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 In beef cattle productions systems, feed costs accounts for the majority of 

production costs.  In year-round grazing systems, knowledge of diet quality is important 

for supplement formulation and predicting animal response in order to meet production 

goals without increasing feeding costs.  The objectives of these two trials were: to 

develop a set of feed standards to use in in vitro laboratory procedures to estimate in vivo 

digestibility of forages,  determine the effect of moisture, day, and grazing level on diet 

quality, and  develop prediction equations to estimate diet quality using the variables 

moisture, day and grazing level.  Trial 1 used 8 crossbred yearling steers to determine in 

vivo digestibility of 5 chopped hays (Malf, Ialf, Mbrome, Ibrome, and prairie).  Feces, 

feed, and feed refusals were analyzed for DM, OM, CP, NDF, IVDMD and protein 

fractions.  Feed samples were included in 21 separate IVDMD runs and regressed against 

the in vivo digestibilities.  As hay digestibility increased DMI increased (P<0.01).  Slopes 

of the 21 regression equations did not differ; however, there were differences between the 

individual IVDMD runs.  In vivo and in vitro digestibilities were correlated and the 

average for all 21 runs was r = 0.831.  In trial 2, diet samples were collected using 

esophageally-fistulated cows from pastures varying in grazing pressure from May 2003 

through November of 2005 in the Nebraska Sandhills.  Diet samples were analyzed for 

CP, IVOMD, NDF, and protein fraction.  In Vitro OMD was adjusted to in vivo 

digestibility using the regression equations generated from the hay standards within each 

run.  Diet digestibility and CP were used in a series of multiple regression equations to 



 

 

predicted diet quality using the variables moisture, day and grazing pressure.  Diets were 

higher in CP and OMD during the growing season and remained constant during the 

dormant season.  Predicted digestibility and protein were correlated to observed values.   
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Introduction 

 There are approximately 4.5 million ha of Sandhills in the state of Nebraska 

which is more than 25% the land surface area in Nebraska.  This region is located above 

the largest aquifer in North America known as the Ogallala Aquifer.  The 4.5 million ha 

are primarily dominated with native, warm and cool season grasses(USDA - Census 

Agriculture; Nebraska Agricultural Statistics, 1997).  This vast and unique resource gives 

Nebraska the opportunity and capacity for turning low protein and high cell wall forages 

into high quality protein (beef) for human consumption.  In Nebraska, the state’s 

economy depends on the beef cattle industry as it is the single largest industry in the state 

with 1.97 million head of beef cows and 4.85 million head of fed cattle (USDA - Census 

Agriculture; Nebraska Agricultural Statistics, 1997).  These numbers make Nebraska the 

number 2 beef producing state in the US.  Four counties in Nebraska are ranked in the top 

10 US counties, holding the top three positions in the US for the number of beef cows 

(Cherry County-number 1, Holt County-number 2, Custer County-number 3, and Lincoln 

County-number 10) (USDA - Census Agriculture; Nebraska Agricultural Statistics, 

1997).  All of these counties are located in the Sandhills and depend heavily on the native 

grasses as feed resource.  Proper management of the natural resources is important in the 

sustainability of the cattle industry in the state and the sustainability of Nebraska. 

 When formulating rations and supplements for grazing livestock it is important to 

know the protein and energy of the forage they are consuming.  It is difficult to determine 

the energy and diet that grazing animals consume because forage quality is in general 
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constantly changing throughout the year and from year to year.  It is also difficult to 

quantify diets consumed and the total intake of the animal.  With over 200 plant species 

growing in the Sandhills, all of which differ individually in nutrient content, availability, 

and palatability, knowing exactly which plants and how much are consumed through out 

the grazing periods is difficult.  When using the NRC models for diet formulation 

knowing accurate CP and TDN values is critical to formulating diets that supply enough 

nutrients to the animal to maintain production without supplying too much (Lardy et al., 

2004; Patterson et al., 2006).  Over supplementation of grazing livestock can be 

financially costly to the producer especially when the cost of energy and protein feeds are 

high.    

 

Literature Review 

Diet Sampling 

 Obtaining accurate diet samples from grazing cattle can be challenging, especially 

in mixed grass prairies were the cattle can select not only different plant parts but 

different plants in different proportions.  Different methods have been established to 

estimate diet chemical and botanical composition.  These include hand clipping, hand 

plucking, and animals fitted with fistulas (esophageal and rumen).  There has been some 

debate and concern over which method more accurately samples the grazing animals’ 

actual diet.  

 Using live animals for diet collection allows for researchers to account for animal 

selection of specific plants or plant parts, whereas hand-clipping or plucking samples 
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may not account for what the animal actually consumes in a natural setting.  Hand-

clipping or plucking techniques have advantages of eliminating the use of animals which 

reduces cost, labor, and care of those animals.  Little equipment is needed for clipping or 

plucking, and it is easy to obtain a sample.  Clipping large numbers of quadrats require 

large amounts of labor and time.   

 The use of esophageally fistulated animals is not a new technique.  This technique 

has been reported as early as the late 1800's by Claude Bernard (Bernard 1855 sited by 

Van Dyne and Torell, 1964) and Pavlov (Pavlov 1887 sited by Van Dyne & Torell, 

1964).  Surgical procedures have been reported in mature animals by several researchers 

(Van Dyne and Torell, 1964 and  Bishop and Forseth, 1970).  Adams et al. (1991) 

discussed successful surgical establishment in suckling calves.  Surgical procedures have 

been altered over the past 100 years in order to reduce stress to the animal and improve 

the success rate.  Success is not only safe and harmless establishment in the animal, it is 

also measured in the ability to utilize the animal to collect representative samples.  Torell 

(1956) tested methods for successful esophageal fistula surgery and collection of 

consumed forages.  Success rates have been estimated to be at least 90%  (Van Dyne and 

Torell, 1964).  Animal longevity has been reported to be more than 4 years (sheep) and 

greater than 6 years (cattle) (Langlands, 1969; Grings et al., 1995).  Another method for 

collecting diet samples is using ruminally fistulated animals.  This method for collecting 

a diet sample also allows for use of an actual animal, however, as opposed to hand 

clipping or plucking, it is very labor and time extensive as compared to esophageal 

fistulated collections.  Rumen contents must be evacuated, safely stored while out of the 
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rumen, and replaced in a reasonable amount of time.  Exposure to temperature outside the 

animals’ body temperature, oxygen, and sun light can have detrimental effects on the 

rumen microbes.  The use of ruminally fistulated animals also limits the number of 

collections which can be performed within a short amount of time, and they may not be 

suited for cold, open, winter range conditions.  There is also the possibility of decreased 

selectivity due to an empty rumen (Olson et al., 1991). 

 Olson (1991) evaluated different collection techniques in steers which were fitted 

with both esophageal and rumen fistula.  Grazing diets were collected using 3 different 

procedures (rumenally, esophageally with rumen evacuation, esophageally without rumen 

evacuation).  Chemical variables of diets indicated no differences between any of the 

sampling procedures suggesting that empty rumens did not affect diet selectivity.  No 

difference between ruminal or esophageal samples suggests that researchers can use 

either to obtain diet samples with confidence that diet chemical variables are not 

impacted.   Olson concluded that choice of collection method using live animal models 

should not be based on rumen evacuation decreasing selectivity and altering dietary 

chemical variables.  It should however be based on resources and labor availability.  Diet 

collection through the use of rumen fistulation has several management disadvantages as 

compared to esophageal fistulas (Olson, 1991).  These disadvantages include time and 

labor evacuating and cleaning the rumen, limited number of times an animal can be used 

within a week or day, unsuitable for cold, open winter ranges, potential decreased diet 

selectivity due to an empty rumen, difficulty in determining size of sample while grazing, 

and potential microbial contamination (if rumen is not properly cleaned).   
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 Olson et al. (1991) showed that there were no differences in diet nutrient content 

in samples collected from rumen fistula and esophageal fistulas (with and without rumen 

contents).  Arnold et al. (1964) studied the differences in behavior and production 

measures of non-fistulated ewes and esophageally fistulated ewes.  Data indicated no 

difference in lamb birth weight, growth weight or mortality from ewes with or without 

esophageal fistula.  No differences were observed for wool production, grazing time, 

grazed herbage or herbage intake.  Animals with esophageal fistulas could remain 

productive throughout their life without major negative effects on the dam or their 

offspring.   

  One major concern with esophageally and ruminally collected samples is salivary 

contamination.  Saliva can contaminate the sample with protein, minerals and moisture 

(Lesperance et al., 1960a; Hoehne et al., 1967; Barth et al., 1970; Scales et al., Little, 

1972; 1974; Cohen, 1979).  Bovine saliva is 1.02 % DM (Baily & Balch, 1961) and 

contains 0.85 (Lesperance et al., 1860a) to 0.89 % (Baily & Balch, 1961) ash.   Nitrogen 

content of cattle saliva when fed alfalfa hay ranged from 0.007 to 0.27% and 0.003% to 

0.018% when grazing desert range (Galt et al., 1976).  These values are higher than 

results published by Bailey and Balch (1961) who reported salivary N levels of 0.003% 

to 0.007% in steers fed alfalfa.  Salivary N content of cattle grazing mountain summer 

range have also been reported as 0.04% (Cook et al., 1964) which is higher that the N 

content in saliva from cattle grazing desert range (Galt et al., 1976).  Salivary 

contamination does not appear to significantly alter N content of diets collected from 

fistulated animals (Bath et al., 1956; Galt et al., 1976; Lesperance et al., 1960).  Wallace 
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et al. (1972) evaluated the effects of salivary contamination on esophageally collected 

diet samples.  Salivary contamination increased the ash content of samples.  However, it 

did not alter nutritional components of the samples when calculated on a OM basis.  The 

same results were seen when hand clipped samples were compared with hand clipped 

samples soaked in saliva.   Expressing data on an ash free basis minimizes the effects of 

salivary contamination of minerals and soil contamination (Van Dyne & Torell, 1964; 

Wallace et al., 1972).  Using collection bags with screens in the bottom to allow for 

saliva to drain from the sample as the animal grazes and squeezing the extrusa sample 

can reduce the amount of contamination from saliva in the sample collected.  Conclusions 

from Barth and Kazzal (1971) indicated that the leaching of N from screen bottom bags 

equaled salivary N contamination.  Samples in their study collected in solid bottom bags 

had higher N.  Researchers should be aware of the risks associated with salivary 

contamination in the sample when designing and conducting grazing experiments 

including diet collection from animals. 

 Another concern with using fistulated animals to collect diet samples are the 

sources of variation in chemical and botanical composition of the diet collected.  These 

sources include day to day, within day, and animal variation (Arnold, et al., 1964; Obioha 

et al., 1970; Torell et al., 1967).  Data from 10 different trials (Obioha et al., 1970) 

indicated that morning samples contained slightly more N than those collected in the 

evening (during summer experiments).  This relationship was reversed in trials during the 

fall (only 1 trial).  Researchers attributed the fall results on N content of the diets to the 

cattle attempting to satisfy hunger in the morning and consequently consuming fewer 
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forbs and more grasses at this time.  No differences were detected in this trial on lignin 

content between samples collected in the morning verses those collected in the evening.  

Torell et al. (1970) collected the same pasture for 10 consecutive days and noted a 

decrease in CP from day 2 through 10.  They attributed this decline to the advancing 

maturity in the forages available for grazing or the animals were becoming less selective.  

They however, noted that the pasture had been grazed a total of 40-d by collection d 10 

which could change total forage availability.  Obioha et al., (1970) indicated significant 

differences between day in dietary N content with increasing numbers of grazing days.  

They indicated the difference in daily N content was due to changes in animal preference.  

As preferred plant species are removed cattle shift their consumption to other plant 

species   

 Obioha et al. (1970) suggested that 3 animals per treatment for 4 different days 

would allow one to detect 10% difference in N with an 85 % confidence interval and 10% 

probability.  In a study by Torell et al. (1967) researchers concluded that the number of 

animal days (animal x day) needed to predict (95 % confidence interval) CP was 5.6 %, 

ether extract was 28.7 %, and crude fiber was 4.1 %.  The variation between days can 

also alter not only diet chemical composition but also dietary botanical composition.  The 

number of diets needed to accurately determine botanical composition is greater than the 

number needed to measure chemical composition (Galt et al., 1969; Harniss et al., 1975; 

Holecheck & Vavra et al., 1983).  Galt et al., (1969) reported that 6 animals would 

adequately predict botanical composition in grazing situtations.  Holecheck et al. (1983) 

stated 5 animals and 6 collections are needed to accurately determine forage classes (in 
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forest and Grasslands in Northeastern Oregon) but more animals and collections are 

needed to determine forage species (90% confidence interval). 

 Other sources of possible variation are sex, age and breed differences in diet 

selection (Langlands, 1969; Ferrell et al., 1979; Hodgson and Janieson, 1981; Miller and 

Gaud, 1990; Grings et al., 1995; Hollingsworth-Jenkins et al., 1995; Mohammad et al., 

1996).  Hollingsworth-Jenkins et al. (1995) collected diet samples from nursing calves 

and lactating cows in the Nebraska Sandhills range pastures during the summer.  Calves 

consumed diets higher in CP and escape protein as compared to the mature cows.  In 

vitro OMD was similar between the diets collected by calves and cows.  Similar results 

(Hodgson and Jamieson, 1981) also were seen between calves and mature cows (lactating 

and non-lactating), where calf diets were higher in digestibility than cow diets.  No 

differences were seen between lactating and non-lactating cows.  When calves that were 

not experienced grazers were used no differences were detected in digestibility between 

calf and cow diets.   

 Langlands (1969) summarized data from 8 trials including 120 different 

esophageally fistulated sheep.  In three of the trials, N content of diets were compared 

between 6-month-old and 66-month-old Merino sheep.  Numerical differences were 

observed in N content between the two age groups in 2 of the 3 trials.  Statistical 

differences were observed in the other trials.  When evaluating of diets collected from 6 

and 18 month old Border Leicester sheep no differences were seen in N content of diets.  

Researchers concluded that immature sheep tend to select diets higher in protein than 

mature sheep.  Grings et al. (1995) found similar results between 9 month old nursing 
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calves and mature steers.  Researchers concluded that calves selected diets which were 

significantly higher in protein, lower in ADF, and lower ADL as compared to the diets 

selected by the steers.  Botanical composition of diets collected in eastern Colorado from  

calves and cows, differed (Walker et al. 1981).  Calves consumed 4 percentage units 

more sand bluestem as compared to mature cows.   

 Young calves are able to be more selective and are better equipped to pick 

specific plants and leaves as mature animals due to the smaller size of the muzzle.  The 

smaller muzzle size of younger animals allows them  to maneuver and choose higher 

quality material easier.  The sex of the animal may also effect diet selectivity.  Diets 

collected from rams and ewes differed (Ferrell et al., 1979; Miller and Gaud, 1990), 

likely because of differences in maintenance energy requirements and DMI between the 

different sexes effecting diet selectivity.  Langlands et al. (1969) documented no 

differences between N content in diets collected from rams and ewes.  Mohammad et al. 

(1996) tested the difference between mature cow and steer diets.  No differences were 

found across season in total number of grasses, forbs, and shrubs consumed between 

fsteers and cows.  Within seasons cows selected more grasses and less Forbs and shrubs 

as compared to the steers.  In most cases these differences were small.  Differences 

between botanical composition of diets were greatest between the sexes during periods of 

unfavorable forage conditions (late winter and early spring).   

 Walker et al. (1981) compared botanical composition of diets collected from 3 

different breeds of cows and calves (Hereford, Angus X Hereford, and Charolais X 

Hereford).  No differences were detected between breed within age group.  Herbel et al. 
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(1966) also reported no difference in botanical composition between Hereford and Santa 

Gertrudis.  

Methods for Assessing Dietary Botanical Composition 

 Botanical composition of grazing animals’ diets can be determined through 

several different techniques all of which have their own benefits and limitations 

(Holechek et al., 1982).  These techniques include diet observation, utilization 

techniques, fistula sampling and fecal analysis.  Direct diet observation requires minimal 

equipment and time thus decreasing experimental monetary costs.  However, accuracy 

and precision of botanical composition estimates are compromised, especially in wildlife 

species and non-tame domestic animals.  Direct observation makes it difficult to quantify 

how much of a plant was consumed (Holechek et al., 1982).  The oldest procedures used 

to estimate diet botanical composition are utilization techniques and include evaluating 

differences between grazed and un-grazed plots, evaluation differences before and after 

grazing, general observation, and cage plots.  The advantages of utilization techniques 

include time and information is provided on location of grazing and the extent that the 

range and range species are being used.  One major limitation with utilization techniques 

during the growing season is that plants are continually growing and utilization 

techniques do not account for grazing of plant regrowth (Holecheck et al., 1982).  Also 

other losses from weathering and animal trampling could confound results (Cook and 

Stoddart, 1953).  The use of cages could also create some challenges in altering 

microclimates that could change forage growth (Grelen, 1967 and Owensby, 1968 as 

reported by Holechek et al., 1982).  
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  Stomach analysis has been used in wildlife research.  The major disadvantage of 

this approach is animal sacrifice is required. This approach is impossible for endangered 

species and areas of low populations not to mention the loss is costly for owners.  Fecal 

analysis allows researchers to sample large numbers and areas.  This method works well 

in areas of low animal populations, and does not interfere with normal animal habits, can 

compare several animal species, and requires little equipment.  Major disadvantages 

include accuracy because forage species passed in feces are often not proportional to 

consumption, no knowledge where the forage was consumed, feces identification, 

requires extensive reference plant collection, aging of feces effects on identification, and 

plant identification is tedious and time consuming (Holechek et al., 1982).  

 

Diet Selectivity 

 Reports of diet selectivity of grazing livestock under a variety of management and 

environmental conditions are common (Weir and Torell, 1959; Reppert, 1960; Cable et 

al., 1966; Langlands, 1966; Bredon et al., 1967; Bedell, 1968; Langlands, 1969; Barth & 

Kazzal, 1971; Rao et al., 1973; Vavra et al., 1977; Taylor et al., 1980; Judkins et al., 

1985).  There are several variables that affect diet selection such as grazing pressure and 

weather conditions.  Diet collection using hand-plucking or clipping techniques do not 

represent the diets that the animal actually consumes (Edlefsen, et al., 1960; Cook, 1964; 

Kiesling et al., 1969; Jefferies et al, 1969; Rao et al., 1973; Blümmel and Grings, 2000).    

Blümmel and Grings (2000) evaluated diets collected by esophageally fistulated heifers 

and hand-plucking from May through September.  Samples from esophageally fistulated 
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animals were higher in both CP and IVDMD as compared to hand-clipped samples.  

Chemical variables and IVOMD of diets from esophageally-fistulated heifers were more 

closely related to animal weight gain than variables from hand-plucked samples.  

Kiesling et al. (1969) showed that diets collected via esophageally-fistulated steers were 

higher in protein and ash, but lower in fiber compared to the hand-plucked samples.  The 

higher fiber in the hand-plucked samples suggests that the steers were selecting diets 

higher in digestibility.  Jefferies et al. (1969) collected diet samples from esophageally - 

fistulated steers and compared nutrient content of those samples to clipped samples.  Data 

from this trial indicated that in years of abundant moisture, steers consumed diets higher 

in crude protein compared to the hand-clipped samples.  Researchers attributed this 

difference to selectivity for forbs (Snapis arvensis,annual mustards; Kochia scoparia, 

fireweed summer cypress; and Salsola kali, Russian thistle) in high rainfall years when 

forbs were abundant.  Sheep selected different plants Lothium perenne-Trifolium 

subterraneum and Festuca arundainacea-Trifolium subterraneum (ryegrass-subclover 

and tall fescue-subclover, respectively) pastures with advancing seasons (Bedell, 1968) .  

They selected higher amounts of subclover during spring in both pasture types.  In the 

summer they preferred tall-fescue to subclover, they still preferred the subclover in the 

ryegrass-subclover pastures.  Wallace et al., (1972) reported similar chemical analyses 

variables and digestibility between diets collected from hand-clipping and esophageally-

fistulated steers.   

  Plant species preference can also vary between different seasons (Cook et al., 

1958; Heady and Torell, 1959; Galt et al., 1969; Rosiere, et al., 1975).  Data from the 
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Semidesert Grassland indicated that cattle grazed 28 of the 52 different plant species 

present (Rosiere et al., 1975).  Twenty of the 28 species comprised 84-95% of the steers’ 

diet in all seasons.  Steers consumed the highest amount of grass species in the summer 

and lowest in the spring.  Shrub portions were highest in spring (Yucca elata, soaptree 

yucca).  Forb fractions did not vary greatly between seasons but were highest in the 

winter.  These botanical composition changes were observed in both none-grazed and 

grazed pastures.  Grazing specific plants during earlier seasons reduces their availability 

later in the grazing period.  This forces animals to graze other available species later in  

the grazing period (Galt et al., 1969).  

 Differences in dietary quality (chemical composition) among animal species have 

been documented (Cook et al., 1963; Van Dyne and Heady, 1965; Ngugi et al., 1992). 

Diets collected from sheep were higher in quality as compared to cattle grazing in 

common on the same dry annual range Cook et al. (1963).  Botanical composition also 

differed between the two species(Cook et al., 1963).  Sheep diets contained 35% grass, 

40% forbs, and 25% browse whereas, cattle diets contained 55% grass, 25% forbs, and 

20% browse.  Ngugi et al. (1992) studied the differences in dietary composition of 5 

major ungulates (Antilocapra americana, pronghorn; Oclocoileus hemionus, mule deer; 

Cervus elaphus, elk; Bos taurus, domestic cattle; and Ovis aries, domestic sheep) living 

in southcentral Wyoming.  During the spring, sagebrush (Artemisia tridentata) was more 

abundant in pronghorn than elk diets, whereas elk were consuming a larger amount of 

graminoids.  In the summer pronghorn diets were higher in sagebrush as compared to 

deer and cattle.  The deer and pronghorn consumed larger amounts of bitterbrush 
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(Purshia tridentata) than did cattle and the cattle consumed more graminoids.  In the fall 

pronghorn, deer, and elk diets contained similar amounts of sagebrush and forbs.  Deer 

and pronghorns consumed more bitterbrush than elk.  The differences in animal species 

preference for plant species consumed makes it important to use the appropriate animals 

to collect diets for research comparisons.  Assumptions in dietary botanical and chemical 

composition between species should not be used. 

   

Variables Effecting Diet Quality and Plant Nutritive Content 

 Plant species, stage of plant growth, and weather conditions during different 

stages of growth impact forage quality.  Mixtures of cool and warm season plants can 

extend the grazing season and impact forage quality due to differences in the growing 

season between these plants.  Plant species vary between regions because of adaptation of 

plants to specific environmental varieties (e.g., moisture, temperature, growing degree 

days).  Management of forage allocation and utilization also impact quality. 

Season and Plant Maturity 

 No single factor affects forage quality more than plant maturity.  Plant nutritive 

attributes change throughout its life cycle (Kamstra et al., 1968; Wallace et al., 1972; 

Kamstra, 1973; Cogswell and Kamstra, 1976; Powell, et al., 1983; White, 1983; 

McCollum et al., 1985; McCollum and Galyean, 1985; Hakkila et al., 1987; Lardy et al., 

1997; Johnson, et al., 1998).  During vegetative stages, leaf:stem ratios are at their 

highest and decrease as the plants mature and reproduce.  This decrease in leaf:stem ratio 

directly decreases forage quality.  As plants mature, digestibility and CP decrease 
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whereas lignin, ADF, and NDF increase (Kamstra et al., 1968; Wallace et al., 1972; 

Kamstra, 1973; Cogswell and Kamstra, 1976; Powell, et al., 1983; McCollum et al., 

1985; McCollum and Galyean, 1985; Lardy et al., 1997; Johnson, et al., 1998).  In 

monoculture plant communities, there is a single peak in the spring or summer months 

(depending if C3 or C4) when plant material is at the highest nutritive quality (Cogswell 

and Kamstra, 1976; Kamstra, 1973).  In mixed communities (mix of C3 and C4 grasses) 

there are generally two peaks of maximum nutritive quality, one for the cool season 

grasses during the later spring early summer and one for the warm season grasses during 

early to mid summer.  Warm season grasses peak later in the growing season than do the 

cool season species (Cogswell and Kamstra, 1976).  Cogswell and Kamstra (1976) 

showed a decrease in CP and digestibility and an increase in ADF from June to 

September in 2 warm season and 2 cool season prairie forage plant species.  Similar 

results were seen in masticate samples collected from native range in western North 

Dakota (Johnson et al., 1998).  Crude protein level decreased linearly and UIP increased 

linearly with advancing season (Mid-June through December).  Dietary IVOMD 

decreased from June to October. 

 White (1983) studied seasonal changes of tillers from 2 grass species which 

indicated that reproductive tillers were 7-9 percentage units lower in DMD compared to 

vegetative tillers.  Crude protein of the vegetative tillers was near 25% then decreased to 

5.9% in the reproductive tillers.  Lardy et al. (1997) evaluated chemical composition of 

diets collected from esophageally-fistulated cows from both Sandhills upland range 

pastures and subirrigated meadow during growing and dormant seasonal months.  Crude 
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protein and IVDMD remained relatively constant throughout the dormant season 

(November through April in range diets and November to March in subirrigated meadow 

diets).  Protein and IVOMD were highest in April for the subirrigated meadow and in 

June for range diets.  This could be attributed the differences in cool season and warm 

season plants in each of the different plant communities.  Subirrigated meadows used in 

this trial were predominately cool season grasses and legumes, whereas the upland range 

pastures consisted largely of warm season grasses with lesser amounts of cool season 

plants.  Crude protein and IVDMD decreased from June to September, remained 

relatively constant through March, and then began to increase through June in upland 

range pastures.  Samples from the subirrigated meadows followed the same pattern with 

the spike in CP and IVDMD occurring earlier in the year.  Comparing the upland range 

samples to subirrigated meadow samples, upland samples were generally lower in CP and 

digestibility during the growing season.   

 In mixed grass prairies, diet protein and digestibility appear to be the greatest in 

late spring through early summer.  In prairies where both cool and warm season grasses 

exist there are two peaks for IVOMD and CP,  one in May (cool season species) and one 

in June-July (warm season species).  Diet quality declines through the remaining growing 

season as the plant matures and reproduces.  Cool season grasses will have a slight 

increase in protein and digestibility in late summer due to some regrowth, if there is soil 

moisture for growth.  After the plants become dormant diet quality remains relatively 

constant.  It will decrease with increasing grazing pressure due to the removal of higher 

quality plants and changes in dietary botanical composition. 
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 Kamstra (1973) evaluated seasonal changes of  four grasses, two warm season 

(little bluestem and blue grama) and two cool season (western wheatgrass and green 

needlegrass) species.  Protein decreased linearly from early June through late August, 

early September for three of the species.  Blue grama grass decreased from early June to 

early August, than increased slightly (~ 2 percentage units) in September.  Lignin content 

of the four grasses increased with advancing stages of maturity.  As lignin increased, 

digestibility decreased.  McCollum and Galyean (1985) evaluated seasonal changes of 

diet in digestibility of blue grama grass in south-central New Mexico.  Digestibility 

decreased from early August through late October sampling dates (66.5, 63.1, 51.6, and 

47.9 % for , early August, late August, late September, and late October, respectively). 

 Seasonal changes in the nutritive value of bluestem pastures were evaluated (Roa 

et al., 1973) in the Flint Hills, near Manhatten, Kansas.  Organic matter digestibility and 

DMD were higher in June and July and rapidly decreased (approximately 10 percentage 

units) from August through October sampling dates.  Crude Protein decreased linearly (P 

< 0.05) from June (7.35 %) through October (3.75 %) 

 Hakkila et al. (1987) reported that cattle grazing desert grassland ranges changed 

their diet with seasonal advance to maximize diet quality.  Stockpiling forage (allowing 

forage to accumulate during the growing season without grazing for use at a later date) is 

one management tool that could be utilized to extend the grazing season and decrease the 

need for harvested forage (Transtrom et al., 2003) which could be economically 

advantageous (Adams et al., 1994).  In a study by Transtrom et al. (2003) data indicated 

no change in nutrient composition of the forage available for grazing based on hand-
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clipped data of stockpiled winter range in western North Dakota.  However, the dietary 

botanical composition varied throughout the fall and winter grazing periods.  The data 

indicated that cows altered dietary botanical composition during different periods of 

grazing.  

Moisture 

 Precipitation, or the lack of, affects both plant yield and quality (Smoliak, 1956; 

Dahl, 1963; Rauzi, 1964; Hazell, 1965; Shiflet and Dietz 1974; Hart et al., 1983; Kirby 

and Parman, 1986; Powell et al., 1986) however, the results have been mixed.  Hart et al. 

(1983) indicated an increase in CP of western wheatgrass and blue grama after abundant 

spring rainfall.  Crude protein of blue grama, however increased after high summer 

precipitation.  Wilson (1983, as sited by Nelson and Moser, 1994) reported digestibility 

of leaf and stem portions of warm season grasses were highest in water stressed plants.  

Similar results were seen with increased IVDMD in alfalfa (Snaydon, 1972; Halim et al., 

1989).  Extended periods of drought generally cause delays in plant maturity, decreased 

shoot length (resulting in lower forage yield), and increased leaf:stem ratio (Halim et al., 

1989; Peterson et al., 1992).  Precipitation in May-June is correlated to total yield of 

perennial vegetation (Smoliak, 1956; Rauzi, 1964).  Correlations of r=0.675 (Rauzi, 

1964) and r=0.859 (Smoliak, 1956) have been reported on shortgrass prairies.  Rauzi 

(1964) also reported high correlation (r=0.745) between April through August 

precipitation and annual yield.  Hazell (1965) also reported a decrease in herbage 

production from tall grass prairies due to decreased precipitation in May.  Similar results 

were seen for total production in relation to April-September precipitation.  They also 
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reported high correlation (r=0.755) between precipitation and big bluestem production.  

Powell et al. (1986) used multiple regression analysis including temperature, 

precipitation, wind, and freezing dates to predict chemical composition (N, P, K, and Ca) 

and production of tallgrass prairie hay.  The trial began in 1929 and continued through 

1951 (25 years).  Regression showed high R2 values for the prediction of production (82 

%), N (80 %), P (81 %), K, (81 %), and Ca (91 %).    

 Decreased forage production was reported (Hazzell, 1965) in the Osage Hills of 

Oklahoma when low rain fall (14.15 and 4.65 cm [5.66 and 1.86 inches] in 1961 and 

1962, respectively) was observed in May of two consecutive years.  Dahl (1963) studied 

weather factors effecting forage yield in eastern Colorado.  Soil moisture in the early 

spring was a major factor contributing to the yield.  Lack of spring moisture limits soil 

moisture storage and can have a tremendous effect on potential forage yield.  Shiflet et 

al., (1974) reported that herbage production could be predicted with fair accuracy (r = 

0.58 to 0.78) with either January to September or April to September precipitation. 

 Holechek et al., (1983) evaluated the effects of drought on yearling heifer  diet 

quality and botanical composition.  Diet protein values were lower in 1977 than 1976 at 

each of the different collection dates.  Moisture was reported at 11.4 cm lower in 1977 

than 1976.  In both years moisture was lower than the 25 year average (53.1 cm 

annually).  They also reported lower weight gains in cattle due to lower dietary CP during 

drought years.  

 In a preliminary assessment (Perry, 1976) on the effects of weather on the 

Northern Great Plains Grasslands it was noted that above ground primary production may 
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be slightly increased due to early spring and summer rains.  With the addition of 

fertilization along with the moisture, production was higher.  They also concluded that 

increases in spring precipitation would probably result in an increased proportion of 

higher producing plant species.  Summer and late spring moisture would probably elicit a 

greater response in warm season grasses and forbs compared to cool season grasses 

primary growth. 

 Research results on the effect of moisture on grazing livestock diet protein and 

digestibility indicate that below average moisture decreases diet quality and forage 

production.  However, it appears that moisture has the most effect on forage yield and 

growth patterns which in turn affects the quality of diets consumed by grazing livestock.  

Below average moisture reduces forage yield and appears to increase diet protein content.  

Diet digestibility appears to increase with advancing stages of drought presumably 

through decrease the rate of plant maturation and the reduction of stem growth increasing 

the leaf:stem ratio.  Low forage yield due to drought can also affect diets through 

reducing the animals ability to select plants of higher quality and forces them to consume 

other forages to meet intake requirements.  This can be seen in a shift from grass 

consumption to consumption of more forbs and shrubs which can change diet protein and 

digestibility.  In order to completely assess the effect of moisture on diet quality, long-

term (10 to 20 years) research needs to be conducted to determine the effects of total 

annual precipitation and timing of precipitation on diet quality and botanical composition.    

Plant Species 

 Different plant species differ in nutritive content within the same season (Rodgers 
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and Box., 1967; Wallace et al., 1972; Kamstra, 1973; Cogswell and Kamstra, 1976).  

Cogswell and Kamstra (1976) showed blue grama (Boutelaua gracilis) and threadleaf 

sedge (Carex filifolia) were more digestible than to needle-and-thread (Stipa comata) and 

prairie sandreed (Calamovilfa longifolia) from June to September.  Blue grama overall 

mean CP (8.6%) was higher than the 3 species.  Rodgers and Box (1967) studied the 

seasonal protein content of four southern mixed prairie grasses (buffalograss, Hierochloe 

ordata; blue grama, Boutelpoua gracilis; sideoats grama, Bouteloua curtipendata; and 

black grama, Boutelaua eriopoda) from December of 1962 through June of 1964.  Blue 

grama was highest in CP throughout the trial whereas sideoats grama was generally lower 

at any given collection time point.  Black grama and buffalograss CP values were 

intermediate to the other two species.  Buffalo grass had the least season fluctuation (3.86 

percentage units) from dormant to vegetative stages (5.92, 4.58, and 5.07 percentage 

units for blue grama, sideoats grama, and black grama, respectively).  Wallace et al., 

(1972) also reported higher CP for blue grama in June when compared to other grasses 

(needle-and-thread and prairie sandreed) but the protein declined and was lower during 

the rest of the trial.  They also reported CP of forbs were higher as compared to the 

grasses from June through December.  Blue grama and needle-and-thread were similar in 

DMD but higher than prairie sandreed.  Forbs were higher in DMD than all of the grasses 

tested.  Kamstra (1973) evaluated two cool season (western wheatgrass, Pascopyrum 

smithlii and green needlegrass, Nassella viridula) and two warm season grasses (little 

blue stem, Schizachyrium scoparium and blue grama, Bauteloua gracilis).  Western 

wheatgrass was higher in CP compared to the green needlegrass and little bluestem from 
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June through mid August and higher than blue grama from early June to mid July, after 

which blue grama was higher in CP than the other three grasses from mid July through 

late September.  Green needlegrass and little blue stem were similar throughout the 

sampling period.  Digestibility of the cool season grasses was higher than the warm 

season grasses at each sampling period.  The cool season species were similar from early 

June to mid July then western wheatgrass increased in digestibility whereas green 

needlegrass decreased from mid July through mid August.  In mid to late June blue grama 

was approximately 8-10 percentage units higher in digestibility compared to little blue 

stem.  However, by early July they were similar and remained similar through mid 

September. 

Grazing Level 

 The effects of grazing intensity and different grazing systems on botanical and 

chemical composition of diets have been documented (Cook et al., 1953; Pieper et al., 

1959; Vavra et al., 1973; Yates et al., 1982; Kirby and Parman, 1986; Ralphs et al., 1986; 

Nelson et al., 1989; Walker et al., 1989; McKown et al., 1991; McCollum et al., 1994; 

Hirschfeld et al., 1996; McCollum and Gillen, 1998; Cullan et al., 1999).  The effects of 

grazing pressure, level and system on diet quality have received mixed results.    

 Rauzi (1964) reported three times more midgrass was produced on moderately 

grazed pasture than on lightly grazed pasture.  Ralphs et al (1986) studied the relationship 

of increasing grazing pressure index on diet quality and botanical composition in diets 

collected from esophageally fistulated sheep and cattle.  Data indicated a negative 

regression in diet quality (as grazing pressure increased) of diets collected from both 
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sheep and cattle during cool season grazing.  Crude protein and IVOMD were both 

decreased with increasing levels of grazing pressure.  During the warm season, grazing 

sheep diets did not decrease in CP or IVOMD as grazing pressure increased.  The 

researchers attributed this to forage availability not being limiting to the sheep.  However, 

cattle diets did decrease in quality during the same grazing period, because of changes in 

dietary botanical composition (warm season grasses to sacahuista) during the later part of 

summer as a result of increased grazing pressure and decreased grass availability.  

Similar results were reported by Hirschfeld et al. (1996) where cattle diets were higher in 

CP and digestibility when grazing in a short-duration system than a season-long system.  

McCollum et al. (1994) compared diet nutrient content collected from 2, 3, and 4-cycle 

paddocks.  Diets collected from the 4-cycle paddocks were higher in CP when compared 

to the other 2 treatments.  No differences were seen between the 2- and 3-cycle paddocks.  

No differences were seen in IVDMD between treatments but it tended to higher in 3- and 

4-cycle treatments.  Plant species preference of sheep, grazing typical salt desert range in 

south-western Millard County, Utah; changed as intensity of grazing increased from 

moderate grazing intensity to heavy grazing intensity (Pieper et al.1959).  Walker et al. 

(1989) reported a rotational grazing system with high stocking rates did not lower diet 

quality compared to continuous grazing systems.   

 Other research has indicated lower diet quality in grazing livestock on short-

duration grazing systems compared to continuous systems.   Pfister et al. (1994) reported 

no difference in IVOMD of diets collected from cattle grazing a four-pasture rotation 

versus a continuously grazed pasture during the dormant season.  However, during the 
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growing season, cow diets differed in digestibility.  These trends were not consistent 

between years.  Researchers reported that the higher weight gains of calves grazing the 

continuous pasture could be attributed to higher digestibility and forage availability.  

However, digestibility of diets from the continuously grazed pasture was only 

significantly higher than rotationally grazed pasture in one year of the two year study.  

McCollum and Gillan (1998) reported flow of organic matter, total nitrogen and 

microbial nitrogen at the duodenum was lower in cattle grazing in a short-duration (8-

paddock) system when compared to a continuous grazing system.  Diet nutrient 

composition and intake was lower in steers grazing the short-duration treatment.  Steers 

also had lower weight gains and there was higher residual standing vegetation at the end 

of the year for the short-duration treatment.   

 Rotational or any other grazing systems which increase the number of animals per 

unit area have been shown to improve livestock distribution within a pasture or paddock 

and increase the total utilization of the land and forages available (Ralphs, et al., 1986; 

McKown, et al., 1991).  Pfister et al. (1984) reported lower forage utilization in pastures 

continuously grazed when compared to a four-pasture rotational grazing system.  

Increasing pasture utilization could force animals to graze plants lower in quality.  There 

also could be a shift in the plant growing cycle forcing it to remain vegetative longer.  

These could be explain the mixed results from all of the above discussed grazing trials.   

 There are varying results among researchers as to the effects of grazing on diet 

quality.  There are many other factors such as timing of grazing, intensity of grazing,  

precipitation, and timing of precipitation that can also contribute to the results obtained.  
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Grazing generally has been shown to alter diet quality through both changes in diet 

selectivity and changing the plants’ growth cycles.  In rotational grazing systems, cattle 

distribution is increased as well as harvest efficiency.  Rotational grazing can keep plants 

in a vegetative stage longer due to herbage removal thus increasing diet quality.  On the 

other hand increasing the distribution and cattle numbers on a given area could also 

decrease plant selectivity and force cattle to consume less desirable plants which could 

lower diet quality.  In a continuous system, cattle could graze regrowth from previously 

grazed plants maintaining diet quality.  However, plant maturity of other non-grazed 

plants would occur at a normal rate.  When herbage available for grazing from the 

regrowth is not meeting the intake requirement animals will be forced to graze other 

plants that are in advanced stages of maturity and diet quality would be then decreased.  

The effects of grazing are complicated and it is difficult to sort out the occurring 

phenomenons.  Data are needed in determining changes in diet quality under different 

grazing management strategies where detailed analysis of moisture, timing of moisture, 

grazing behavior and diet botanical composition are measured.  

 

Methods for Determining Forage Intake 

 Forage intake can be measured using either direct or indirect methods in both 

confined and grazing animals.  Determining forage intake through direct measurements is 

relatively easy in confinement.  Harvested forages can be offered to the animal and 

refusals can be collected.  Chemical components of the forage ingested by the animal can 

be calculated by difference if chemical components are known for the forage offered and 
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the forage refused .  Generally animals are fed individually and several animals can be 

utilized to account for variation among animals.  Forages are fed at adequate levels to 

allow for ad libitum intakes to ensure availability is not limiting (Burns et al., 1994).  If 

digestibility measurements are also taken, then feed offered should not be high enough 

that the animal has the ability to sort the feed.  One way to minimize the affect of sorting 

is through a feeding period to establish ad libitum intakes then reducing the feed offered 

to a percentage of ad libitum intake slightly prior to (at least 2 days) and throughout 

digestibility measurements (Cochran and Galyean, 1994).   

 Another approach to determine intake in confined animals is through the use of 

empirical equations (Burns et al., 1994).  These equations use regression techniques to 

estimate forage intake.  In beef cattle the variables included in the model include live 

weight and daily gain.  More complex equations must be utilized for lactating cattle (beef 

or dairy) where additional variables for milk production, time since calving, and month of 

lactation (Burns et al., 1994).  In both direct methods (if the animal is housed in a 

controlled environment) and empirical estimates there are no adjustments for outside 

factors such as environment and animal behavior.  Individual animal intake of animals 

housed together can be established through the use of electronic gates.  This approach 

accounts for some behavior associated with group fed animals.  However, animal training 

is needed and some natural feeding and social behavior may be altered. 

 Estimation of intake for grazing animals is more difficult than for confined 

animals.  Direct methods used for determination of intake for grazing animals include 

animal mass differences and herbage mass differences.  Indirect methods use fecal output 
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and diet digestibility or empirical equations.  Fecal output can be measured directly (total 

fecal collection) or indirectly.  Indirect methods include daily or pulse dosing of inert 

markers.  Total fecal collection and dosing with inert markers are both labor intensive 

and animals must be trained to be handled frequently.  Handling animals frequently my 

alter grazing behavior and adds stress the animals.  Diet samples can be obtained 

manually (clipping or plucking) or by the use of fistulated animals.  Digestibility of diets 

can be determined through in vitro or in situ techniques, or internal markers in the plant.  

The most common internal marker used is lignin.  Empirical equations have been 

developed for grazing animals which estimates daily animal requirements using a back 

calculation from animal response (Burns et al., 1994). 

 

Forage Quality Effects on Animal Feed Intake and Performance 

 Feed intake is the primary controlling factor in determining animal production 

and performance (Allison, 1985; Minson and Wilson, 1994).  Forage intake is controlled 

by the chemical and physical attributes of the forage consumed (Minson and Wilson, 

1994; Jung and Allen, 1995; Allen, 1996).  Other factors that can alter forage intake 

include animal body size, physiological status of the animal, supplementation, forage 

availability, and grazing systems can alter forage intake (Rittenhouse et al., 1970; 

Allison, 1985).   

 One way to determine forage quality is through performance of animals.  Higher 

quality forages generally produce improved animal performance assuming forage 

availability is not limiting.  Higher intakes of higher digestible forages generally elicits an 



 

 

31

improvement in animal weight gain (Burns et al., 1994; Mertens, 1994).  Forages low in 

energy yet high in bulk, limit animal intake due to the incapacity of the digestive system 

(primarily the reticulorumen) to hold additional feed.  The low concentration of energy in 

combination with limited intake (due to fill) results in dietary intakes below the animals 

requirements, resulting in a negative performance response.  Johnson et al. (1998) 

showed an increased OMI in steers grazing native range pastures from July through 

November and a OMI decline in December.  Park et al., (1994) reported a decrease in 

OMI in ruminally fistulated steers grazing intermediate wheatgrass from May through 

September.  This decrease in intake corresponded with a decrease in particulate passage 

rate and an increase in gastrointestinal mean retention time.  This indicated that the 

advancing stages of maturity increased reticulorumen fill thus decreasing intake.   

 Adams et al. (1987) also reported variation in rumen fluid passage, volume, and 

fermentation was dependent on maturity of the forage consumed.  They also reported 

increased rumen fluid volume with increased forage maturity.  However, small variation 

was observed in OMI for all forage maturities studied.  Similar results were also reported 

by Horn et al. (1979) where forage intake of cattle grazing midland bermudagrasss was 

positively correlated with IVDMD and negatively correlated with lignin.  Organic matter 

intake was increased in Sandhills upland range pastures rated at good-excellent condition 

(75%, 83 g/kg W0.75) as compared to low-good (58%, 74 g/kg W0.75).  Intake was also 

lower in September than June and July when IVOMD and CP values were the lowest.  

These results differed from results from Funk et al. (1987) where no differences were 

seen in OMI from early growing season through late dormant season (June to August).  
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 Hirschfeld et al. (1996) reported an increase in forage intake in cattle grazing in a 

short-duration system as compared to a season-long grazing system.  Researchers 

concluded that cattle consumed a higher quality forage under the short-duration system.  

Increased cattle weight gains were reported (Vavra et al., 1973) to be due to increased 

digestibility and intake of cattle grazing lightly grazed pasture.  When expressed in 

weight gain per unit area the, higher gains were observed on heavier used pastures.  

 

Determination and Estimation of Digestibility 

Determination of In Vivo Digestibility 

 Digestibility is simply defined as the portion of a feedstuff or nutrient that is 

ingested and not recovered in the feces (Cochran and Galyean, 1994).  Digestibility is 

determined by measuring the amount of feed or specific nutrient consumed and 

measuring the amount excreted in the feces.  The difference between the amount fed and 

the amount excreted is the digested portion.  Determining forage digestibility with either 

direct or indirect methods are time consuming and labor intensive.  Intake can be 

measured by hand or through the use of feed bunks suspended on load cells which will 

also measure the number of meals and amount of feed consumed in each meal 

electronically.  Carefully measuring feed intake and feed refusals is important.  One way 

to account for feed refusals is to feed at a level below ad libitum intake.  This would 

allow for intake of all feed offered.  However, one must consider that passage rate and 

digestibility may be compromised (Cochran and Galyean, 1994).  A method frequently 

used, once ad libitum intake level is determined, (while attempting to keep the data as 
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physiologically valid as possible) is offering feed at a level slightly lower (90-95% of ad 

libitum intake) than ad libitum (Cochran and Galyean, 1994).  Using this method, feed 

refusals are eliminated or at least minimized.  This also helps to control or prevent sorting 

of feed by the animal.  Intake can not be controlled or easily measured directly in grazing 

situations.  In these situations researchers must assess the amount of nutrients in the diet 

consumed.  Feed intake can be assessed indirectly through the use of internal markers.  

Internal markers are inherent dietary constituents that are resistant to digestion (Cochran 

et al., 1988, Cochran and Galyean, 1994).  Cochran et al. (1988) evaluated 4 different 

internal markers (in vitro ADF, NDF, acid detergent lignin, and ADF extraction followed 

by cellulase incubation [ADFIC] ) and determined ADL and ADFIC were least 

acceptable internal markers for the diets evaluated.  

   Total fecal excretion can be collected in fecal bags for direct measurement of 

fecal excretion.  Frequent emptying of fecal bags is important to reduce the risk of 

soreness to the animal (Cochran and Galyean, 1994).  If total fecal collection is not 

possible due to the experiment situation, one can measure fecal output through the use of 

an external marker.  These markers can be administered in a single pulse-dose or dosed 

several times each day (Owens and Hanson, 1992, Cochran and Galyean, 1994).  With 

the use of external markers fecal grab samples are collected and used to measure the 

concentration of the marker to estimate the quantity of feces excreted (Cochran and 

Galyean, 1994).  Frequent handling of the animals to dose markers and to collect feces 

can alter grazing behavior and lower intake; therefore, the animals must be well adjusted 

to frequent handling to minimize the effect of stress on intake (Cochran and Galyean, 
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1994).   

 The following calculations can be used to determine digestibility.   

(1)     % Nutrient Digestion = Nutrient Consumed (wt) - Nutrient in Feces (wt)  x 100 
                                                  Nutrient Consumed (wt) 
 
In this calculation the amount of feed refused either is not accounted for or has already 

been subtracted from the amount of feed offered to the animal.  Fecal output is directly 

measured for this equation as well (Cochran and Galyean, 1994).  When intake is known 

and fecal output is determined via external or internal markers such as rare earths the 

following equation is used to calculate fecal output. 

(2)     Fecal DM Output (g/d) = Marker Dose (g/d) 
                                                  Concentration of Marker in Feces (g/g of DM) 
 
After fecal output is calculated digestibility is determined using equation (1).  If intake is 

the unknown variable, then the following equation can be used. 

(3)     % nutrient digestion = 100 - 100 x % Marker in Feed  x % Nutrient in Feces  
                                                       % Marker in Feces x % Nutrient in Feed 
 
  In confined situations, the researcher can also control the environment (day 

length, and keep the temperature in the thermoneutral zone) and restrain the animal.  The 

environment can alter digestibility and intake of a forage if the temperature is below the 

thermoneutral zone (Cochran and Galyean, 1994).  Photoperiod has been shown to affect 

intake (Forbes, 1982).  When animals are in confined situations, behavior is sometimes 

altered and can affect voluntary intake and intake patterns (Cochran and Galyean, 1994).  

Lameness can also be an issue if the animals are confined in small areas for extended 

periods of time; therefore the researcher should allow time for exercise and use materials 
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in the stall to aid in the comfort of the animal (Cochran and Galyean, 1994). 

Comparison of In Vitro and In Vivo Digestibility 

 Determination of digestibility of forages grazed by livestock is difficult.  

Accurately harvesting forages from mixed grass prairie pastures or monoculture pastures 

which are consumed by grazing livestock is difficult due to animal selectivity.  Hand 

plucking or clipping enough forage to conduct a controlled digestibility study is time 

consuming and labor intensive.  Harvesting equipment could be used to harvest enough 

forage and reduce labor needs.  With the use of hand labor or machinery there is also 

variability in the diet selected by the animals and clipped samples as discussed earlier.  

Obtaining estimates of in vivo digestibility of grazed forages is important in diet and 

supplementation formulation.  One method for estimating digestibility of forages is 

through the use of an in vitro digestibility procedure.  The procedure outlined by Tilley 

and Terry (1963) indicated that in vivo digestibility could be predicted with in vitro 

digestibility of both legumes and grasses with a high degree of accuracy.  Since the 

publication of the original procedur,e modifications have been introduced to increase 

precision and accuracy (Weiss, 1994).  Many studies have shown a strong statistical 

correlation (r > 0.9) between in vivo and in vitro digestibility (Tilley and Terry, 1963; 

Alexander and McGowan, 1966; McLeod and Minson, 1974; Givens et al., 1989; Ginizi 

et al., 1990).  However, the strong correlation does not mean that IVDMD is equal to in 

vivo digestibility.  In order to convert in vitro to in vivo digestibility a regression equation 

must be determined from in vivo data.  The data obtained from an in vitro (samples with 

unknown in vivo digestibilities) procedure can be adjusted using those regression 
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equations to derive an estimated in vivo digestibility value (Weiss, 1994).  There are three 

different methods for developing calibration equations (Weiss, 1994).  The first way is 

for each laboratory to determine both in vitro and in vivo digestibility coefficients for a 

diverse population of feeds.  With this method the data may be limited and appropriate 

for feeds grown under limited conditions.  It is also expensive and labor intensive.  The 

second method uses a set of diverse feeds that have known in vivo digestibility as a 

calibration set.  The calibration set is included in the in vitro procedure along with the 

forage samples unknown in vivo digestibility.  The in vivo data are then regressed on the 

in vitro data to generate a regression equation.  The in vitro data of the unknown samples 

are entered into the regression equation resulting in an adjustment of in vitro values to in 

vivo values.  The third method uses indirect calibrations to estimate in vivo digestibility 

from IVDMD values.  This method uses samples of known IVDMD from one laboratory 

and they are analyzed at another laboratory.  An equation is derived to convert in vitro 

data from the second laboratory to estimate in vitro data from the original laboratory.  

The original laboratory must have an accurate in vitro-in vivo equation which is then used 

to convert the estimated in vitro data to in vivo estimates in the second laboratory (Weiss, 

1994).  Due to differences between different laboratories and between different in vitro 

runs within a laboratory, each separate in vitro run should have its own equations to 

estimate in vivo digestibility (Weiss, 1994).  Results indicated that determinations of 

digestible DM or OM could replace the determination of digestible energy.  The 

following table has been regenerated from Weiss (1994). 
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Table 1: Sample equations for converting IVDMD values to in vivo OM digestibility.  
All values are expressed as g/kg, DM basis.  In Vivo = a + b*IVDMD 
 
Feed   Intercept Slope  SEp  Reference 
 
C3 grasses   124   0.82   22.7  Aerts et al., 1977 
C3 grasses   5.2   1.01   14.6  Terry et al., 1978 
C3 grasses   -136   1.20   18.5  Omed et al., 1989 
C3 grasses   172   0.72   24.0  Moss and Givens, 1990 
C4 grasses   115   0.83   24.0  McLeod and Minson, 

1969 
C4 grasses   -125   1.27   37.8  Navaratne et al., 1990 
Legumes   -4.1   1.02   16.0  Terry et al., 1978 
Legumes   -9.8   1.03   19.4  Omed et al., 1989 
C3 grass & Legume  -48.2   1.08  19.3  Omed et al., 1989 
Corn Silage   29.3   0.58   21.1  Aufrere et al., 1992 
Concentrates   -26.6   1.10   50.1  Omed et al., 1989 
 
 
 Urness et al. (1977) reported higher in vivo digestibility (determined via total 

fecal collection) in seven plant species than in vitro digestibility in mule deer.  The 

regression equation of all in vitro to in vivo digestibilities was y=1.28x-23.51 and had a 

significant correlation coefficient (r=0.84). 

In Situ and Mobile Bag Methods for Estimating Protein and Energy Digestibility 

 In situ or the mobile bag methods are two techniques that are used to determine 

ruminal degradation or total tract degradation of feeds.  The in situ method measures the 

disappearance of feedstuffs from artificial fiber bags which are suspended in the rumen of 

an animal.  The mobile bag technique uses the same nylon bags as the in situ procedure 

however, following rumen incubation bags are incubated in a pepsin and hydrochloric 

acid digestion and then inserted in the duodenum of fistulated animals.  This technique 

can be used to determine  digestibility of protein in the rumen, intestine and total tract 
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(Haugen et al., 2006a ).  The  in situ method only allows for rumen degradability which 

allows for the separation of DIP and UIP from the total protein and ruminal energy 

digestibility in the feed.  With either of these techniques the diet fed to the fistulated 

animals being used for the incubations is very important (Weiss, 1994).  Feed 

disappearance from the bags can be affected by the amount of forage and concentrate in 

the ration.   Increasing the amount of concentrate in the diet can decrease the fiber 

digestibility of forages being tested (Weiss, 1994).  Vanzant et al. (1996) compared in 

vivo protein digestibility to in situ digestibility of alfalfa and prairie hay.  In situ bags 

were incubated at 3 different times (a 16-hour single time point, a zero time point and a 

16-hour double-point).  No difference in protein degradation was observed between the in 

vivo and in situ incubations.   

 In vitro and in situ techniques were compared to in vivo for determination of 

forage OMD (Gosslink et al., 2004).  The researchers indicated that the in situ technique 

plus crude protein had the highest accuracy in predicting in vivo digestibility.  Nocek 

(1988) also indicated that in situ methods for estimating protein and energy digestibility 

offers a better way to simulate rumen environment within a given feed regimen as 

compared to artificial rumen simulation models.  Usefulness of in situ methods may be 

dependant on standardization of variables associated with the procedure (bag pore size, 

sample size, feed particle size).   

 Haugen et al. (2006a) tested the hypothesis that the current 80% values for UIP 

digestibility used by the NRC (1996) may be high for forages.  This study reported that 

digestibility of UIP of dehydrated alfalfa, sun-cured alfalfa, and lyophilized alfalfa were 
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46.4 %, 25.6% and 14.7%, respectively.  Gustad (2006) reported UIP degradability of 

diet samples (collected from esophageally fistulated cows) of native range pastures in the 

Nebraska Sandhills.  Diets were collected from June through August.  These values agree 

with values reported by Haugen et al. (2006a) with UIP digestibility from control 

pastures ranging from 17 to 43% (% of UIP).  These results were low compared to the 

recommendation of both the ARC (85%; 1984) and the NRC (1996).  The use of in situ 

neutral detergent insoluble nitrogen as a method for estimating forage protein UIP 

degradability has been studied (Mass, et al., 1999; Haugen et al., 2006).  Mass et al. 

(1999) determined that in situ NDIN were adequate for estimating forage UIP.  Haugen et 

al. (2006) studied the use of a single in situ incubation time point for estimating UIP in 

forages.  The single time point which was used was 75% of the TMRT which was 

derived from estimates from IVDMD plus a 10-hr passage lag.  Results from this study 

indicated that using NDIN at a single in situ incubation could accurately estimate UIP.  

Rate of protein degradation can also be obtained using this time point when 0- and 96-h 

incubations are used in addition. 

 

Diet Formulation and Nutrition for Grazing Cattle 

 As discussed earlier in this review diet digestibility and protein can be altered by 

precipitation, timing of the precipitation, grazing pressure, forage species and forage 

maturity.  This makes estimating diet quality of grazed forages, especially in mixed grass 

prairies, difficult.  However, knowledge of diet quality is important in the formulation of 

beef diets.  The beef NRC (NRC, 1996) is used by both nutritionists and scientists to 
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formulate grazing cattle diets and protein or energy supplements.  This computer 

software uses empirical (level 1) and mechanistic (level 2) methods to generate animal 

requirements and evaluate rations.  In order to increase the precision of animal 

performance, IVOMD values must be either adjusted to in vivo values or converted to 

DE (Patterson et al., 2006).  Small increases or decreases in digestibility when used as a 

proxy for TDN can greatly alter the predicted animal performance (generally body 

condition score in beef cows or weight gain in calves) because of the sensitivity of the 

NRC Model.  The TDN proxy is also used to calculate both DMI and NE of the feed 

(Patterson et al., 2006).  In Vitro OMD can be converted to TDN using the equation DE = 

(1.07 * IVOMD) - 8.13 (Rittenhouse et al., 1971).  Patterson et al, (2006) used data from 

7 studies in Nebraska and Montana using grazing beef cows that met the criteria of 1) 

reporting BCS or changes in BCS; 2) defined energy and protein content of grazed 

forage; and 3) cattle production traits were defined (BW, age, breed, days in lactation, 

and days pregnant.  This trial compared predicted changes in BCS from the NRC model 

to published BCS.  The comparison was made with TDN entered as either IVOMD equal 

to TDN or IVOMD converted to DE using the equation published by Rittenhouse et al. 

(1971).  Results indicated that when the converted DE values were used in the model no 

statistical differences (P = 0.44) were indicated between observed BCS changes and 

predicted changes in BCS.  Correlation between predicted and observed BCS was 0.73.  

When IVOMD was used as TDN, the model overestimated (P = 0.001) the predicted 

BCS as compared to the observed BCS.  Thus indicating that the NRC model was 

overestimating energy intake.  Lardy et al. (2004) also indicated that using IVOMD as a 
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proxy for TDN the NRC over predicted energy balance of grazing beef cows.  The 

authors concluded that using IVOMD to directly represent TDN results in a greater TDN 

value than when IVOMD is converted to DE using the equation from Rittenhouse et al. 

(1971).  They also concluded that in vivo OMD values should be used when available.  

Unfortunately because these data are lacking the difficulty in generating in vivo OMD 

data from grazing situations previously discussed.  There is a need for in vivo OMD 

values that take into account precipitation, day of the year (forage maturity), and grazing 

pressure effects. 

 Not only are TDN values in the NRC model used to predict energy status of 

grazing livestock, TDN also affects the protein predictions in the model as well.  The 

NRC (1996) uses TDN intake as the determinant of MCP production.  Energy intake 

directly affects energy available for rumen microbes.  Low energy intake decreases 

energy available for the microbes thus decreasing microbial efficiency which decreases 

microbial CP production.  Decreases in MCP decreases the MP available to the host. The 

NRC (1996) uses the following equations to predict MP: 

Microbial efficiency (g/100g TDN intake) = 2.62 + (1.78 * %TDN) - [9.60 * 10-2) * 

%TDN2] + [1.78 * 10-3) * %TDN3] - [(1.054 * 10-5) * %TDN4] 

MCP (g/d) = TDN intake (kg/d) * microbial efficiency (g/kg) 

MCP (g/d) = DIP intake (g/d) 

MP (g/d) = (MCP, g/d *0.80 * 0.80) + (UIP, g/d * 0.80) 

Not only does predicted TDN values have an effect on the energy status of the grazing 

animal, it also has significant impacts on prediction of MP (Lardy et al., 2004; Patterson 
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et al., 2006).  This stresses the importance of determining accurate estimates of forage 

TDN to use when formulating rations and supplements for grazing cattle.   
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Abstract: Determination of in vivo digestibility of grazed forages is important in 

formulating diets and supplements for grazing livestock.  The use of a calibration forage 

sample set could be useful in adjusting in vitro digestibility estimates of forage samples 

to in vivo digestibility.  The objective of this trial is to develop a calibration set of forages 

with known in vivo digestibilities which can be included in the IVDMD procedure to 

adjust in vitro digestibility estimates of forages to in vivo values.  Eight crossbred 

yearling steers (IBW = 323 ∀ 29 kg) were used in a 5x5x8 Latin rectangle design to 

determine in vivo DMD, OMD, and NDFD of five forages.  Five forages (chopped hay)  

were used and included immature alfalfa (Ialf; Medicago sativa), mature alfalfa (Malf), 

immature smooth bromegrass (Ibrome; Bromus inermis), mature smooth bromegrass 

(Mbrome), and prairie grass hay (Prairie).  Twenty one different in vitro runs were 

completed compare of in vitro digestibility to in vivo digestibility.  The Prairie, Mbrome, 

Ibrome, Malf, and Ialf hays had 7.9, 13.0, 13.7, 14.7, and 16.0% CP and 68.3, 69.6, 66.7, 

67.9, and 60.5% NDF, respectively.  As quality of the forage increased, DMI increased (P 

< 0.01) (5.2, 5.7 5.8, 6.4, and 6.8 kg/d for  Prairie, Mbrome, Ibrome, Malf, and Ialf, 

respectively).  Significant differences  (P < 0.001) were detected among the individual in 

vitro runs; however, no differences (P = 0.99) were detected when slopes were tested.  
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The average IVDMD from all runs and in vivo DMD was correlated (R2 = 0.831).  On 

average, in vitro DMD was 11% higher than in vivo DMD.  The range in correlation 

coefficients between the 21 runs was R2 = 0.5352 to 0.9728.  Regression analysis of in 

vivo NDFD plotted against mobile bag NDFD indicated a significant correlation (R2 = 

0.553).  Results from this trial indicate that these five forages are excellent for use in in 

vitro runs as standards.  Regression equations derived from each run can be used to adjust 

in vitro DMD and OMD values to in vivo values. 

Keywords: Digestibility, Cattle, Forage 

 

Introduction 

  The use of calibration data sets for estimating in vivo digestibility of forages is not 

a new technique.  High correlations (R2  = 0.90) between in vivo and in vitro digestibility 

(Tilley and Terry, 1963; Genizi et al., 1990) have been reported.  Because in vitro 

digestibility does not equal in vivo digestibility, equations must be derived to convert in 

vitro data to in vivo estimates.  Including a set of calibration forage samples within each 

in vitro run which has known in vivo digestibilities allows researchers to adjust in vitro 

digestibility of forages to in vivo values using regression equations generated from the 

standards (Weiss, 1994).  The use of a calibration data set would prove to be useful in 

formulating diets and supplements for grazing livestock accurately (Lardy et al., 2004; 

Patterson et al., 2006) where digestibility trials on pastures would be difficult. Adjusting 

the in vitro results using the equations generated from the standards (with known in vivo 

digestibility) allows researchers to compare estimates from different in vitro runs (Weiss, 



 

 

57

1994).  With these adjustments, forage samples with different species composition can 

also be compared.  Accurate estimates of digestibility are important when balancing rations,  

determining the true economic value of different feeds, and predicting animal 

performance (Weiss, 1994).  When using the NRC (1996) for formulating rations and 

supplements for grazing cattle, it is imperative to use digestibilities that are either 

adjusted to in vivo values or actual in vivo digestibilities in order to increase the precision 

and accuracy of the estimated intake and animal performance from the NRC (Patterson et 

al., 2006). The objective of this experiment was to determine the in vivo digestibility of 

five different forage samples and to test and  use these samples as laboratory standards 

for in vitro DM and OM digestibility procedures.  

 

Materials and Methods 

Animals and Feeding 

   This experiment used eight crossbred yearling steers (Initial BW = 323 kg) in a 

five period, five treatment cross-over designed trial.  Steers were randomly assigned to 

treatment within each period.  Diets included five different chopped hays including 

immature alfalfa (Ialf), mature alfalfa (Malf), immature smooth bromegrass (Ibrome), 

mature smooth bromegrass (Mbrome), and prairie grass hay (Prairie).  The prairie hay 

consisted of a mixture of warm and cool season grass species.  All hay was chopped prior 

to the initiation of the trial through a tub grinder using a 10-mm screen.  Chopped hay 

was mixed and stored on concrete in an enclosed building to minimize spoiling and 

contamination.  Collection periods consisted of a 16-d adaption period followed by a 5-d 
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collection period.  During the first 10-d of the adaption period, steers were fed at ad 

libitum intake level.  Feed refusals were collected and weighed daily during the 

adaptation period.  During the last 6-d of the adaptation period and during the collection 

period steers were fed at 95% of their individual ad libitum intake.  During d 16 through 

d 20, feed and feed refusals were collected (0.5 kg), weighed, and a sub-sample was 

taken for laboratory analysis when necessary.  Sub-samples were composited by week. 

 Steers were fed once daily at 0800 hr immediately following feed refusal 

collection.  Daily feed refusals were composited on a weighted average by week.  Diet 

and feed refusal samples were dried in a 60°C forced-air oven for 48 h.  Dry matters were 

calculated and recorded.  Samples were ground through a 2-mm screen in a Wiley mill.  

Approximately one half of the 2-mm ground samples was then ground through a 1-mm 

screen in a Wiley mill.  Samples were later analyzed in the laboratory for CP, DM, OM, 

IVDMD, NDF, and ADF.  Dry matter and OM were determined following the AOAC 

standard procedure (1996).  Acid detergent fiber was determined following procedures 

outlined by Goering and Van Soest (1970).  Neutral detergent fiber was determined using 

the ANKOM220/220 fiber analyzer modified through the removal of acetone and alpha-

amylase (Van Soest et al., 1991).  Nitrogen was determined by the combustion method 

(AOAC, 1996) using a nitrogen analyzer (Leco FP-528, St Joseph, MI).  Nitrogen was 

coverted to CP using the equation % CP = % N * 6.25. 

 

Fecal Collection 

 Steers were fitted with fecal bags on d 16 at 1700 hr.  Fecal bags were emptied 
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twice daily at 0700 and 1700 hr.  Fecal collection began on d 16 and ended on d 21. 

Feces were weighed and sub-sampled for later analysis.  Fecal sub-samples were dried in 

a 60° C forced-air oven for 48 hours.  They were then ground through a 2-mm screen 

using a Wiley mill.  Ground sub-samples were composited by collection period.  

Composite samples were ground through a 2-mm screen using a Wiley Mill and then 

analyzed for CP, DM, OM, and NDF. 

In Vitro and In Vivo Digestibility 

 In vivo digestibility was determined using the steer intake and fecal excretion.  

Nutrient (DM, OM, and NDF) digestibility was determined using the equation: 

 % nutrient digestibility = nutrient consumed (wt) - nutrient excreted (wt)  x 100 

                                              nutrient consumed, (wt) 

True DMD was calculated using the equation: True DMD % = (DMI, kg - Fecal NDF, g) 

         DMI, kg 

Metabolic losses were calculated by subtracting in vivo DMD from true DMD. 

 In vitro DMD was estimated using a modified version of the in vitro procedure 

described by Tilly and Terry (1964).  Hay samples were ground through a 1-mm screen.  

The original procedure was modified with the addition of 1g urea L-1 of McDougall’s 

buffer.  Equal volumes of rumen fluid was collected from two steers (BW = 250 kg) for 

each of the in vitro runs.  Steers were fed a smooth bromegrass hay diet once daily at 

1.5% of BW at 0700 hr.    

 In comparing in vivo and in vitro analyses, the hay samples were included in 21 

separate in vitro runs.  The 21 different runs were performed by a total of 6 different 
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technicians.  Rumen fluid was collected from steers fed either a 100% smooth 

bromegrass hay diet once daily at 1.5% of BW or a mixed diet consisting of 70% smooth 

bromegrass hay and 30% concentrate diet twice daily at 1.5% of BW.   Of the 21 runs, 9 

of them were run with rumen fluid collected from steers fed a Bromegrass hay diet while 

the other 12 runs used rumen fluid collected from steers fed a mixed diet.   

In Situ and Mobile Bag Incubations  

 In situ incubations were conducted using two ruminally and duodenally fistulated 

steers (BW = 250 kg).  Dacron bags (Ankom Inc, Fairport, NY) measuring 5 x 10 cm 

with 50 Φm pore size.  Bags were heat sealed containing 1.25 g of air-dried hay sample 

ground through a 2-mm screen.  Donor animals were fed once daily a bromegrass hay 

ration at 1.5% BW.  Triplicate  bags were incubated at each time point and replicated 

within each of the two steers.  Time points for incubation were 0, 25, 30, and 96 h.  The 

25 and 30-h times were calculated at 75% total mean retention time (TMRT) which 

yielded a 25-h incubation for the Malf, Mbrome, and prairie hay and the 30-h incubation 

for the Ialf and Ibrome hays.  The 75% TMRT was determined by calculation of rates of 

passage (kp) of each forage using the following equation: kp = 0.07*IVDMD (%) - 0.20.  

The kp was used to determine the mean retention time (MRT = 1/kp).  A 10 h lag was 

added to the MRT to yield the total mean retention time (Haugen et al., 2006a).  

Following ruminal incubation, bags were washed in a washing machine for 0.25 h using a 

1 min agitation and 2 min spin cycle.  The washing cycle was repeated a total of 5 times 

(Haugen et al., 2006a).  Following washing bags were refluxed in neutral detergent fiber 

solution in order to remove any microbial contamination and to determine the NDIN 
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following the procedure outlined by Mass et al., (1999).  The 0-hr bags were not 

suspended in the rumen; however, they were washed and refluxed following the same 

procedure.  Following reflux, the bags were dried in a 60°C forced air oven for 48 h.  

They were weighed directly out of the oven after equilibration in a desicator for 5 

minutes.  Following the hot weight, bags were allowed to air equilibrate for 3 h and were 

weighed again.  Residue remaining in the bags were analyzed for neutral detergent 

insoluble N (NDIN) using the combustion method (AOAC, 1996) in a combustion 

analyzer (Leco FP-528, St. Joseph, MI) 

 The rate of NDF ruminal degradation (kd, % h-1) was calculated using a first order 

disappearance model using the equation: kd (% h-1) = [LN(% of B remaining at X) - LN 

(% of B remaining at Y)] / (X - Y) h.  Variable X and Y are time points in hours 

incubated.  The original (0-h) NDF minus the 96-h NDF represent the potentially 

degradable fraction (B), whereas the C fraction represents the 96-h NDF. 

 A second set of bags (75% TMRT) was incubated in the rumen following the 

same procedure and donor animals described for the in situ incubation.  Each hay was 

replicated in 3 bags/steer.  Following rumen incubation, bags were incubated in a pepsin 

and HCl (1 g L-1 pepsin and 0.01 M HCl; 62.5 ml/bag) solution at 37°C for 3 h to 

simulate abomasal digestion.  Bags were then randomly sorted for duodenal insertion 

with 7-8 bags/d.  Bags were inserted into the duodenal fistula of each steer on two 

consecutive d.  Seven bags were inserted on d 1 and eight bags on d 2.  Steers were fed a 

smooth bromegrass hay diet at 1.5% BW at 0700 h daily.  Bags were inserted beginning 

at 1700 at a rate of 1 bag every 5 minutes to prevent blockages in the intestine of the 
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animal (Haugen et al., 2006a).  Bags were collected in the feces beginning 12 -24 h after 

insertion and frozen until all bags were collected.  Any bags retained for longer than 24h 

were not included in the analysis.  Following collection of all bags, they were machine 

washed and refluxed in neutral detergent fiber solution following the same procedure as 

the in situ incubation.  Bags were weighed and analyzed for NDIN in the same manner as 

previously described for the in situ bags.  This analysis was used to calculate the 

digestibility of the UIP. 

Statistical Analysis  

 Dietary chemical composition (in vitro and in vivo) data were analyzed 

using the MIXED procedures of SAS (SAS Inst. Inc., Cary, NC).  The model 

included the fixed effects of period and hay and random effect of animal.  The  

REG procedure of SAS (SAS Inst. Inc., Cary, NC) was used to test the regression 

of in vivo to in vitro digestibility as well as testing slopes of regression equations.  

In vivo digestibility was predicted from in vitro digestibility values.  A protected 

F-test was used to evaluate treatment mean differences.  Least square means were 

separated using Least Significant Difference method when an overall significant 

treatment (P < 0.05) F-test was detected.  The IVDMD values from each of the 

separate runs was regressed against the in vivo DMD.  The slope of each 

regression line were compared for equal slopes.  Run differences were also tested 

(SAS Inst. Inc., Cary, NC).  Mobile bag and in situ data were analyzed as a fixed 

block design with animal as blocks using the MIXED procedures of SAS (SAS 

Inst. Inc., Cary, NC).  The model included the fixed effect of hay and random 
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animal effect.  All trial procedures were approved by the University of Nebraska 

Institutional Animal Care and Use Committee. 

 

  Results and Discussion 

Diet and Intake 

 Crude protein content of the diets ranged from 7.5 to 17.6% (Table 1).  There was 

a wide range in IVDMD between the different hays as well (52.8, 52.8, 53.9, 59.1, and 

63.9 for Malf, Prairie, Mbrome, Ibrome, and Ialf, respectively).  As expected, increasing 

maturity of forages decreased IVDMD.  This has been reported in numerous reports 

where increasing levels of maturity decreases certain chemical components such as 

IVDMD, CP, and increases others including fiber and lignin (Kamstra et al., 1968; 

Wallace et al., 1972; Kamstra, 1973; Cogswell and Kamstra, 1976; Powell, et al., 1983; 

McCollum et al., 1985; McCollum and Galyean, 1985; Lardy et al., 1997; Johnson, et al., 

1998).     

 Apparent DMD (Table 2) was highest (P < 0.001) for both the immature hays and 

lowest for the prairie hay.  The Malf and Mbrome hay did not differ (P > 0.05) from each 

other, however, they were different (P < 0.50) from the other three hays.  Metabolic 

losses were also different (P < 0.01) with the highest metabolic loss for the Prairie hay 

(18.5%) and lowest for the Ibrome hay (13.7%). 

  As digestibility of the hay increased, so did forage intake (P < 0.001; Table 2).  

Intakes were the highest when steers were fed either of the alfalfa hays and lowest when 

fed Mbrome and prairie hay with Ibrome as an intermediate.  There were no differences 
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in DMI within the three grass hays or within the two alfalfa hays.  Intake of both of the 

alfalfa hays was higher than for the three grass hays.  This could be explained by 

increased reticulorumen fill when grass hays were fed.  The higher intake observed when 

the Ialf hay was fed could be explained by a combination of both decreased 

reticulorumen fill and increased digestibility, which increased the rate of passage. 

Physical bulk found with lower digestible forages decreases forage intake because of the 

lower passage rate of particles from the reticulorumen (Weiss, 1994).  Physical bulk is 

the first limiting factor affecting forage intake.  Intake generally increases when low 

quality forages are fed in a pellet (Weiss, 1994), which suggests that fill and slower flow 

of feed from the reticulorumen decreases intake.  Digestibility of forages decreases with 

maturation of the forage plant.  Horn et al. (1979) showed a positive correlation between 

IVDMD and forage intake.  Adams et al. (1987) reported rumen fluid passage, volume 

and fermentation was dependent on forage maturity.  Similar intake results were reported 

by Park et al. (1994) and Hirschfeld et al. (1996) where OMI decreased with advancing 

stages of maturity.   

In Vivo versus In Vitro Digestibility 

 When runs were tested against each other there was a significant difference (P < 

0.001) among the 21 different runs (Figure 1).  This indicates that within a single 

laboratory, variation occurs between different runs performed using the same procedure.  

This variation between the in vitro runs using the same forage samples make the 

comparison of separate in vitro runs containing the same samples impossible.   No 

differences (P = 0.99) were detected between the slopes of the 21 different regression 
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lines.  Regression equations and R2 for each run are listed in Table 4.  The R2 ranged 

from 0.5352 to 0.9728.  When all 21 runs were averaged together (Figure 2) there was a 

significant (R2 = 0.8305) correlation between in vivo and in vitro digestibility of the five 

forages.  In vitro digestibility was 6.4 percentage units higher on average than in vivo 

DMD, or an 11% difference between in vivo and in vitro. 

  A different equation should be generated to adjust each separate in vitro run 

because in there were equations were different in each separate run.  These standards 

should be included in each run and the equation generated should only be used to adjust 

samples with unknown digestibilities in the respective runs. McLeod and Minson 

(1969a,b, 1974, 1976.) suggested that in order to accurately predict in vivo digestibility of 

feed samples, in vitro data should be corrected by a standard set of feeds with known in 

vivo digestibilities.  The correction will account for variation between runs due to 

differences in rumen fluid inoculum.  Tilley and Terry (1963) also suggested that at least 

two feeds should be used as standards to predict in vivo digestibility more accurately.  

Weiss (1994) concluded that a universal equation can not be used and that each in vitro 

run should be adjusted accordingly because of variation in analytical techniques and 

variation caused by donor animals.  It was also stressed that high correlations between in 

vitro and in vivo digestibilities does not make them equal and equations must be derived 

in order to convert in vitro data to in vivo data.     

 Genizi et al. (1990) reported that regression equations differed between three 

different laboratories using the same samples with known in vivo digestibilities.  They 

also reported that within a single laboratory the equations between runs differed even in 
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one laboratory where two water baths were used and the technicians and inoclum were 

the same.  The residual standard error was 0.0002 higher for uncorrected data compared 

to corrected data.  Genizi et al. (1990) concluded that no information suggests that the use 

of regression equations will reduce the variation between in vivo and in vitro estimates.  

They did suggest that if similar feeds consistently vary between in vivo and in vitro 

digestibility then adjustment equations should be used. 

 The standard deviation of the 21 in vitro runs ranged from 2.63 to 3.61 percentage 

units with an average of 3.27 percentage units.  Data from each in vitro run were entered 

into the corresponding regression equation to convert in vitro data to in vivo values.  The 

standard deviation of the adjusted data ranged from 0.86 to 2.43 percentage units with an 

average of 1.78 percentage units.  The decrease in the standard deviation  units indicates 

that the regression equations adjusted the data closer together among runs and closer to 

the in vivo values; thus, making the estimated digestibility more accurate and precise.  

Increasing the number of tubes per standard within a single in vitro run improved the R2 

of the regression equation (Table 5) when two tubes per standard were compared to five 

tubes per standard.  The R2 for regression equations increased from 0.7248 to 0.7602 for 

DMD and from 0.7249 to 0.7752 for OMD between two and five tubes per run.  When 

the number of tubes increased from two to three or four tubes per run the R2 values were 

greater for the higher number of tubes.  These results indicate that the precision of the 

regression equations is increased with increasing the number of tubes per standard within 

a single in vitro run. 

 



 

 

67

In Situ and Mobile Bag 

 Undegradable intake protein digestibility of the five forages ranged from 34 to 

62.4% (% of UIP) (Table 1).   These results agree with several other published UIP 

digestibilities for forages (Gustad, 2006; Haugen et al., 2006a;).  Haugen et al. (2006a) 

reported that UIP digestibilities of dehydrate alfalfa hay, sun-cured or freeze-dried were 

46.4, 25.6, and 14.7% (% UIP), respectively.  The researchers also reported UIP 

digestibility of clipped smooth bromegrass in June and July was 70% and 46% whereas, 

it was of 28% and 47% for birdsfoot trefoil (Lotis cormiculatus) in June and July, 

respectively.  Gustad (2006) determined UIP digestibility of diet samples collected from 

esophageally-fistulated cows grazing Sandhills range pastures with varying levels of 

grazing pressure.  In control pastures (stocking rates = recommended rates for the area), 

UIP digestibility ranged from 15.9% in early August to 44.9% in mid June and appeared 

to decrease with advancing stages of forage maturity.  When stocking rate was double the 

recommended rate, UIP  digestibility ranged from 16.9% to 33.6% (% UIP)  Digestibility 

of UIP appeared to decrease from mid June through mid July; however, it increased in 

late July and early August (23.8 and 25.0%, in late July and early August, respectively).  

Similar trends were observed in the double stocked treatment with the addition of 

supplement (protein and energy); UIP digestibility ranged from 11.6% to 30.5% (% UIP).  

When the authors expressed UIP and total track indigestible protein (TTIDP) as a percent 

of dry matter, no differences were observed between treatment or collection time.  The 

authors also found UIP and TTIDP (% DM) ranged from 1.59 to 2.53 and 1.27 to 2.18, 

respectively.  Results from these experiments indicate that the UIP digestibility is lower 
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than the current equations used by both the ARC (85%) and the 1996 beef NRC (80%) 

for forages. 

 The rate (kd, % h-1) of NDF in situ digestibility was significantly different (P < 

0.0001) among the different hays (Table 3).  Both of the alfalfa hays had  higher rates of 

NDF digestibility (7.1 and 7.5 % h-1 for Malf and Ialf, respectively) than the three grass 

hays.  Within the three grass hays Ibrome was higher (P < 0.0001) compared to Mbrome 

and Prairie hay (4.8, 3.3, and 3.6 % h-1 for Ibrome, Mbrome, and Prairie, respectively).  

Gustad et al. (2006) reported rates of  NDF digestibilities ranging between 4.44 to 6.61 % 

h-1 in diets collected from native Sandhills range pastures with differing levels of grazing 

pressure.  They also reported no differences (P > 0.05) between collection time points 

(Mid June through early August) or grazing levels (recommended stocking rate or double 

recommended stocking rates).   

 Rate of ruminal CP degradation differed (P = 0.025) among the five hay samples 

(Table 3).  Prairie hay degradation was lower (P < 0.05) than the other four hays.  No 

differences (P > 0.05) were found among the two brome hays and the two alfalfa hays.  

The rate of degradation ranged from 4.2 to 10.4 % h-1 .  Similar rates were observed 

(Haugen et al., 2006a) in diet and clipped samples of alfalfa, birdsfoot trefoil, kura 

clover, and bromegrass measured between 10 h and 75 % TMRT.  Their rates were 

lowest (7.98 % h-1) for diet samples of birdsfoot trefoil and highest in clipped samples of 

kura clover.  The average rate of CP degradation was 9.44 % h-1 for the clipped samples 

and 8.65 % h-1 for the diet samples. 

 Total tract NDFD determined via the mobile bag procedure (Figure 3) was highly 
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correlated (r = 0.744) to in vivo NDFD.  Ruminal NDFD was also correlated (r = 0.508) 

to in vivo NDFD.  When total tract NDFD was regressed against in vivo NDFD the 

equation indicated a strong relationship (R2 = 0.553) between in vivo and mobile bag 

NDFD.  The relationship between in vivo NDFD and rumen NDFD was not as strong (R2 

= 0.261). These results indicate that the mobile bag procedure using a total tract 

incubation for estimating NDF digestibility could be used as an estimate for in vivo 

NDFD.  The mobile bag technique can also be used for determining protein fractions and 

the digestibility of the UIP fraction.  This would be beneficial for nutritionist and 

researchers when formulating rations and estimating MP.   

 

Implications 

 Results from this trial indicate that the five forages (Malf, Mbrome, Ialf, Ibrome 

and Prairie) could be included in IVDMD determination procedures as standards.  Within 

each separate IVDMD run, regression equations can be generated to adjust the data to in 

vivo digestibility values.  This adjustment also could enable researchers to compare 

separate in vitro runs in situations where sample numbers are too large to perform a 

single run or in the case where multiple in vitro runs are used to increase replication. 
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Table 1: Chemical composition of the hays fed to steers. 
 
                Diet 
Variable          Prairie        Malf      Mbrome     Ialf          Ibrome 
 
CP, %   7.9        16.3      7.5              17.6       9.3 
  UIP, % of CP 27.9          14.9           37.2            10.1         22.6 
  TTIDP, % of CP 1   16.6            8.0           15.3            5.0          14.8 
  UIPD,% of CP 2 40.1          62.4           58.9            46.0         34.0 
 
  UIP, % of OM 2.53 2.78 3.91 2.10 1.92      
TTIDP, % of OM 1 1.45 1.45 1.58 1.00 1.20 
  
IVDMD, %  52.8          52.9     53.9  63.9       59.1 
NDF, %          68.3          67.9           69.6            60.5         66.7 
ADF, % 43.4 43.7 43.7 35.2 40.0 
 
1 Total Tract Indigestible Protein  
2 Lower Tract UIP Digestibility 
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Table 2: In Vivo and In Vitro digestibility of five different hays fed to yearling steers. 
 
                             Diet         Statistics  
Variable          Prairie      Malf      Mbrome     Ialf      Ibrome     SEM      P-value 
  
In Vivo 
DMI, kg1     5.2b        6.4ac       5.7b            6.8c       5.8ab 0.6 <0.01 
DMD, %     44.4b      48.3ab        49.8a       61.7d     55.5c  1.6     <0.01 
OMD, %      48.6c     51.5bc        54.5b      63.9a   59.2a 1.4    <0.01 
NDFD, %     47.1b      47.0b       45.2b           53.7a     57.0a 2.3     <0.01 
True DMD, %2 61.3c 64.6a 64.8a 75.8d 69.1b 1.1 <0.01 

Metab Loss, %3 18.7c 16.5bcd 14.6ab 14.7ad 13.7a  0.8 <0.01 
 
In Vitro 
DMD, %  52.8c    52.9c 53.9ac 63.9b 59.1ab  1.6 0.02 
OMD, %  49.8c 54.5c 57.9ac 64.2b 62.4ab 2.0 0.03 
NDFD, %  43.8b    43.4b 48.6ab 51.5a 54.0a  1.6 0.03 
  
 
1 DM basis 

2 Means true dry matter digestibility = (DMI - Fecal NDF) / DMI 

3 Means metabolic losses = True DMD - DMD 

abcd Least square means within row without common superscripts differ (P<0.05)  
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Table 3: Rate of ruminal degradation of five hays incubated at 0 and 75 % total 

mean retention time in two ruminally fistulated steers 

 
                             Diet         Statistics  
Variable          Prairie      Malf      Mbrome     Ibrome      Ialf      SEM      P-value 
  
NDF kd, %/hr-1 1 3.6b 7.1a 3.3b 4.8 7.5a 0.2 <0.01 
CP kd, %/hr-1 1 8.2a 10.4a 4.2a 7.6b 8.6a 0.8 0.02  
1 Means true dry matter digestibility = (DMI - Fecal NDF) / DMI 

abcdef Least square means within row without common superscripts differ (P<0.001)  
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Table 4: Regression equations and correlation between in vitro and in vivo 
digestibility for each of the 21 different in vitro runs. 
 
Run   Regression Equation  R2   
 
1   ya = 1.0625x - 10.157   0.6936   
2   y = 1.4638x - 29.149   0.9728  
3   y = 0.8894x - 0.2181   0.6708 
4   y = 0.9487x - 5.0014   0.7516 
5   y = 0.7739x + 6.3929   0.6245 
6   y = 1.0496x - 14.577   0.7104 
7   y = 0.9545x + 0.534   0.6683 
8   y = 1.01001x - 2.4536  0.8222 
9   y = 0.8313x + 4.7293   0.6414 
10   y = 1.0827x - 8.989   0.9723   
11   y = 1.0158x - 3.944   0.8367 
12   y = 1.2546x - 18.997   0.7720 
13   y = 1.3713x - 27.817   0.7471 
14   y = 1.4169x - 29.331   0.5352 
15   y = 0.9396x - 4.9711   0.7611 
16   y = 0.9549x - 3.1735   0.7491 
17   y = 1.0491x - 8.8189   0.7696 
18   y = 1.1266x - 14.804   0.8437 
19   y = 0.9456x - 9.1987   0.6874 
20   y = 1.1538x - 14.568   0.8948 
21   y = 1.088x -13.859   0.5766 
All Runs1  y = 1.1626x - 15.584           0.8305 
 
1 Analysis of the 21 individual combined together 
a y predicted in vivo digestibility 
b x means non-adjusted in vitro digestibility 
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Table 5: Regression equations and R2 values for different number of tubes per 
standard within a single in vitro run. 
 
 
Number of Tubes Regression Equation  R2   
 
DMD 1 
2   ya = 0.9303xb + 0.5207  0.7248   
3   y = 0.9951x - 3.3778   0.7088  
4   y = 0.9357x - 0.1108   0.7385 
5   y = 0.9165x + 1.0275   0.7602 
 
OMD 2 
2    y = 0.9538x - 5.346    0.7249   
3   y = 1.0232x -9.4986   0.7487  
4   y = 0.9467x - 5.2607   0.7485 
5   y = 0.9432x + 5.1267   0.7752 
 
1 Regression equations from DMD of in vivo and in vitro digestibility of five different 
hay samples 
2 Regression equations from OMD of in vivo and in vitro digestibility of five different 
hay samples 
a y predicted in vivo digestibility 
b x means non-adjusted in vitro digestibility 
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Figure 1: Regression analysis of in vivo vs. in vitro digestibility.  No significant 
difference between slopes (P=0.99) was found.  There was a significant difference 
between run (P=0.04). 
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Figure 2: Regression analysis of the average of all 21 in vitro runs.  On average in 
vitro DMD is 6.4 percentage units higher than in vivo digestibility.  This equates to 
an 11% difference between in vivo and in vitro digestibilities.  
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Figure 3: Regression analysis of in vivo NDF digestibility and Total Tract NDF 
digestibility determined from the mobile bag procedure.  Strong relationship (R2 = 
0.553) between in vivo and total tract NDFD was detected. 
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Prediction of Year Round Protein and In Vivo Digestibility of Diets Consumed by 

Cattle Grazing Native Nebraska Sandhills Range Pastures 

 

B. G. Geisert, D.C Adams, T. J. Klopfenstein, J.A. Musgrave, J. Benton 

Department of Animal Science, University of Nebraska, Lincoln 68583-0908 

 

Abstract:  Feed accounts for the majority of the variable costs with beef production.  

Formulating supplements for grazing cattle to accurately meet their nutrient requirements 

with economical feedstuffs is challenging due to the limited data on diet quality of 

pastures. The objective of this trial was to develop a prediction model which will estimate 

diet digestibility and protein while accounting for precipitation, time of the year and 

grazing pressure.  Monthly diet samples were collected from esophageally fistulated cows 

from May 2003 through November 2005.  Samples were freeze dried, ground and 

composited for CP, UIP, UIP digestibility, IVOMD, and NDF analysis.  Diet samples 

were highest (P < 0.0001) in CP and digestibility during April and May, declined 

throughout the remaining summer and remained relatively constant through the dormant 

season.  A significant year*grazing effect (P = 0.035) was detected for CP where CP was 

lower at high levels of grazing during 2005 compared to all other levels of grazing in the 

three years.  No other month*grazing or year*month*grazing interactions (P > 0.05) were 

detected for diet CP and no month*grazing or year*month*grazing interactions (P > 

0.05) were detected for diet digestibility.  As stocking rate  increased, OMD and DMD 

decreased (P < 0.0001).  Diets collected in 2005 were lower (P < 0.0001) in OMD and 
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DMD compared to 2003 and 2004, with 2003 being the highest in digestibility and 2004 

intermediate.  Prediction equations models generated to estimate diet CP and OMD were 

significant (P < 0.012 and R2 ranging between 0.3371 and 0.630). Predicted OMD values 

were highly correlated (r = 0.7996) to observed OMD and there were no statistical 

differences (P = 0.9999) between predicted and observed OMD.  Predicted CP values 

were also correlated (r = 0.8107) to observed CP and no difference (P = 0.1615) was 

observed between observed and predicted CP values.  Prediction equations generated 

from these data can be used to estimate diet CP and in vivo OMD of diets consumed by 

cattle grazing Sandhills range pastures. 

 

Introduction 

 Feed  inputs account for the majority of the variable costs associated with beef 

production.  Use of year-round grazing systems can reduce the need to feed harvested or 

purchased forages (Adams et al., 1994) and increase profit potential for beef producers.  

Forages can be harvested during periods when the quality is higher and the forage quality 

may be preserved until time of feeding.  However, when grazing native range year-round, 

diet quality varies throughout the year in response to weather patterns, grazing pressure and 

other variable (Lardy et al., 1997; Patterson et al., 2000).  Lower diet quality during the 

dormant months may increase the need for protein and energy supplements during these 

periods to meet the animal’s requirement (Lardy et al., 1997).  Reports of digestibilities of 

diets collected by grazing cattle are limited.  Lardy et al. (1997) demonstrated that diet dry 

matter digestibility of cattle on Sandhills upland range was the highest in June and July and 
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decreased through the dormant season.  However, these digestibility estimates are relative 

differences and in vivo digestibility was not estimated nor was IVDMD was not adjusted to 

DE therefor, may not be as accurate for use in the NRC Model.     Prediction of diet quality of 

grazing cattle can be difficult because of the interacting effects of grazing, moisture, animal 

selectivity, plant maturity, and diversity of plant communities (Weir and Torell, 1959; Cook, 

1964; Kamstra et al., 1968; Wallace et al., 1972; Kamstra, 1973; Powell et al., 1986; Walker 

et al., 1989; McKown et al., 1991; McCollum et al., 1994; Lardy et al., 1997).  Accurate 

estimates of diet energy and protein are very important in formulating supplements and 

prediction of animal performance in grazing situations (Weiss, 1994; Lardy et al., 2004; 

Patterson et al., 2006).   

 In vitro OMD procedures have been shown to be highly correlated to in vivo 

digestibility (Weiss, 1994).  However, when using the beef NRC (1996) to predict animal 

performance, the direct conversion of IVOMD equal to TDN is not as precise as using an 

equation (Rittenhouse et al., 1971) to convert IVOMD to DE, where DE is equal to TDN 

(Lardy et al., 2004; Patterson et al., 2006).  Lardy et al. (2004) and Patterson et al. (2006) 

evaluated the accuracy of using the NRC model to predict grazing cattle response.  They 

used the conversions of IVOMD equal to TDN or IVOMD to DE using the equation 

described by Rittenhouse (1971) to predict animal performance of grazing cattle.  Both 

Lardy et al. (2004) and Patterson et al. (2006) reported that the accuracy of predicting 

animal performance based on the conversions to DE as an estimate of TDN was 

improved  trials where actual changes in BCS were known.  Researchers concluded that 

the DE conversion was a better estimate for TDN.  However, in vivo data should be used 
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when available.  Unfortunately in vivo data are very limited and difficult to develop.  The 

objectives of this trial were to: 1) evaluate yearly diet digestibility and protein in the 

Sandhills; 2) convert in vitro DMD and OMD to in vivo DMD and OMD to use for TDN 

estimation; and 3) develop a model to predict diet energy and protein with the inputs of 

day, precipitation, and grazing pressure.   

  

Materials and Methods 

Diet Collection 

  Masticate samples were collected from the University of Nebraska Gudmundsen 

Sandhills Laboratory (GSL) located 20 km northeast of Whitman, Nebraska.   GSL is 

located in the west-central region of the Nebraska Sandhills.  The ranch consists of 

approximately 4695 ha of native upland rangeland.  Average annual precipitation for the 

area is 46-51 cm.  Diet samples were collected beginning in May 2003 and collection was 

continued through November 2005.  The plant growth patterns (April through March) 

were used to separate the data collected into three separate years.  Cumulative 

precipitation data began on October first of the previous year and was accumulated until 

one week prior to the collection date.  Therefore, the yearly moisture calendar was from 

October first of the previous through September 30th of the current. Masticate samples were  

collected monthly during the dormant (October, November, December, January, 

February, and March) season and every three weeks during the growing (April, May, 

June, July, August, and September) season to account for rapid changes due to plant 

growth.  Masticate samples were collected using mature, multiparous beef cows fitted 
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with esophageal fistulae.  Six cows were fasted overnight prior to collection.  On the 

morning of collections, cows were randomly separated into two groups consisting of 

three cows each.  Each group of cows collected samples from two different pastures 

beginning at 0700 hr for a total of four pastures sampled per collection time point.  Cows 

were hauled to the collection sites in a trailer.  Once at the collection site esophageal 

fistulae plugs were removed and bags (with screen bottoms) were hung on the neck of 

each cow and secured in place via a nylon belly strap tied behind the front shoulder.  A 

bungee cord was used to attach the belly band to the nylon collection bag so that bags 

remained in place and cow movement was not restricted.  Cows were allowed to graze for 

15 to 45 minutes (until a significant sized sample was collected, approximately 1 kg of 

sample).  Following grazing, bags were removed and the masticate samples were sub-

sampled and excess saliva was hand squeezed from the sample.  Sub-samples were frozen 

and were later freeze dried.  Following freeze drying samples were ground through a 

Wiley Mill using a 2-mm screen.  Sub-samples were then composited by collection date 

and pasture.  Composite samples were mixed and a portion was ground through a Wiley 

Mill using a 1-mm screen.  Samples were analyzed for N, undegradable intake protein 

(UIP), degradable intake protein (DIP), IVDMD, IVOMD and neutral detergent fiber 

(NDF).     

 One pasture remained constant throughout the trial and was not grazed and was 

sampled during every collection time.  The other three pastures varied between each 

collection time and were selected based on the amount of grazing pressure at the time of 

collection.  These three pastures varied from a high levels of grazing pressure to a low 
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level of grazing pressure at each time point.  They also varied in location throughout the 

ranch based on where the different cow herds were grazing at the time of collection.  

Stocking rate was used in determining the main effects of month, year, grazing level and 

their respective interactions.  Study pastures were generally in good to excellent range 

condition.  Recommended stocking rate for pastures in good to excellent conditions in the 

GSL area is 1.2 AUM/ha.  Stocking rate was calculated for each pasture at the time of 

collection.  If the stocking rate was equal to or greater then the recommended stocking 

rate for the area (1.2 AUM/ha) the stocking rate was considered to be high (High).  While 

stocking rates  between 0.1 and 1.1 AUM/ha, grazing pressure was considered medium 

(Med).  Stocking rate was considered zero (None) at stocking rates less than 0.1 

AUM/ha.   

 Grazing pressure was used in for regression analyses for forage quality prediction.  

Grazing pressure (AU/unit forage over a period of time) was determined based on the 

actual grazing (AUM/ha) history of the pasture and forage yield up to the time when the 

sample was collected. 

Forage Yield Prediction 

 Forage yield was determined using standing crop data (clipped on August 15th of 

each year) from GSL from 1998 through 2006 and the Barta Brothers Ranch from 1999 

through 2006.  Cumulative precipitation was recorded from each of the locations during 

these dates.  Cumulative moisture was recorded from October 1 of the previous year to 15 

days prior to the sampling date.  Amount of precipitation was collected and recorded 

throughout the trial using the weather station located on the ranch site for GSL and the 
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weather station located at Rose, Nebraska for the Barta Brothers Ranch.  Forage yield 

was regressed against the cumulative precipitation to generate an equation to adjust 

forage yield for precipitation.  The resulting regression equation is y = 71.056x + 412.47 

(R2 = 0.3575) where x is the cumulative moisture and y is forage yield.  After annual 

forage production was calculated, the total forage production was adjusted to the different 

days of the year in order to account for forage growth patterns.  Forage yield was 

calculated for each day of the year based on forage growth curves generated by the 

NRCS for the Nebraska Sandhills region.  The total forage yield was then adjusted using 

the equation y = 1.953E07x4 - 1.692E05x3 + 0.0498x2 - 5.244x + 178.284 (R2 = 0.99) 

where x is day and y is cumulative forage production percentage for day of the year.  

April 1 was entered as d 1, the beginning of plant growth.  

Validation Data Set 

   Masticate samples were collected from three additional locations to be used for 

validating the prediction model.  One location was at GSL (GSL2) in a separate set of 1-

ha pastures not used in the main data set.  Prior to the initiation of this trial this upland 

range site had not been grazed for 7 years and was in good to excellent condition.  These 

pastures were stocked at 3 different levels which included the recommended stocking rate 

(1.2 AUM/ha,), double the recommended stocking rate (2.5 AUM/ha) and double stocked 

plus supplement (2.27 kg/hd/d DDGS).  Cattle used in this experiment rotationally grazed 

the 1-ha paddocks.  Masticate samples were collected following the same procedure 

previously described at the mid point of each grazing event.  Masticate samples were 

collected from mid June through mid August in 2005 and 2006.  
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  The second location was near Imperial, Nebraska at a commercial ranch.   Diets 

were collected from non-grazed pastures using three esophageally fistulated cows.  

Vegetation at this location was a mixed grass prairie consisting predominately warm 

season grass species with a smaller portion of cool season grass species.  This location is 

on the southern edge of the Sandhills and the edge of the Plains regions.  The plains 

region is flat-lying land which is above the valley regions.  Cows were transported to the 

location two days prior to collection.  They were allowed to graze a pasture near the 

collection sites in order to acclimate the cows to the forages in the area.  Collection 

protocol was the same as previously described.  Masticate samples were collected from 

May through September in 2003 and from May through November in 2004.   

 The third location was at the University of Nebraska Barta Brothers Ranch (BBR)  

near Rose, Nebraska.  The Barta Brothers Ranch is located near the eastern edge of the 

Sandhills.  Four mature, multiparous esophageally-fistulated cows were used to collect 

masticate samples periodically through the summer grazing season (May 15 to October 

15) of 2005.  Masticate samples were collected from 4-pasture deferred rotational grazing 

systems and 8-pasture management intensive grazing systems. Cows were maintained in 

pastures near the handling facilities.  All samples collected from the validation locations 

were analyzed for CP, IVDMD, IVOMD, and NDF.  All masticate samples were handled 

following the same procedure as described above. 

In Vitro to Predict In Vivo Digestibility 

 In vitro DMD and OMD were measured using a modified version of the in vitro 

procedure described by Tilly and Terry (1964).  Samples were ground through a 1-mm 
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screen.  The original procedure was modified with the addition of 1g urea L-1 of 

McDougall’s buffer.  Rumen fluid was collected from two steers (BW = 250 kg) for each 

of the in vitro runs.  Steers were fed a bromegrass hay diet once daily at 1.5% of BW.  A 

standard set of samples (five hays) with known in vivo digestibilities were included in 

each in vitro run (Geisert et al., 2006).  Regression equations were determined for each 

separate run and in vitro DMD and OMD of the masticate samples were adjusted using 

those equations (Geisert et al., 2006; Weiss, 1994).  Due to the large number of samples, 

four separate in vitro runs were conducted.  Samples were run in triplicate tubes over 

three separate in vitro runs, and standards were  included with five tubes in each run.      

In Situ and Mobile Bag Incubations  

 In situ and mobile bag procedures were performed on samples collected in 2004 

and 2005.  In situ incubation was conducted using two ruminally and duodenally 

fistulated steers (BW = 250 kg).  Dacron bags (Ankom Inc, Fairport, NY) measuring 5 x 

10 cm with 50 Φm pore size were filled with 1.25 g of air-dried hay sample ground 

through a 2-mm screen and heat sealed.  Donor animals were fed once daily a bromegrass 

hay ration at 1.5% BW.  Triplicate  bags were incubated at each time point and replicated 

within each of the two steers.  Time points for incubation were 0, 25, 30, and 96 h.  The 

25 and 30 h times were calculated at 75% TMRT plus a 10 h lag with the 25 h incubation 

for samples collected in April through September and the 30 h incubation for samples 

collected January through March and October through December.  Following ruminal 

incubation, bags were washed in a washing machine for 0.25 h using a 1-min agitation 

and 2-min spin.  The washing cycle was repeated a total of 5 times.  Bags were refluxed 
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in neutral detergent fiber solution following washing in order to remove any microbial 

contamination and to determine NDIN.  The 0-hr bags were not suspended in the rumen, 

however, they were washed and refluxed following the same procedure.  Bags were dried 

in a 60°C forced air oven for 48-h following reflux.  They were weighed out of the oven 

after setting in a desicator for 5-min (hot weight).  Following the hot weight, bags were 

allowed to air equilibrate for 3 h and were weighed again.  Residue remaining in the bags 

were analyzed for N using the combustion method (AOAC, 1996) in a combustion 

analyzer (Leco FP-528, St. Joseph, MI) 

 A second set of bags (75% TMRT) were incubated in the rumen following the 

same procedure and the same donor animals described for the in situ incubation.  Each 

masticate was replicated in 2 bags/steer.  Following ruminal incubation, bags were 

incubated in a pepsin and HCl (1 g L-1 pepsin and 0.01 M Hcl; 62.5 ml/bag) solution at 

37°C for 3 h to simulate abomasal digestion.  Bags were then randomly sorted for 

duodenal insertion with 7 or 8 bags/d.  Bags were inserted into the duodenal fistula of 

each steer over two d.  Seven bags were inserted on d 1 and 8 bags on d 2.  Steers were 

fed a bromegrass hay diet at 1.5% BW at 0700 h daily.  Bags were inserted beginning at 

1700 at a rate of 1 bag every 5 min to prevent blockages in the intestine of the animal.  

Bags were collected in the feces beginning 12 h after insertion and frozen until all bags 

were collected.  Following collection of all bags they were machine washed and refluxed 

in NDF solution following the same procedure as the in situ incubation.  Bags were 

weighed and analyzed for N in the same manner as previously described for the in situ 

bags. 
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Model Prediction 

Dietary OMD and CP predictions models were generated using the regression procedures 

in SAS (SAS Inst. Inc., Cary, NC) and the forward, backward, and stepwise options for 

model selection.  Variables included in the model included the linear, quadratic, and 

cubic effects of precipitation, grazing pressure and Julian day.  In building the prediction 

model of OMD, the data were separated into three categories by Julian day to account for 

the difference in the plant growth curves and to accurately separate the variables 

significantly impacting OMD at each given point in time.  The three categories were 

early growing season (Julian d 1-76), late growing season (Julian d 77-183) and dormant 

season (Julian d 184-365). 

Statistical Analysis  

 Diet chemical analyses were analyzed using the MIXED procedure of SAS (SAS 

Inst. Inc., Cary, NC).  The main effects of month, fixed effects of year and grazing level, 

and their respective interactions were analyzed using the Mixed procedures of SAS (SAS 

Inst. Inc., Cary, NC).  A protected F-test was used to evaluate moisture, grazing pressure, 

and day of year differences.  Least square means were separated using Least Significant 

Difference method when a significant (P < 0.05) F-test was detected. The diet quality 

prediction model and forage yield model were analyzed using the GLM and REG 

procedure of SAS (SAS Inst. Inc., Cary, NC).  Mobile bag and in situ data were analyzed 

as a completely randomized design using the MIXED procedures of SAS (SAS Inst. Inc., 

Cary, NC).  All trial procedures were approved by the University of Nebraska 

Institutional Animal Care and Use Committee. 
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Results and Discussion 

Precipitation and Grazing Level 

 Yearly precipitation (Table 1) ranged from a total of 32.0 to 46.7 cm.  Average 

annual precipitation for this area ranges from 46 to 51 cm annually.  During the third year 

annual precipitation was near the average for the area.  However, 2003 and 2004 were 

drought years for the Sandhills with totals of only 32.0 and 38.1 cm in 2003 and 2004, 

respectively. 

Diet Protein, Fiber, and Digestibility Analysis 

 No year*grazing, month*grazing, or year*month*grazing interactions (P > 0.05) 

were detected for diet digestibility.  As expected, IVOMD and IVDMD were highest (P 

<0.001; Table 2) during spring and early summer (April through June).  Digestibilities 

decreased over the course of the rest of the summer and remained fairly constant 

throughout the winter months.  Significant year and grazing level effects (P < 0.001) were 

detected (Figure 1 and Figure 2).  Similar results were observed (Lardy et al., 1997) at 

GSL in earlier studies.  Lardy et al. (1997) used multiple regression equations to estimate 

diet protein and digestibility.  Estimated protein and energy values for upland Sandhills 

range pastures were highest in May and June, decreased through the summer and early 

fall, then remained relatively constant during the winter and early spring (Lardy et al., 

1997).  The slight increases in August and September likely were the result of cool 

season grass growth.  Lardy et al. (1997) reported IVDMD values ranging from 59.2 to 
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68.1% during the growing season and from 48.9 to 55.7% for diets collected during the 

dormant season. Lardy et al. (1997) results (52.0%) were on average very similar to 

adjusted IVDMD values (53.3%) from this trial for diets collected during the dormant 

season.  During the growing season, adjusted IVDMD values for the current trial 

(average IVDMD, 58.4%) were on average 5.5 percentage units lower than IVDMD 

reported (63.8 %) by Lardy et al. (1997).   These lower values during the growing season 

are due to the adjustment equation which decreases the IVDMD values.  Adjustments of 

the current IVOMD data were greater in samples collected during the growing seasons 

than those collected during the dormant season.  Results from Lardy et al. (1997) were 

not adjusted to in vivo digestibility and may not be as accurate in predicting animal  

response and formulating rations as data generated from this trial especially during 

growing season grazing periods.  Patterson et al. (2006) adjusted IVOMD data to DE 

using the equation published by Rittenhouse et al. (1971) which was entered into the 

NRC (1996) model as TDN.  Researchers compared the ability of the NRC to predict 

animal response (BCS) using IVOMD = TDN and DE = TDN.  Patterson et al. (2006) 

concluded that using the adjusted TDN based on the Rittenhouse et al. (1971) equation, 

the NRC model (1996) was more accurate at predicting changes in BCS.  

 Similar results in diet quality patterns were observed (Cogswell and Kamstra, 

1976; Johnson et al., 1998) where CP and digestibility decreased from June through 

September (Cogswell and Kamstra, 1976) and December (Johnson et al., 1998).  It has 

been well documented that advancing stages of plant maturity decrease diet protein and 

digestibility and increases diet fiber and lignin (Kamstra et al., 1968; Wallace et al1972; 
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McCollum and Galyean, 1985; Johnson et al., 1998) . 

 A significant (P <0.001) year effect was detected for both IVDMD and IVOMD 

(Figure 1).  Organic matter digestibility was lower in 2004 and 2005 than in 2003.  Dry 

matter digestibility was different among all three years with DMD highest in 2003, 

lowest in 2005 and intermediate in 2004.  The decrease in diet digestibility among years 

likely is related to annual precipitation.  In 2003 and 2004, when the annual precipitation 

was well below the average for the region, plant maturity could have been delayed, 

allowing animals to graze plants in a vegetative stage of plant growth for a longer period 

of time.  The lower precipitation in 2003 could have increased IVDMD and IVOMD 

compared to 2004.  Wilson et al. (1983, as cited by Nelson and Moser, 1994) reported 

higher digestibility of leaf and stem portions in water-stressed plants.  Extended periods 

of drought have been reported to delay plant maturity (Halim et al., 1989; Peterson et al., 

1992).  They also reported decreased shoot length in drought stressed plants which 

increases the leaf:stem ratio also resulting in an increase in forage digestiblity. 

  Increasing stocking rate significantly (P < 0.02) decreased OMD and DMD of 

masticate samples, where high grazing was different compared to none-grazed pastures 

(Figure 2).  Medium stocking rate was intermediate and not different from either high or 

none-grazed pastures.  Increasing grazing likely decreased the amount of higher 

digestible plants or plant parts available for grazing which decreased the digestibility of 

the diets collected.  Rauzi (1964) reported a negative regression in diet quality during 

cool-season grazing (both IVOMD and CP) as grazing pressure increased in 

esophageally-fistulated sheep and cattle diets.  During warm-season grazing, CP and 
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IVOMD decreased in diets collected by cattle with increasing grazing pressure.  

However, sheep diets during the same grazing season did not differ in CP or IVOMD.  

Researchers concluded that similarity in the diets collected from sheep was because the 

ability of sheep to select diets of higher quality was not affected by increasing levels of 

grazing pressure.  

  Plant species preference by livestock likely changes as grazing intensity increases 

because of decreased availability of highly preferred plant species (Pieper et al., 1959).  

Other research (McCollum et al., 1994; Hirschfeld et al., 1996) has shown increased CP 

and digestibility of diets in grazing animals as grazing systems are shifted from a 

continuous grazing to a rotational grazing system and when the number of cycles within a 

rotational system increases.  Increased diet quality in these trials could be attributed to 

increasing the time that the preferred plant species are in the vegetative growth stage. A  

year-by-stocking rate effect (Figure 4) was detected (P = 0.035) for CP content of 

masticate samples from range pastures.  Diets collected from high stocking rate pastures 

during 2005 were lower (7.1% CP) in CP compared to the other two stocking rates 

(average of 8.5%) over the three years.  No difference was detected between the other 

two stocking rates within year.  This effect could be attributed to below average 

precipitation in both 2003 and 2004.  During those years of drought, CP concentration in 

plant tissue was greater because of lower plant tissue yields (Weir and Torell, 1959, and 

Gregorini et al., 2006).  Cows could also have selected plants such as shrubs and forbs 

during those times of below average forage yields which could have contributed to 

increased protein content of diets collected from pastures with high levels of grazing 
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(Taylor et al., 1980).  During 2005 when precipitation was average, forage yield was 

increased thus decreasing the concentration of protein in the plants.  Cows could have 

consumed more grass species and fewer forb and shrub species during 2005 as well.  In 

this trial, increased grazing likely reduced the forage available for grazing thus 

decreasing the protein content of the diets collected in 2005.   

 Monthly CP (Table 2) values were highest (P < 0.001) during May (peak of cool-

season plant vegetative growth) and remained high during June and July (during warm-

season plant vegetative growth).  Crude protein values decreased through the remainder 

of the growing season and then remained relatively constant during the dormant season 

(Figure 4).  Lardy et al. (1997) reported similar results for CP values of upland Sandhills 

ranges pastures with the highest protein values in May and June with a sharp decrease 

throughout the growing season and relatively stable during the dormant season.  On 

average, the CP content of masticate samples collected during the growing season were 

similar for the current trial (10.1 % CP) and the trial reported by Lardy et al. (1997) (10.0 

% CP).  Crude protein values of diets collected during the dormant months for the current 

trial were higher (7.2 % CP) than those reported (5.4 % CP) by Lardy et al. (1997).  This 

could be due to more data collected in the current trial and more months included in the 

data set (6 months vs 4 months).  White (1983) reported CP of vegetative tillers was 

higher (25% CP) than floral tillers (5.9% CP) indicating that mature plants have lower CP 

values than growing plants.  Johnson et al. (1998) showed a linear decrease in dietary CP 

of diet samples collected from mid June through December. 

 No grazing-by-year or grazing-by-month interactions (P > 0.301) were detected 
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for NDF content of the diet samples.  Results from NDF data followed similar trends as 

IVOMD and IVDMD.  Diet samples in 2005 were significantly higher (P = 0.0173) in 

NDF than diet samples collected in 2003 and 2004 (Figure 3).  Neutral detergent fiber of 

diets collected in 2003 and 2004 were not different.  The higher NDF content in 2005 

could be explained the higher precipitation in 2005.  Lower precipitation in 2003 and 

2004 delayed plant maturity keeping the plants in a vegetative stage of growth longer 

thus, decreasing fiber content.   

 The NDF content differed (P < 0.0001) among months (Table 2).  Diets were lowest 

in fiber in May, slighly increased in June, decreased in July and August then increased 

throughout the dormant season.  The decrease in May could be due to the vegetative growth 

of cool-season species and the increase in June could be due to the maturation of cool season 

species.  By July and July warm-season grasses were in vegetative growth stages and the 

continued lower fiber into August could be due to cool-season growth and some continued 

vegetative growth of warm-season grasses.  Neutral detergent fiber of dormant season diet 

samples were not different among months (P > 0.05).   These results match results in diet 

digestibility.  The lower NDF content during the early growing season correspond with the 

increase of diet digestibility during the same time point.  Cogswell and Kamstra (1976) 

showed fiber content of four different range grass species was lower in mid June and 

increased through mid September.  Rao et al. (1973) reported decreased NDF of diet samples 

in June and in August through September.  The decreased NDF in late summer was due to 

cool-season plant growth.  The lower fiber content of diet samples in June was due to 

vegetative growth of plants consumed. 
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Protein Fractionation and Digestibility  

 When expressed as a percent of dietary CP, diet UIP, DIP, and total tract 

indigestible protein (TTIDP) showed a month by grazing interaction (Figure 5) (P = 0.02, 

0.02, and 0.03 for UIP, DIP, and TTIDP, respectively) (Table 3).  However, when the 

protein (% CP) fraction was expressed as a percent of dietary OM the month by grazing 

interaction was not significant (P < 0.50) for diet UIP, DIP, and TTIDP.  Undegradable 

intake protein was the lowest in May and increased through December (Table 3).  

Seasonal protein factions are shown in Figure 6.   

 When expressed as a percent of OM, significant  year (P < 0.05) and grazing (P = 

0.04) effects were observed for UIP and significant effects of year (P < 0.05) were 

observed for TTIDP (Table 4).  Undegradable intake protein was higher in 2005 as 

compared to 2004 (2.91 and 2.65 %, respectively).  Increasing stocking rates from none 

to high significantly (P = 0.04) increased UIP.  Johnson et al. (1998) reported a linear 

decrease in UIP, % of CP (mid June through December) of diet samples collected from 

native range in western North Dakota.  Gustad et al. (2006) reported no difference in UIP 

values when expressed on a percent of DM of diet samples of upland range pastures 

between different grazing levels.  Digestibile UIP (% of DM) ranged from 1.2 % to 3.0 % 

with an overall average of 2.2 % of dietary DM.   

 No month by grazing interactions were detected (P > 0.40) for undegradable 

intake protein digestibility (UIPD).  Undegradable intake protein digestibility tended to 

differ among months (P = 0.06).  The overall average UIPD was 38.4% of the dietary 

UIP. When expressed as a percent of CP, significant year and grazing effects (Table 4) 
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were observed in this trial for UIPD.  In 2004, UIPD values were higher than in 2005 

(40.1 and 36.7%, respectively).  Increasing grazing pressure from none to high increased 

the digestibility of the UIP with moderately grazed pastures as an intermediate.  When 

UIPD was expressed as a percent of dietary OM (Table 4) year effects were significant (P 

< 0.01) whereas grazing level was not (P = 0.24).  There was, however, a numerical 

increase in UIPD with increasing levels of grazing.  Digestibility of the UIP was still 

lower in 2005 then in 2004.   

 Undegradable intake protein digestibility values of upland Sandhills range 

pastures were reported (Gustad et al., 2006) to decrease when grazing pressure increased 

from the recommended stocking rate to two times the recommended stocking rates.  

When supplementation (protein and energy) was added to the double stocked paddocks, 

UIPD also decreased (Gustad et al., 2006).  The UIPD in that study ranged from 11.6 % 

to 44.9 % with an overall average of 26.4 % percent of the dietary UIP.  In the control 

paddocks, UIPD ranged from 15.9 % in early August to 44.9 % in mid June and appeared 

to decrease with advancing stages of forage maturity.  When stocking rates were doubled, 

digestibility of UIP appeared to decrease from mid June through mid July; however, it 

increased in late July and early August.  Similar trends were observed with the addition 

of supplements to the double stocking rate treatment. 

 Rate of ruminal protein degradation was different (P < 0.0001) among months with 

the highest rate of degradation for samples collected in April and May.  The rate of protein 

degradation decreased from May through July, slightly increased in August then decreased 

throughout the dormant season and increasing through April.  Increasing grazing pressure 
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decreased (P = 0.02) the rate of ruminal protein degradation (2.14, 3.10, and 7.08 % h-1 for 

high, medium, and none, respectively) (Table 4).  Dietary protein of samples collected in  

2004 degraded at a slower rate (P < 0.001) compared to those collected in 2005 (Table 4).  

Gustad et al. (2006) showed a tendency for the rate of protein degradation to decrease with 

doubling grazing pressure in upland Sandhills pastures.   

 The beef NRC (1996) assumes 80% digestibility of UIP; therefore, one can not 

simply enter the calculated CP into the NRC.  UIP digestibility and CP must be adjusted 

to account for this assumption when entering protein values into the NRC (Table 3).  

Digestibility of UIP can be adjusted using the equation: Adjusted UIP = DUIP / 0.80.  

Then by back calculation CP can be determined using the equation; Adjusted CP = DIP 

(OM basis) + Adjusted UIP (OM basis) 

Model Prediction 

 The crude protein model (Table 5) included Julian d as the only significant 

variable (P < 0.0001, R2 = 0.6330).  The equation for predicting CP of range diets in the 

Nebraska Sandhills is: CP = 0.27321*JD - 0.00456*JD2 + 2.86E-5*JD3 - 8.00949E-9*JD4 

+ 8.34511E-11*JD5 + 7.88021, where JD = Julian day, JD2 = Julian day*Julian day, JD3 

= Julian day*Julian day*Julian day, JD4 = Julian day*Julian day*Julian day*Julian day, 

and JD5 = Julian day*Julian day*Julian day*Julian day*Julian day.  Predicted CP of the 

validation diet samples were correlated (r = 0.69) to the observed CP of the samples.  The 

predicted CP (Figure 7) values peak in May and June and decrease throughout the 

growing season and remain relatively constant during the dormant season.  No difference 

(P = 0.1615) was observed between the predicted CP and the observed CP.  The predicted 
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values were on average 0.27 percentage units lower than the observed values.   

 Significant variables in the OMD prediction equations varied among the three 

different seasonal categories (Table 5) (P values ranged from <0.001 to 0.012, R2 ranged 

from 0.3371 to 0.5490).  Predicted OMD values were not significantly different (P > 

0.99) from the observed OMD values.  When evaluating the prediction of the control 

pasture (no grazing pressure) the model predicted similar results as seen in the observed 

OMD results (Figure 8).  In 2003, lower moisture increased diet OMD, most likely due to 

delayed plant maturity.  In 2005, when moisture was higher than both 2003 and 2004 and 

more indicative of average annual precipitation, diet OMD was lowest, with OMD in 

2004 intermediate and 2003 highest.  To evaluate the model prediction for the effect of 

grazing pressure we isolated 2005 (Figure 8).  The comparison was made between high 

grazing pressure (32 AUD/T) and no grazing.  Diet OMD was lower at any time point 

throughout the year when grazing pressure was high compared to no grazing. 

 When the predicted CP was regressed (Figure 9) against the observed CP from the 

three validation data sets (Barta, GSL2, and Imperial) the R2 values ranged from 0.537 to 

0.66  (Table 6).  Predicted CP was correlated (r = 0.55) with the observed CP from the 

different locations.  There were no differences (P = 0.51) between the observed and 

predicted CP values from the validation data sets.  When evaluating the regression 

(Figure 10) of predicted versus the observed OMD from the validation data sets the R2 

values ranged from 0.41 to 0.73 among the three different locations (Table 6).  No 

differences (P = 0.55) were observed between the predicted and observed OMD from the 

validation data set. 
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Conclusion 

 Using the five standard forage samples with known in vivo digestibility 

effectively adjusted in vitro digestibility of forages to in vivo digestibility.  This is useful 

in determining an accurate estimate of TDN to be used in the NRC model when 

formulating supplements or predicting animal response in cattle grazing native Sandhills 

range pastures.  The CP and OMD values generated from the prediction equations were 

highly correlated to in vivo values.  Prediction model equations will work relatively well 

in predicting dietary CP and energy when collection of actual diets are not attainable.  

This will prove to be a very useful tool for cattle producers, nutritionist, and researchers 

to accurately predict diet nutritional components (CP and energy) to use in diet 

formulation and predicting animal response.  These equations take into account some of 

the major contributing factors in the variation in diet quality.   
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Table 1: Monthly and yearly cumulative precipitation for Gudmundsen Sandhills 
Laboratory.  Cumulative precipitation for the current year begins in October 1st of 
the previous year 
 
   Year 
Month 2003* 2004 2005 
January  3.6(1.4)  1.3(0.5)  2.8(1.1) 
February  4.8(1.9)  1.3(0.5)  4.1(1.6) 
March   7.6(3.0)  2.5(1.0)  4.1(1.6) 
April  10.4(4.1)  5.3(2.1)  5.3(2.1) 
May  14.5(5.7)  13.0(5.1)  16.3(6.4) 
June  19.6(7.7)  15.2(6.0)  25.1(9.9) 
July   24.9(9.8)  19.3(7.6)  37.3(14.7) 
August  27.7(10.9)  29.5(11.6)  39.3(15.5) 
September 29.7(11.7)  30.5(12.0)  46.2(18.2) 
October 32.0(12.6)  38.1(15.0)  46.7(18.4) 
November 32.0(12.6)  38.1(15.0)  46.7(18.4) 
December 32.0(12.6)  38.1(15.0)  46.7(18.4) 
Total  32.0(12.6)  38.1(15.0)  46.7(18.4)  
 
* Precipitation is presented in cm(in). 
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Table 2: Monthly digestibility and crude protein values of masticate samples collected from the Gudmundsen Sandhills 
Laboratory 
       
       Month       Statistics4                         
Variable Jan Feb March  April May June July Aug Sept Oct Nov Dec SEM  P-value 

 LSD 
 
IVOMD1,% 54.2 54.6 52.6 59.5 65.8 62.6 55.9 55.2 51.4 53.0 51.4 53.9 1.7 <0.01 4.2 
IVDMD2,%    48.0 48.8 47.7 53.2 59.7 58.6 50.2 49.8 46.0 47.1 45.7 47.8 1.5 <0.01 5.4 
CP, %  6.9 6.2 7.4 8.0 12.4 10.8 11.5 8.9 8.8 7.9 7.6 7.0 0.7 <0.01 0.87 
NDF, % 83.3 82.5 83.0 77.1 68.3 70.1 65.6 64.5 69.3 74.0 74.7 77.6 2.1 <0.01 6.1 
kd3, %h-1 1.35 0.87 2.11 5.05 6.50 3.57 3.03 4.82 3.24 3.50 1.90 1.32 0.85 <0.01 1.9 
Pool, %5 1.95 1.29 2.62 5.27 8.34 5.90 5.95 3.42 3.65 2.95 2.78 1.42 0.45 <0.01 1.3 
 
1IVOMD means in vitro organic matter digestibility. 
2IVDMD means in vitro dry matter digestibility. 
3kd means the rate of ruminal protein degradation expressed as % h-1. 
4No year*month, year*grazing, month*grazing, or year*month*grazing interactions were detected (P > 0.05). 
5Pool means residue protein content following NDF analysis. 
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Table 3: Protein fraction data and digestibility of UIP of diet samples collected in 2004 and 2005 from native range pastures at 
the Gudmundsen Sandhills Laboratory 
       Month       Statistics 
Variable Jan Feb March April May June July Aug Sept Oct Nov Dec SEM  Month M*G5  LSD6 
% of CP 
UIP,%  39.6 44.8 41.8 23.5 17.8 21.0 30.1 34.3 33.7 37.0 39.1 51.0 3.0 <0.01 0.02 6.5 
DIP,%  60.4 55.2 58.2 76.5 82.2 79.0 69.9 65.7 66.3 63.0 60.9 49.0 2.8 <0.01 0.03 6.5 
TTIDP2, % 23.4 28.9 24.4 15.2 10.4 12.9 17.3 20.4 22.0 23.5 35.4 32.7 1.1 <0.01 0.03 4.6 
UIPD1, % 42.6 37.7 44.0 35.0 39.3 38.1 41.7 41.7 34.3 34.3 36.6 35.6 3.0 <0.01 0.44 7.4 
% of OM 
CP, %  5.6 4.9 5.9 8.8 12.0 9.7 10.2 7.2 7.5 6.4 6.2 5.7 0.6 <0.01 0.73 1.61 
UIP %  2.8 2.8 2.9 2.3 2.1 2.5 4.0 3.2 2.9 3.2 2.5 2.9 0.3 <0.01 0.57 0.66 
DIP3, % 3.1 2.6 3.2 6.6 9.5 7.2 6.7 4.8 4.6 3.5 3.6 2.5 0.4 <0.01 0.49 0.51 
TTIDP,% 1.6 1.7 1.6 1.4 1.2 1.5 2.3 1.7 1.9 1.9 1.5 1.8 0.1 <0.01 0.85 0.46 
DUIP4, % 1.2 1.1 1.3 0.9 0.9 1.0 1.7 1.5 1.0 1.3 1.0 1.1 0.1 <0.01 0.68 0.33 
NRC Adjust 
Adjust UIP7 1.5 1.4 1.6 1.1 1.1 1.3 2.1 1.9 1.3 1.6 1.3 1.4 -- -- -- -- 
Adjust CP8 4.6 4.0 4.8 7.7 10.6 8.5 8.8 6.7 5.9 5.1 4.9 3.9 -- -- -- -- 
1UIPD means digestibility of the UIP, expressed as a percent of the UIP. 
2TTIDP means total tract indigestible protein. 
3DIP means degradable intake protein. 
4DUIP means digestibility of UIP calculated as DUIP = UIP - TTIDP. 
5M*G means month by grazing interaction. 
6LSD means the least square difference for the main effect of month. 
7Adjust UIP means adjusted for NRC estimated UIP digestibility of 80 % where; Adjusted UIP = DUIP (% OM)/0.80. 
8Adjust CP means CP adjusted for NRC estimated UIP digestiblility of 80% where; Adjust CP(% OM)=DIP(% OM) + Adjust 
UIP(%OM). 
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Table 4: Year (yr) and grazing (gr) effect on protein fraction of diet samples collected from 
the Gudmundsen Sandhills Laboratory. 
 
Variable  year   grazing  Statistics7 
  2004  2005 High  Med  NoneSEM yr gr 
% of CP  
UIP1, % 32.8a 36.2b 38.8a 36.1a 28.5 1.9 0.02 <0.01 
DIP2, % 67.2a 63.8b 61.2a 63.9a 71.5 2.6 0.02 <0.01 
TTIDP3,% 19.6a 23.1b 23.9a 22.3a 17.9a 0.6 <0.01 <0.01 
UIPD4, % 40.1a 36.7b 40.0 38.6 36.9 2.3 0.03 0.32 
 
% of OM 
UIP1 , % 2.65a 2.91b 2.94a 2.88ab 2.53b 0.20 0.05 0.04 
DIP, %8 5.31a 4.16b 4.09a 4.70b 5.42c 0.19 <0.01 <0.01 
TTIDP3, % 1.50a 1.79b 1.94 1.71 1.53 0.02 <0.01 0.16 
DUIP4, % 1.2 1.1 1.2a 1.2a 1.0 0.08 0.65 0.04 
 
kd, %h-1 5 2.62a 3.59b 2.14ab 3.10ac 4.08bc 0.63 0.02 <0.01 
Pool, %6 4.32 3.27 3.30 3.68 4.41 0.20 <0.01 <0.01 
 
a,b,c Least square means within row and variable without common superscripts differ (P< 0.05). 
1  UIP means undegradable intake protein. 
2  DIP means degradable intake protein. 
3 TTIDP means total tract indigestible protein. 
4 Means UIP digestibility. 
5 Means rate of protein degradation expressed as percent per hr, % h-1. 
6 Pool means residue protein content following NDF analysis.  
7 No year*month, year*grazing, month*grazing, or year*month*grazing interactions were 
detected (P > 0.05). 
8 DIP means degradable intake protein, expressed as a percentage of dietary OM. 
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Table 5: Organic matter digestibility and CP prediction equations for diets consumed by cattle grazing native Sandhills 
Range pastures 
 
 
Variable Equation   R2Model        P-value 
CP 0.273*JDa -4.56E-3*JD2b +2.86E-5*JD3c -8.01E -8*JD4d +8.345E-11*JD5e +7.88 0.630  <0.001 
 
OMD 
  Early Growingf 3.2825*Mi - 5.7359E-4*JD2 - 2.0086E-1*M2j - 1.67E-3 *GP2k +5 4.47846   0.4590 

 0.0120 
  Late Growingg -0.4268*GPl -0.76643*M -0.06015*JD +0.01070*GP2 +73.98686 0.3371  0.0025 
  Dormanth -0.14294*GP -7.77112*M + 0.1923*M2 + 0.00271*GP2 + 126.15238 0.5490  <0.001 
 
a Means Julian day. 
b Means Julian day*Julian day. 
c Means Julian day*Julian day*Julian day. 
d Means Julian day*Julian day*Julian day*Julian day. 
e Means Julian day*Julian day*Julian day*Julian day*Julian day. 
f Means growing season beginning April 1 (Julian D 1) through June 15 (Julian D 76).  
g Means growing season beginning June 16 (Julian D 77) through September 30 (Julian D 183). 
h Means dormant season beginning October 1 (Julian D 184) through March 31 (Julian D 365). 
i Means cumulative moisture. 
j Means cumulative moisture*cumulative moisture. 
k Means grazing pressure*grazing pressure. 
l Means grazing pressure. 
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Table 6: Regression equations comparing predicted CP and OMD for three 

different validation data sets. 

 
Location Equation R2  
CP 
 Barta ya = 0.6105xb + 4.0296 0.5370 
 GSL2 y = 1.2991x - 5.2337 0.5502 
 Imperial y = 0.9325x + 2.6576 0.6619 
 
OMD 
 Barta y = 1.162x - 10.042 0.7271 
 GSL2 y = 1.3907x - 21.519 0.4055 
 Imperial y = 0.656x + 20.565 0.5293 
 
a Means the observed variable (OMD or CP). 
b Means the predicted variable (OMD or CP). 
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Figure 1: Year effects (P < 0.001) of in vitro OMD and DMD of diet samples 
collected at the Gudmundsen Sandhills Laboratory.  Least square means without 
common superscripts differ (P < 0.05). 
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Figure 2: Grazing effect on in vitro OMD (P = 0.0144) and DMD (P = 0.0097) of diet 
samples collected at the Gudmundsen Sandhills Laboratory.  Within variable 
without common superscripts differ significantly (P < 0.05). 
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Figure 3: Year effect (P = 0.0173) on NDF content of diet samples collected at the 
Gudmundsen Sandhills Laboratory.  Least square means without common 
superscripts differ (P < 0.05). 
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Figure 4:  Year by grazing level interaction (P = 0.035) of crude protein from diets 
collected from upland Sandhills range pastures.  High grazing levels in 2005 were 
lower than Medium and None grazing levels in 2005 and grazing level None in 2004 .  
No differences were noted between any of the other levels.  Least square means 
without common superscripts do not differ (P < 0.05). 
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Figure 5: Month by grazing interaction of UIP of masticate samples collected in 
2004 and 2005 from Gudmundsen Sandhills Laboratory.  Grazing levels are High 
(stocking rate < 1.2 AUM/ha), Med (SR = 0.1 - 1.1 AUM/ha) and None (SR = 0 
AUM/ha). 
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Figure 6: Monthly protein content (% OM) of diets samples collected from 
esophageally-fistulated cows at the Gudmundsen Sandhills Laboratory. 
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Figure 7: Predicted CP of diets of grazing cattle in the Nebraska Sandhills.  
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Figure 8: Seasonal predicted dietary OMD for the control pasture (un-grazed) 

during three consecutive years.  
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Figure 9: Grazing pressure effect on predicted dietary OMD values.  High grazing 
pressure assumed at 32 AUD/T of forage produced. 
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Figure 9: Validation of predicted CP at three different sampling locations.   Barta 
data are represented by black diamonds and a solid black regression line, GSL2 is 
represented by grey circles and a solid gray regression line, and Imperial is 
represented by grey triangles and a dashed grey regression line. 
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Figure 10:  Validation of predicted OMD at three different sampling locations.   
Barta data are represented by black diamonds and a solid black regression line, 
GSL2 is represented by grey circles and a solid gray regression line, and Imperial is 
represented by grey triangles and a dashed grey regression line. 
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