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Female preference for complex/novel signals
in a spider

Damian O. Elias,a Eileen A. Hebets,a,b and Ronald R. Hoya
aDepartment of Neurobiology and Behavior, Cornell University, Seeley G. Mudd Hall, Ithaca,
NY 14853, USA, and bSchool of Biological Sciences, University of Nebraska, 348 Manter Hall,
Lincoln, NE 68588, USA

Identifying the various factors that influence complex signal evolution is a difficult task, yet it is fundamental to understanding the
evolution of animal communication. Here we explore the evolution of complex courtship signaling by taking advantage of a system
in which sexual selection on male courtship traits has driven the diversification of geographically isolated populations of the
jumping spider Habronattus pugillis Griswold. Using 2 populations (Santa Rita [SR] and Atascosa [AT]) in which SR females show
xenophilic mating preferences for foreign (AT) over local males (SR), we examine the mechanisms driving this preference. Both
AT and SR males produce multimodal signals (visual 1 seismic), and while SR and AT signals share certain seismic components,
AT seismic signals are more complex and contain novel components. We conducted mate choice trials where SR females were
presented with AT or SR males that were either muted or nonmuted. SR females preferred to mate and mated more quickly with
foreign AT males over local SR males only if AT males could produce seismic signals (nonmuted treatment). In addition, we found
that SR females spent a higher proportion of time attentive to foreign AT males only if they could produce seismic signals. This
evidence suggests that SR females have a bias for complex and/or novel forms of seismic signals. Key words: antagonistic co-
evolution, complex signaling, female choice, multimodal signaling, novelty, spider. [Behav Ecol 17:765–771 (2006)]

Identifying female mating preferences and the male signals
on which those preferences are based on is an integral part

of studying animal communication, yet is especially challeng-
ing in animals where males transmit multiple signals in mul-
tiple modalities. Different male signals may be under different
selective pressures and may interact in complex nonadditive
ways leading to complex patterns in mating preferences
(Pomiankowski and Iwasa 1993, 1998; Iwasa and Pomiankowski
1994; Partan and Marler 1999, 2005; Rowe 1999; Candolin
2003; Hebets 2005; Hebets and Papaj 2005). Recognizing male
signals and female preferences is an essential step in analyzing
mechanisms of behavior and in disentangling different models
of sexual selection.
Studies on female mating preferences most often involve

looking at mate choice based on male signals with some nat-
urally occurring variation (Andersson 1994). Such studies are
important in assessing signal function and when combined
with other information (i.e., signaling and receiving costs,
measurements of male quality, and mating costs) can be in-
formative in assessing different models of sexual selection
(Ryan 1990; Andersson 1994; Endler and Basolo 1998;
Holland and Rice 1998; Chapman et al. 2003; Hebets and
Maddison 2005; Rowe et al. 2005). An alternative method of
assessing female preferences is to observe female responses to
male signals that do not necessarily occur in natural popula-
tions. Such a paradigm is especially relevant in exploring fe-
male biases and may give hints as to underlying physiological
processes, environmentally imposed signaling and processing
constraints, and the evolutionary processes involved in mate
choice and signal evolution (Basolo 1990, 1998; Endler 1992,
1993; Ryan and Rand 1993, 2003; McClintock and Uetz 1996;
Endler and Basolo 1998; Hebets and Uetz 2000). These types

of experiments are usually done by synthetically varying dif-
ferent qualities of male signals and observing female re-
sponses (Ryan and Keddyhector 1992; Andersson 1994;
McClintock and Uetz 1996; Rosenthal 1999; Hebets and Uetz
2000; Gerhardt and Huber 2002; Guerra and Morris 2002) or
in systems where male signals show large geographical varia-
tion, performing reciprocal mating crosses with males from
foreign and local populations (Houde and Endler 1990; Basolo
1998; Jones and Hunter 1998; Ptacek 1998; Hamilton and
Poulin 1999; Gray and Cade 2000; Hebets and Maddison 2005).
Jumping spider (Salticidae) courtship displays have proved

to be fruitful models in studying behavior and sexual selec-
tion. Male jumping spiders, unlike females, have evolved con-
spicuously ornamented and colored appendages that they
wave like semaphores during courtship, producing stereo-
typed, species-specific visual displays (Crane 1949; Jackson
1982; Forster 1982b; Elias et al. forthcoming) that are thought
to function in species isolation, species recognition, and fe-
male choice (Jackson 1982; Richman 1982; Forster 1982b;
Clark and Uetz 1993; Maddison and McMahon 2000; Taylor
et al. 2000; Clark and Morjan 2001; Clark and Biesiadecki
2002). Habronattus pugillis is a jumping spider that occurs in
isolated woodland habitats atop mountain ranges (sky islands)
throughout southeastern Arizona. Male H. pugillis are typified
by sexual ornaments, morphologies, locomotory, and seismic
courtship displays that differ dramatically between mountain
ranges, whereas phenotypic uniformity exists within mountain
ranges (Maddison and McMahon 2000; Elias et al. forthcom-
ing). Using a combination of molecular, phylogenetic, behav-
ioral, and phylogeographic data, it has been demonstrated
that sexual selection is driving this diversification among
mountain populations of H. pugillis (Maddison and McMahon
2000; Masta 2000; Masta and Maddison 2002).
Experiments using reciprocal mating trials between 2 pop-

ulations of H. pugillis (Santa Rita [SR] and Atascosa [AT])
recently demonstrated asymmetric mating preferences, in
which females from 1 population (SR) preferred foreign
males to their own local males (Hebets and Maddison
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2005). Females that preferred foreign males spent more time
being visually attentive to foreign male courtship than to local
male courtship, and this difference in visual attention did not
appear to be directly related to differences in visually based
signals between the 2 populations (Hebets and Maddison
2005). The authors suggested that the preferred AT males
may have a component to their courtship that is extremely
attractive and proposed that this component may involve
a seismic signal (Hebets and Maddison 2005). In a later study,
Elias et al. (forthcoming) described seismic displays from 7
H. pugillis populations and found differences in the complex-
ity of seismic signals between populations, measured as the
number of separate components that made up each display.
AT seismic displays were the most complex, consisting of 3
components, whereas SR seismic displays were the simplest,
consisting of a single component. In combination, results
from both studies suggest that SR females may have a prefer-
ence for complex/novel seismic signals.
Here, we directly test whether female biases for complex/

novel seismic signals are driving the observed preference
among SR females for foreign AT males. We manipulated
AT and SR males into muted and nonmuted treatments and
conducted mate choice trials with SR females. We found that
muting AT males resulted in a reduced preference by SR fe-
males. SR females preferred and were more visually attentive
to AT males only if they could produce the complex AT seis-
mic display, suggesting that SR females are more attracted to a
complex/novel form of seismic courtship signals.

METHODS

Spiders

Male and immature female H. pugillis were collected from
different mountain ranges in Arizona in April 2003 and
2004 (males—Atascosa Mountains; male and females—Santa
Rita Mountains). Experiments were conducted May–July 2003
and May–June 2004 with animals caught in the same calendar
year. Males and females were kept isolated from each other
after field collection. Animals were housed individually in plas-
tic containers (AMAC Plastic Products, Petaluma, California)
and kept in the laboratory on a 12:12 h light:dark cycle. Once
a week, spiders were fed fruit flies (Drosophila melanogaster) and
juvenile crickets (Acheta domesticus).

Behavioural traits of H. pugillis

We recorded seismic signals from courting males using a laser
vibrometer (Elias et al. 2003, forthcoming). Below are descrip-
tions of courtship behavior of the males used in the study. For
more detailed descriptions, see Elias et al. (forthcoming) and
Maddison and McMahon (2000).

AT males
AT male faces are covered with silver-gray scales, except for
the lower lateral portions that are yellowish with dark spots
(Maddison and McMahon 2000). The sides of the carapace
are swollen. There is no eye streak above their anterior eyes, as
seen in SR males (see below), and the chelicerae are striped.
The locomotory courtship consists of rapid sidling, which in-
volves moving back and forth in large arcs in front of the
female with the first pair of legs held above the ground the
entire time (Maddison and McMahon 2000). After sidling,
males approach females with vigorous flicking of the forelegs.
Seismic signals are produced during leg flicking and not dur-
ing the sidling display. Every leg flick is coordinated with
a seismic signal. AT male seismic displays are relatively long
in duration and occur in 3 distinct parts (Figure 1). The first
part consists of a short, high-intensity, broadband ‘‘crackle’’

Figure 1
Seismic signals of Habronattus pugillis from the AT and SR mountain
populations. (A) Oscillograms of seismic sounds. (B) Detail of
oscillogram (red box in part A). (C) Spectrogram of seismic signal
in part B. a–c denote the 3 seismic components of male courtship
signals (a, crackle; b, rasp; and c, drone). Males produce seismic
sounds during courtship, and different populations produce
different seismic sounds. Males from the AT population have
more complex seismic displays. (D and E) Effects of experimental
manipulation on H. pugillis seismic signals. (D) Representative male
seismic signals from both populations with wax placed on top of the
prosoma (control, nonmuted). (E) Representative male seismic
signals from both populations with wax connecting the cephalo-
thorax to the abdomen (experimental treatment, muted). Waxing
the cephalothorax to the abdomen removes all seismic signals.
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(a in Figure 1c). The second part consists of a prolonged long
duration, broadband ‘‘rasp’’ (b in Figure 1c) (combined with
‘‘drones’’—see below). The third part consists of variable bouts
of short duration, broadband drones (c in Figure 1c). Broad-
band drones also occur along with rasps in the second court-
ship stage (b in Figure 1c) but are lower in intensity than rasps.

SR males
SR male faces are dark brown with a white horizontal stripe
along the bottom (Maddison and McMahon 2000). They have
a thin streak of white scales that extends above their anterior
eyes. The anterior-most pair of walking legs also has pendant
fringes of hair. The courtship behavior of these males begins
with rotations of the palps (modified appendages beside the
face) (Maddison and McMahon 2000). This palpal rotation is
unique to SR males and is continued throughout the court-
ship display. Palp rotations are often punctuated with rapid
flicks of the forelegs. Males remain mostly stationary during
courtship until the actual approach to the female, which is
generally direct. The final stages of courtship involve the male
holding his first pair of legs above the female and flicking the
tips. Leg flicking occurs less and is generally less vigorous than
in males from the AT populations. Leg flicks are coordinated
with seismic displays. SR male seismic displays are shorter than
AT seismic displays and consist of a single component: a high-
intensity, broadband crackle (a in Figure 1c). This is similar
in frequency content to the AT crackle but is longer in dura-
tion (Figure 1c) (Elias et al. forthcoming). SR males include
other components similar to AT males (rasp, see above) at
extremely short ranges just prior to attempted copulation
(Figure 1a, 48–55 s, Santa Rita column). The vast majority
of seismic signals produced by individual SR males, including
those that produce rasps, only include the crackle component
(Figure 1a).

Behavioural trails

Immature females were checked daily to see if they had
moulted to maturity. Only virgin adult females aged 16–40
days postmaturation (average 23 days 6 4.4 SD) were tested
in trials, and females were of the same average age for all trial
conditions (see below). All male and female spiders were fed 2
days prior to experiments. Habronattus pugillis seismic signals
are produced by stridulation involving structures on the ceph-
alothorax (prosoma) and abdomen (opisthosoma) similar to
other spider species (Legendre 1963; Uetz and Stratton 1982;
Maddison and Stratton 1988; Elias et al. 2003, forthcoming).
SR and AT males were randomly divided into 2 treatments: (1)
muted or (2) nonmuted. Two days prior to the experiments,
males were anesthetized with CO2, and a piece of bee’s wax
was placed (1) between the cephalothorax and abdomen (the
first and second body regions), ultimately connecting the two
and inhibiting their relative movement (muted), or (2) on top
of the cephalothorax, but not connecting it to any other body
part (nonmuted control). None of the treatments affects vi-
sual signals (Elias et al. 2003, 2005), and approximately the
same amount of wax was used for both treatments. To ensure
that these treatments did not affect normal locomotory activ-
ities, we observed whether or not waxed spiders were able to
successfully capture prey during the 2 days after these manip-
ulations. SR females were randomly assigned to 1 of 4 treat-
ments: (1) muted, foreign (AT), (2) nonmuted, foreign (AT),
(3) muted, local (SR), and (4) nonmuted, local (SR). Trial
order was randomized between the 4 treatments. Females and
males were each used only once.
A plastic cylinder (12.5 cm in diameter3 13.5 cm high) was

used as the courting arena. A piece of graph paper cut to fit
inside the cylinder was used as the arena floor. An opaque

paper ring was placed around the outside of the cylinder to
minimize visual distractions. An Electronic Imaging Systems
(Rolling Meadows, IL) fiber optic light system was used to
illuminate the arena. All trials were videotaped (Canon
ZR50 MC, 30 fps) from above. Although some jumping spi-
ders are known to use chemical cues present in female silk for
mate location and for initiating courtship (Jackson 1982),
Habronattus male courtship behavior occurs in the absence
of chemical cues, and the initiation of courtship behavior
seems predominantly visually based (Elias et al. 2003). In or-
der to prevent the build up of chemical cues, graph paper was
replaced every 2 trials and the plastic cylinder cleaned with
95% ethanol at the end of each recording day. Females were
placed into the arena first, then males. Only males that
courted during a 15-min period were scored, and trials lasted
a total of 15 min. We recorded (1) copulation success, (2)
male courtship duration (total time male spent courting),
(3) latency to copulation (latency from the start of male court-
ship to copulation), and (4) female attention (time the female’s
anterior median (AM) eyes were directly oriented toward
a courting male). Copulation success data is reported for
males that copulated within 5 min after a female started
observing a male’s courtship displays because this is likely to
be a realistic measure of mate choice in H. pugillis (Hebets
and Maddison 2005). Under natural conditions, uninterested
females can and will jump away immediately (Hebets and
Maddison 2005; DO Elias and EA Hebets, personal observa-
tion). Latency to copulation was recorded for males that cop-
ulated during the 15-min trail period. Female attention is
measured as the time a female spent orientated to a male
because jumping spiders are visual specialists and use vision
to assess mates, predators, and prey (Forster 1982a, 1982b;
Foelix 1996; Harland and Jackson 2002). Jumping spider
AM eyes are specialized for high spatial resolution and have
a small field of view (Land 1985); hence, it is likely that as-
sessment occurs only if females directly orient their AM eyes
toward males.
Copulation proportion data was analyzed using a contin-

gency table analysis with Pearson tests. If this test yielded
significant results, pairwise differences between treatments
were estimated. Attention and courtship effort were analyzed
using analysis of variance (ANOVA) with a Tukey post hoc test
with Bonferonni corrections. Statistical tests were conducted
using the Systat statistical analysis package (SSI, Richmond,
California). Latency to copulation data did not meet the as-
sumptions for normality, hence we performed nonparametric
statistics. Nonparametric multiple comparisons were per-
formed using a multiple Behrens–Fisher test (Ullrich and
Hothorn 2001). Nonparametric statistics were performed using
the R statistical analysis package (GNU, Boston, Massachusetts).

RESULTS

Behavioural trials

There was a significant effect of seismic treatment (muted
vs. nonmuted) on male mating success (contingency analysis:
X2 ¼ 14.481, df ¼ 3, P ¼ 0.002). SR females were more likely to
mate with nonmuted AT males than muted AT males (contin-
gency analysis: X2 ¼ 11.902, df ¼ 1, P ¼ 0.001; Figure 2) and
muted SR males (contingency analysis: X2 ¼ 7.817, df ¼ 1, P ¼
0.005; Figure 2). Although nonsignificant, SR females also
tended to mate more with nonmuted AT males than non-
muted SR males (contingency analysis: X2 ¼ 13.336, df ¼ 1,
P ¼ 0.068; Figure 2). No other pairwise differences were ob-
served (P . 0.05).
To ensure that our results did not simply reflect differences

in male courtship effort, we measured male courtship effort in
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individuals that successfully mated by dividing the latency to
copulation by the duration of time that males courted. Males
spent the majority of time courting, and no significant dif-
ferences were observed among any of the treatments (AT
nonmuted: 0.96 6 0.04, mean 6 SE; AT muted: 0.84 6 0.12,
mean 6 SE; SR nonmuted: 0.99 6 0.01, mean 6 SE; SR
muted: 0.90 6 0.10, mean 6 SE; P . 0.05).
An analysis of female visual attention, measured as total

time the female spent looking at the male divided by the total
time the male spent courting, showed significant effects of
male origin and seismic treatment (male origin: F1,90 ¼
13.207, P , 0.0001; seismic treatment: F1,90 ¼ 15.172, P ,
0.0001; male origin 3 seismic treatment: F1,90 ¼ 3.104, P .
0.05). Females paid more visual attention (ANOVA: F3,90 ¼
10.406, P , 0.0001; Figure 3) to nonmuted AT males than
muted AT males (Tukey post hoc; P ¼ 0.001; Figure 3), muted
SR males (Tukey post hoc; P , 0.0001; Figure 3), and non-
muted SR males (Tukey post hoc; P ¼ 0.002; Figure 3). No
other differences were observed between treatments.
SR females mated more quickly with nonmuted AT males

than muted AT males (Behrens–Fisher; P ¼ 0.0184; Figure
4), nonmuted SRmales (Behrens–Fisher;P, 0.0001; Figure 4),
and muted SR males (Behrens–Fisher; P ¼ 0.00495; Figure 4).
No other differences were observed between treatments.

DISCUSSION

The xenophilic mating preference previously observed in SR
female H. pugillis for foreign AT males (Hebets and Maddison
2005) seems to be driven by a female preference for complex
and/or novel seismic signals. Although visual displays (motion
and ornaments) are dramatically different between popula-
tions of H. pugillis, the xenophilic preference is sufficiently
explained by differences in seismic components of courtship
alone; preventing AT males from producing seismic signals
eliminates xenophilic preferences. SR females have a higher
mating frequency and mate more quickly with seismic signal
producing foreign AT males. Interestingly, among local SR
males, the presence/absence of seismic signals does not sig-
nificantly affect mating success. These results suggest that
while SR females are using seismic signals from foreign males
to make mate choice decisions, they are not using seismic
signals from local males. This lack of focus on local male
seismic signals may result from an increased importance of

visual signals among local males or alternatively a build up
of resistance to local male seismic signals. Because no differ-
ences were found in male mating effort between the pop-
ulations, all observed female mate choice decisions were
attributable solely to male courtship traits.
In this system, females appear to prefer males with seismic

signals that are more elaborate in form or that contain
novel elements, suggesting a bias for seismic signal complexity/
novelty. Such female biases have been invoked to explain the
origin and evolution of signals in many communication sys-
tems, including calling sounds in frogs (Ryan 1990; Ryan
and Rand 1990), visual ornaments in swordtail fish (Basolo
1990, 1998), coloration in sticklebacks (Smith et al. 2004),
and vibratory displays in water mites (Proctor 1991, 1992).
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However, in systems where males of some populations have
been shown to evolve a particularly attractive trait due to
preexisting female biases, females from all populations are
expected to be equally predisposed to prefer the attractive
trait (Jennions and Petrie 1997). Interestingly, this pattern
of female attraction is not found among H. pugillis popula-
tions as previous work has demonstrated an asymmetric
mating preference in which SR females preferred foreign
AT males over their own local males, whereas AT females
showed no mating preference (Hebets and Maddison 2005).
Hebets and Maddison (2005) argued that their results were
not consistent with either a pure receiver bias hypothesis or
a coevolutionary process of positive reinforcement in which
male traits and female preferences were evolving in concert.
Instead, they proposed that a process of antagonistic coevo-
lution was consistent with their observed mating pattern
and that such a process could be driving the rapid diversi-
fication of male courtship displays and associated ornamen-
tation observed among populations of H. pugillis. Our
results are consistent with this hypothesis.
Under antagonistic coevolution (Holland and Rice 1998),

females are expected to evolve resistance to exploitative male
signals and to mate only with males that produce ‘‘derived’’ or
exaggerated exploitative signals. One prediction from such
a process is that females will prefer foreign males with more
elaborate forms of traits and/or novel traits over local males
for which they have evolved resistance; a prediction that is
supported with results from this experiment. Although both
populations of H. pugillis share a similar seismic component,
AT males have a more elaborate seismic display that contains 2
additional components. It is tempting to think of these novel
AT seismic components as new armaments in the evolutionary
‘‘arms race’’ between males and females. The further elabora-
tion of exploitative male traits (i.e., seismic components) to
overcome thresholds of female resistance is a key prediction
in antagonistic coevolution models (‘‘chase-away’’ selection)
that remains to be explicitly tested in this system.
Given our present data, we cannot distinguish among sex-

ual selection processes that may have been, or continue to be,
important in the diversification of H. pugillis as female biases
are important in many processes of sexual selection (Ryan
1990; Ryan and Keddyhector 1992; Andersson 1994; Christy
1995; Chapman et al. 2003). However, results thus far remain
consistent with a process involving antagonistic coevolution.
For example, Masta and Maddison (2002) observed that some
cross-population matings of H. pugillis had lower fitness
(measured as the number of viable offspring) than within-
population matings, suggesting that it may be maladaptive
for females to mate with foreign males. In their reciprocal
mating trials, Hebets and Maddison (2005) found that 69%
of the SR 3 SR and 45% of the SR 3 AT crosses resulted in
egg sac production (EA Hebets and WP Maddison, unpub-
lished data). Furthermore, they found that 59% of the eggs
hatched in SR 3 SR crosses, whereas only 22% hatched in
SR 3 AT crosses (EA Hebets and WP Maddison, unpublished
data), demonstrating a potential fitness cost to SR females of
mating with the more attractive foreign AT males. Nonethe-
less, future work incorporating more population crosses as
well as female costs is necessary before we can distinguish be-
tween the processes of sexual selection that may be involved in
driving the rapid diversification of populations of H. pugillis.
The preference of SR females to mate with males producing

complex/novel traits appears to be linked with visual atten-
tion as SR females pay more attention to AT males only if they
produce seismic signals. There are several potential explana-
tions for such a result, yet all remain to be tested. The pres-
ence of seismic signals may stimulate a female’s freezing
response, ultimately preventing her from escaping. Such

freezing responses can be common in spiders in the presence
of predator-related cues or by an ‘‘overloading’’ of a female’s
sensory system (Barnes et al. 2002; Persons et al. 2002;
Lehmann et al. 2004; Hebets and Papaj 2005). Such an expla-
nation is unlikely however as females actively track male move-
ments while visually attentive. Alternatively, seismic signals
may focus a female’s attention on other male traits through
cross-modal interactions (Rowe 1999; Candolin 2003; Hebets
and Papaj 2005). Such interactions were shown to be impor-
tant in a wolf spider where seismic vibrations altered a female’s
attention to visual stimuli (Hebets 2005).

Habronattus pugillis is an exemplar species within a tremen-
dously diverse genus of jumping spider representing extreme
geographic variation in male behavior and associated mor-
phology. The Habronattus genus encompasses more than 100
known species in North America and is characterized by an
extraordinary diversity and complexity of visual and seismic
courtship displays (Peckham GW and Peckham EG 1889,
1890; Griswold 1987; Maddison 1988; Maddison and Stratton
1988; Maddison and Hedin 2003; Elias et al. forthcoming).
The diversity observed within and among Habronattus species
and populations rivals that observed in other taxa with ex-
treme diversifications attributed in part to sexual selection
(i.e., haplochromine cichlids—Kocher et al. 1990; Dominey
1994; Seehausen 2000; Laupala crickets of Hawaii—Otte
1989; Mendelson et al. 2004). Within Habronattus, the ob-
served assortment of male displays incorporates signal diver-
sity within and across multiple sensory modalities with the
most diverse species groups possessing the most complex
courtship displays (Elias et al. 2005). This pattern, in combi-
nation with our results demonstrating a female bias for signal
complexity/novelty, suggests that selection due to female
preference for greater signal complexity or novelty, rather
than selection on particular signal features, could be a strong
selective force leading to the rapid evolution and diversifica-
tion of male-specific characters. Such preferences for signal
complexity or novelty may be widespread across animal taxa
and may be important in many animals groups with respect to
both the origin and maintenance of signal diversity and com-
plexity.
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