0(T,p) \) curves for nitrogen in Sm₂Fe₁₇ calculated from Eq. (1) are shown in Fig. 5. The experimentally accessible zone where equilibrium can be achieved without disproportionation within a reasonable time is shown by the black box. These curves can serve as guide for preparing nitrides of a desired composition.

The energy balance

The net reaction energy \(U_0 \) consists of three parts: the energies which are necessary to dissociate the gas molecules and to expand the lattice, and the energy gain due to the gas-lattice interaction.

The simplest approximation which can be made in order to explain binding energy and lattice expansion is to treat the metallic nitride as free electron gas. Assuming a positively charged ion core \(Z^+ \) with radius \(R_c \) in a pure electron region with radius \(R \), the quasi-equilibrium ground state energy \(U \) can be calculated in lowest order perturbation theory. Minimization of \(U \) with respect to \(R \) yields a lattice...
conmlled by

Nibogen

particles strongly
diffusion of the interstitial atoms in the intermetallic

Below about

OC

affhity between interstitial atoms and metals atoms is

reactivity (electronegativity) of the interstitial atoms is

which leads
to large,
radius

wb
-le for small atoms with moderate electronegativity.

sufficiently smng.
yields
the
an

tachment

exactly
higher order energy contributions due

very
interaction yield large energy contributions which

diflkul~

dispqortionation

intmtices. In any

picm

cntc~u

intamctallic

charactet of the gas-metal binding

"me"

an

expansion

TABU1

PER INTERSTITIAL SITE

<table>
<thead>
<tr>
<th>System</th>
<th>R_C [Å]</th>
<th>Ω_o [Å³]</th>
<th>Δv [Å³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sm_2Fe_17N_y</td>
<td>0.55</td>
<td>4.88</td>
<td>6.3</td>
</tr>
<tr>
<td>Sm_2Fe_17C_y</td>
<td>0.60</td>
<td>5.30</td>
<td>7.3</td>
</tr>
<tr>
<td>Sm_2Fe_17H_y</td>
<td>0.00</td>
<td>2.67</td>
<td>3.0</td>
</tr>
</tbody>
</table>

From hydrogen in metals [11], which generally shows
an expansion Δv = 2.9 Å³, the rule is known that the ionic
character of the gas-metal binding increases with hydrogen
content and difference in electronegativity. Transferring this
picture to the 2-17 and 1-12 nitrides, a certain delocalized,
"metallic" character of the binding might be expected due to
the comparatively low concentration of the octahedral
interstices. In any case, the binding between nitrogen and the
intermetallic lattice is energetically less favourable than
disproportionation of the lattice and the formation of ionic
rare-earth nitrides, which represent the real ground state.

The calculation of the net reaction energy E_0 itself is
very difficult. Nitrogen dissociation and gas-lattice exchange
interaction yield large energy contributions which are not
exactly known and more or less cancel each other. Hence
higher order energy contributions due to electrostatic
attraction or lattice expansion can tip the scales.

As a rule, gas-phase interstitial modification is
possible for small atoms with moderate electronegativity.
Large atoms require much energy to deform the lattice around
the interstices. This energy can be provided, if the chemical
affinity between interstitial atoms and metals atoms is
sufficiently strong. A corresponding crude estimation [12]
yields the gas-solid reaction condition

\[χ_Z > 1.6 + R_A(Z) [Å] \]

(2)

where χ_Z and R_A(Z) are the electronegativity and the covalent
radius of the interstitial atoms, respectively. However, if the
reactivity (electronegativity) of the interstitial atoms is too
large, the gas-solid system immediately approaches its stable
equilibrium state. An example is the reaction with oxygen,
which leads to the disproportionation of the intermetallic
lattice and to the formation of Sm_2O_3.

DIFFUSION OF INTERSTITIAL ATOMS
IN Sm_2Fe_17N_y AND Nd(Fe_11Ti)

Nitrogen profiles

At typical nitrogenation temperatures of 400 °C - 600
°C the gas-solid reaction time is determined by the bulk
diffusion of the interstitial atoms in the intermetallic lattice.
Below about 360 °C the surface reactivity of the metallic
particles strongly decreases, and the nitrogenation time is
controlled by the nitrogen flux through the particle surface.

Neglecting grain-boundary diffusion in large particles
and anisotropic diffusion, nitrogen profiles for typical
nitrogenation temperatures are found by solving the diffusion
equation

\[\frac{∂c}{∂t} = D \nabla^2 c \]

(3)

subject to the boundary condition c(r_0,t) = c_0 at the particle
surface.

In systems with U_1 = 0 the chemical diffusion constant D is independent of the concentration [14], and for
spherical particles the boundary value problem Eq. (3) can be
solved analytically [15]. Some typical nitrogen profiles are
shown in Fig. 6. Note that apparently well-nitrogenated
grains of Sm_2Fe_17N_2.3 consist of a shell with y = 3 and
small core with y = 1 only. The reaction time which is
necessary to obtain well-nitrogenated particles can be
estimated using Fig. 7 [10].

In the case of 2-17 and 1-12 carbides the diffusion
constants can be estimated indirectly. Gas-phase carbonation
is usually conducted under conditions that are typical for
nitrogenation [2]. Hence the diffusion constants of nitrogen
and carbon in the must be comparable. Note that nitrogen and
carbon atoms have about the same atomic size, and often
show comparable diffusivities in metals [11].

Experimental determination of the diffusion constants

To describe the temperature dependence of the diffusion
constant the Arrhenius equation

\[D = D_0 e^{-E_a/kT} \]

is used. Since the short-term absorption of nitrogen is
actually independent of particle-shape, we have used
short-time thermopiezic analysis (TPA) measurements to determine

![Fig. 7. Approximate nitrogenation time for spherical grains as function of particle radius R and temperature.](image)
E_a and D_0. The Arrhenius plot Fig. 8. yields an activation energy of 133 ± 10 kJ/mole for nitrogen in Sm$_2$Fe$_{17}$. The magnitude of D_0 is given by the measured value $1.02 \cdot 10^{-6}$ m2/s. For nitrogen in Nd(Fe$_{11}$Ti) values of $E_a = 158 \pm 15$ kJ/mole and $D_0 = 6.5 \cdot 10^{-6}$ m2/s are obtained.

In the case of hydrogen the accessible temperature window is smaller, which limits the exactness of the results. The measured values are $E_a = 31 \pm 10$ kJ/mole and $D_0 = 4.4 \cdot 10^{-7}$ m2/s for Sm$_2$Fe$_{17}$, and $E_a = 45 \pm 15$ kJ/mole and $D_0 = 5.8 \cdot 10^{-7}$ m2/s for Nd(Fe$_{11}$Ti), respectively.

The activation energies of hydrogen and nitrogen in Sm$_2$Fe$_{17}$ and Nd(Fe$_{11}$Ti) are rather large, but can nevertheless be regarded as typical for interstitial diffusion in metals [11].

D_0 should be of order a^2v_0 where a is the jump distance in the diffusion process, and v_0 is an attempt frequency [11,15]. The estimation $a \approx 3$ Å and $v_0 \approx 10^{13}$ s$^{-1}$ yields $D_0 \approx 1 \cdot 10^{-6}$ m2/s. D_0 values significantly smaller than 1 mm2/s correspond to a negative activation entropy, which is physically unreasonable in the present context.

MAGNETIC PROPERTIES

Stress and strain

Inhomogeneous nitrogen profiles cause inhomogeneous mechanical stress and strain profiles, which influences the magnetic properties of the nitride. The nitrogenated outer shell cannot expand freely because it is connected to the un-nitrogenated core. The elastic stress and strain profiles for given nitrogen profiles can be calculated minimizing the elastic energy. For isotropic and coherent lattices which obey Hooke's law, stress and strain profiles can be obtained for spherical and oblate particles [10,12].

Fig. 9. shows the local volume expansion ($\Delta V/V$) and the radial expansion for a spherical particle of Sm$_2$Fe$_{17}$N$_{1.6}$. Two striking results are (i) the expansion of the core even in the absence of any nitrogen there, and (ii) the large radial strain near the surface which exceeds the lattice expansion of a fully nitrogenated grain by about 50%.

The strong uniaxial deformation near the surface is likely to intensify the disproportionation of the material into α-iron and SmN which destroys coercivity [10]. A possible way to avoid this surface disproportionation is to begin the nitrogenation at a sufficiently low temperature.

Curie temperature

The large Curie temperature increase of the nitrides and carbides is mainly due to the expansion of the intermetallic lattice [1,6]. In homogeneously nitrogenated grains the lattice expansion can be interpreted as dependent on the local nitrogen concentration. However, in the inhomogeneous case this dependence is modified by the macroscopic strain. Fig. 8. shows strain and nitrogen profiles of a partly nitrogenated grain with practically no nitrogen at the centre, but significant lattice expansion $\Delta V/V=1.1\%$.

Taking into account the nearly linear dependence of the Curie temperature on the lattice expansion, Fig. 9. gives
the Curie temperature at the core of the particle as function of y. An important consequence of the core expansion is the existence of regions with elevated Curie temperature but negative \(K_1 \), the "soft centre" problem.

Anisotropy and coercivity

The maximum coercivity of a particle depends on the anisotropy constant \(K_1 \). For pure \(\text{Sm}_2\text{Fe}_{17} \), \(K_1 \) is negative (easy plane) but as nitrogen enters the 9e sites it creates a strong electric field gradient at the Sm 4f shell. The crystal-field coefficients, \(A_{20} \) in particular, are modified and \(K_1 \) increases. The grain centre is a critical region, because so long as \(K_1 \) remains negative there it will act as a nucleation centre for reverse domains, and hence destroy coercivity. The dependence of \(K_1(r=0) \) on \(y \) is given in Fig. 10. Only particles with \(y > 2 \) can be expected to yield any appreciable coercivity.

CONCLUSIONS

We have obtained an equation of state, which is used to calculate the equilibrium nitrogen content as a function of pressure and temperature. Net reaction energies for nitrogen and hydrogen in 2-17 and 1-12 intermetallic compounds are derived and discussed. The volume expansion per atom can be explained using a free electron model.

Nitrogen and hydrogen diffusion in \(\text{Sm}_2\text{Fe}_{17} \) and \(\text{Nd(Fe}_{11}\text{Ti)} \) has been examined, and values of \(D_0 \) and \(E_a \) are derived. The values \(D_0 = 1.02 \text{ mm}^2/\text{s} \) and \(E_a = 133 \text{ kJ/mole} \) for nitrogen in \(\text{Sm}_2\text{Fe}_{17} \) have been used to calculate nitrogen concentration profiles and nitrogenation curves.

Stress and strain in inhomogeneously nitrogenated grains have been investigated. Large uniaxial strain near the particle surface is predicted and there is a likely influence of this excess strain on the disproportionation of the nitride and its coercivity.

In the initial stage of nitrogenation, stress and strain lead to an expanded particle centre with increased Curie temperature but negative \(K_1 \). This "soft centre", which is found in particles with average nitrogen contents as high as \(y = 2 \), acts as a nucleation centre and destroys coercivity [16].

ACKNOWLEDGMENTS

This work forms part of the 'Concerted European Action on Magnets'. It was supported by the BRITE/EURAM Programme of the European Commission.

REFERENCES

[8] Y.P. Li, Hong-Shuo Li, and J.M.D. Coey, phys. stat. sol. (b) 166 (1991)K107
[16] R. Skomski et al., to be published