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The Exact Distribution of the Multilook Magnitude
Saralees Nadarajah and Samuel Kotz

Abstract—Gierull provides a statistical analysis of multilook
synthetic aperture radar interferograms. Various expressions for
the probability density function, cumulative distribution function,
and the moments of associated statistics are derived. It appears,
however, that most of these expressions are based on some approx-
imation. In this letter, the corresponding expressions are derived
in their exact form, including some elementary representations for
certain expressions given by Gierull. A numerical comparison of
the exact and approximate expressions is provided.

Index Terms—Appell function, Gauss hypergeometric function,
interferogram’s phase, multilook magnitude, synthetic aperture
radar (SAR) interferograms.

I. INTRODUCTION

G IERULL [1] examines the statistics of the phase and
magnitude of multilook synthetic aperture radar (SAR)

interferograms toward deployment of along-track interferome-
try (ATI) for slow ground moving-target indication (GMTI) and
derives various expressions for the probability density function
(pdf), cumulative distribution function (cdf), and the moments
of the statistics. Most of these expressions are based on certain
approximations, whereas others involve nonstandard functions
such as the Gauss hypergeometric function, which is defined as

2F1(a, b; c;x) =
∞∑

k=0

(a)k(b)k

(c)k

xk

k!
(1)

where (e)k = e(e+ 1) · · · (e+ k − 1) denotes the ascending
factorial. The parameters a, b, c, and x control the nature of the
infinite series in (1). The series terminates if a or b is equal to
a negative integer or to zero. For c = −n (n = 0, 1, . . .), the
series is indeterminate if neither a nor b is equal to −m (where
m < n and m is a natural number). The series in (1) converges
in the unit circle |x| < 1 and has a branch point at x = 1. The
following conditions apply for convergence on the unit circle.
If 0 ≤ a+ b− c < 1, then the series converges throughout the
entire unit circle except at the point x = 1. If a+ b− c < 0,
then the series converges absolutely throughout the entire circle.
If a+ b− c ≥ 1, then the series diverges on the entire unit
circle. Numerical routines for the computation of (1) are widely
available in packages such as Matlab, Maple, and Mathematica.

In this letter, we show that one can actually derive exact
expressions and that some of the expressions given in terms
of nonstandard functions can be reduced to elementary forms.
The outline is given as follows. In Section II, we derive an
elementary expression for the marginal pdf of interferogram’s
phase (compare with [1, eq. (4)], which involves the Gauss
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hypergeometric function). In Section III, an exact expression
for the pdf of the multilook magnitude is derived (compare
with [1, eq. (11)], which provides an approximate form). In
Section IV, an exact expression for the cdf of the multi-
look magnitude is derived (compare with [1, eq. (21)], which
provides an approximate form involving the Gauss hyperge-
ometric function). In Section V, we derive exact formulas
for the moments of the multilook magnitude (compare with
[1, eqs. (12) and (19)], which provide some approximate
forms). Finally, in Section VI, we illustrate a numerical com-
parison of the exact and approximate formulas for the moments
of the multilook magnitude.

II. MARGINAL PDF OF INTERFEROGRAM’S PHASE

The joint pdf of interferogram’s magnitude (E) and phase
(Ψ) is given as [1, eq. (3)]

fε,Ψ(η, ψ) =
2nn+1ηn

πΓ(n)(1 − ρ2)
exp(−pη)Kn−1(cη) (2)

where p = −2nρ cosψ/(1 − ρ2), c = 2n/(1 − ρ2), ρ is the
complex correlation coefficient, n is the number of looks, Γ(·)
denotes the gamma function, andKn−1(·) denotes the modified
Bessel function of the third kind of order n− 1. Usually, one
defines

Kν(x) =
π {I−ν(x) − Iν(x)}

2 sin(νπ)
(3)

(when ν is an integer, the right-hand side should be interpreted
as a limit), where Iν(·) denotes the modified Bessel function of
the first kind defined as

Iν(x) =
xν

2νΓ(ν + 1)

∞∑
k=0

1
(ν + 1)kk!

(
x2

4

)k

.

Integrating (2) with respect to the magnitude η, one obtains

fΨ(ψ) =
2nn+1

πΓ(n)(1 − ρ2)

∞∫
0

ηn exp(−pη)Kn−1(cη)dη

=
nn+1c1−nΓ(2n)√

πΓ(n)ρ2(1 − ρ2)2nΓ(n+ 3/2)

× 2F1

(
1,

3
2
;n+

3
2
; 1 − c2

p2

)
(4)

for |1 − c2/p2| < 1, which follows by using [2, eq. (2.16.6.3)].
Using [3, eqs. (7.3.1.1), (7.3.1.9), (7.3.1.127), (7.3.2.83)],

1545-598X/$20.00 © 2006 IEEE



488 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 4, OCTOBER 2006

the hypergeometric term in (4) can be simplified to the
elementary form

2F1

(
1,

3
2
;n+

3
2
;x

)

=
(−n− 1/2)n(x− 1)n−1

(1/2 − n)nxn

×
[
− 1 + nx−1/2arc tanh(

√
x) +

n∑
k=2

(−1)k−1

(
n

k

)

×
{

(2k−3)!!x−1/2

2(2k−2)!!
ln

1+
√
x

1−√
x

+
k−1∑
l=1

alx
l−1(x−1)−l

}]

(5)

where x = 1 − c2/p2(|x| < 1) and

al =
(2k − 3)!!(l − 1)

2k−l(k − 1)!

k−1∑
j=l

(−1)l−j

(
k − 1
j

)
(2j − 2l − 1)!!

(2j − 1)!!
.

Here, (2m)!! = 2mm! and (2m+ 1)!! = 2m+1π−1/2Γ(m+
3/2) with the convention that (0)!! = 1. Combining (4) and
(5) yields an elementary expression for the marginal pdf of
interferogram’s phase (compare with [1, eq. (4)]).

III. PDF OF MULTILOOK MAGNITUDE

Multilook magnitude is defined by the random variable
Z = wE , where w and E are independent random variables
specified by the pdfs

fW (w) =
νµ

Γ(µ)
w−µ−1 exp

(
− ν

w

)
(6)

(for w > 0) and

fε(η) =
4nn+1ηn

Γ(n)(1 − ρ2)
I0(bη)Kn−1(cη) (7)

(for η > 0), respectively, where b = 2nρ/(1 − ρ2), µ > 0 de-
notes the degrees of freedom and ν > 0 is a shape parameter.
Gierull [1] provides an approximate formula for the pdf of Z
[1, eq. (11)]. Here, we derive an expression for the pdf of Z.
First, we write

fZ(z) =

∞∫
0

1
w
fW (w)fE

( z
w

)
dw

=
4nn+1znνµ

Γ(µ)Γ(n)(1 − ρ2)

×
∞∫

0

w−n−µ−2 exp
(
− ν

w

)
I0

(
bz

w

)
Kn−1

(cz
w

)
dw

=
4nn+1znνµ

Γ(µ)Γ(n)(1 − ρ2)

×
∞∫

0

xn+µ exp(−νx)I0(bzx)Kn−1(czx)dx (8)

which follows after substituting x = 1/w. Using the definition
in (3), one can reexpress (8) as

fZ(z)

=
2πnn+1znνµ{I(n+µ+1, ν, bz, cz)−J(n+µ+1, ν, bz, cz)}

Γ(µ)Γ(n)(1 − ρ2) sin((n− 1)π)

(9)

where

I(α, p, b, c) =

∞∫
0

xα−1 exp(−px)I0(bx)I1−n(cx)dx

J(α, p, b, c) =

∞∫
0

xα−1 exp(−px)I0(bx)In−1(cx)dx.

Application of [2, eq. (2.15.20.2)] shows that one can calculate

I(α, p, b, c) =
c1−nΓ(α+1 − n)

21−npα+1−nΓ(2−n)
F4

×
(
α+1−n

2
,
α+2−n

2
; 1, 2−n;

b2

p2
,
c2

p2

)
(10)

J(α, p, b, c) =
cn−1Γ(α+ n− 1)
2n−1pα+n−1Γ(n)

F4

×
(
α+ n− 1

2
,
α+ n

2
; 1, n;

b2

p2
,
c2

p2

)
(11)

where F4 denotes the Appell function of the fourth kind
defined as

F4(a, b; c, c′; z, ξ) =
∞∑

k=0

∞∑
l=0

(a)k+l(b)k+lz
kξl

(c)k(c′)lk!l!
.

Combining (9), (10), and (11), one obtains an exact expres-
sion for the pdf of Z in terms of the Appell function. The
Appell functions are well known, and numerical routines for
their exact computation are available in packages such as
Mathematica.

IV. CDF OF MULTILOOK MAGNITUDE

Here, we derive an exact formula for the cdf of Z (compare
with the approximate formula given by [1, eq. (21)]). Noting
that Z = wE , where w and E are independent random variables
specified by (6) and (7), respectively, one can write

FZ(z) =

∞∫
0

FW

(
z

η

)
fε(η)dη. (12)

Because W is a reciprocal of a chi-square random variable, one
has [4, Ch. 18]

FW (w) = exp
(
− ν

w

) µ−1∑
k=0

1
k!

( ν
w

)k

. (13)
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Substituting (13) into (12), one obtains

FZ(z) =
4nn+1

Γ(n) (1 − ρ2)

µ−1∑
k=0

1
k!

(ν
z

)k

×
∞∫

0

ηn+k exp
(
−νη
z

)
I0(bη)Kn−1(cη)dη. (14)

The integral in (14) is of the same form as that in (8). Thus, (14)
can be simplified to

FZ(z) =
2πnn+1

Γ(n)(1 − ρ2) sin((n− 1)π)

µ−1∑
k=0

1
k!

(ν
z

)k

×
{
I

(
n+ k + 1,

ν

z
, b, c

)
− J

(
n+ k + 1,

ν

z
, b, c

)}

where I(·) and J(·) are given by (10) and (11), respectively.
Hence, one obtains an exact expression for the cdf of Z in terms
of the Appell function of the fourth kind.

V. MOMENTS OF MULTILOOK MAGNITUDE

Because Z = wE and w and E are independent random vari-
ables, the rth moment of Z is simply E(Zr) = E(wr)E(Er).
It is well known that the rth moment of a reciprocal of a chi-
square random variable is given as [4, Ch. 18]

E(W r) =
νrΓ(µ− r)

Γ(µ)
. (15)

The rth moment of E can be calculated as

E(εr)=
4nn+1

Γ(n)(1 − ρ2)

∞∫
0

ηn+rI0

(
2nρη
1 − ρ2

)
Kn−1

(
2nη

1 − ρ2

)
dη

=

(
1 − ρ2

)n+r

nrΓ(n)
Γ

(
n+

r

2

)
Γ

(
1 +

r

2

)

× 2F1

(
n+

r

2
, 1 +

r

2
; 1; ρ2

)
(16)

for |ρ| < 1, which follows by using [2, eq. (2.16.28.1)]. Com-
bining (15) and (16), one obtains the rth moment of Z as

E(Zr) =
νr(1 − ρ2)n+rΓ(µ− r)

nrΓ(n)Γ(µ)
Γ

(
n+

r

2

)
Γ

(
1 +

r

2

)

× 2F1

(
n+

r

2
, 1 +

r

2
; 1; ρ2

)

for |ρ| < 1 and r ≥ 1 (compare with [1, eq. (12)]). In particular,
the first two moments of Z are

E(Z)=
√
πν(1 − ρ2)n+1

2nΓ(n)(µ− 1)
Γ

(
n+

1
2

)
2F1

(
n+

1
2
,
3
2
; 1; ρ2

)
(17)

Fig. 1. Comparison of the exact (17) and the approximate (19) expres-
sions for E(Z). It is assumed that n = 2, µ = 5, ν = 3, and ρ = −0.99,
−0.98, . . . , 0.99.

Fig. 2. Comparison of the exact (18) and the approximate (20) expres-
sions for E(Z2). It is assumed that n = 2, µ = 5, ν = 3, and ρ = −0.99,
−0.98, . . . , 0.99.

and

E(Z2) =
ν2(1 + nρ2)

n(µ− 1)(µ− 2)
(18)

respectively (compare with [1, eq. (19)]), for |ρ| < 1.

VI. NUMERICAL COMPARISON

Here, we provide a numerical comparison of the exact ex-
pressions previously derived with the approximate ones dis-
cussed in [1]. Specifically, we compare the moment expressions
in (17) and (18) with

m1 =
B(n+ 1, ν − 1)

γB(n, ν)
(19)

m2 =
B(n+ 2, ν − 2)
γ2B(n, ν)

(20)

where γ = 2n/(µ(1 + ρ)) and B(a, b) = Γ(a)Γ(b)/Γ(a+ b),
which are the corresponding approximate expressions given
in [1]. The numerical comparisons of (17) versus (19) and of
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(18) versus (20) are shown in Figs. 1 and 2, respectively. It is
clear that there is a substantial difference between the exact and
approximate expressions.

VII. CONCLUSION

We have derived explicit expressions for the pdf, cdf, and
the moments of multilook magnitude as well as an elementary
expression for the marginal pdf of interferogram’s phase. We
have also provided a numerical comparison of these expressions
with the approximate ones suggested by Gierull [1]. We expect

that these new results will be of use with respect to modeling
SAR interferograms.
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