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Abstract

Precision crop management is by de®nition a multi-objective decision-making process that
must incorporate a diversity of data, opinion, preference and objective. This paper details an

approach to decision making that allows users to express individual or corporate values and
preferences; highlights the degree of imprecision associated with each input; highlights the
degree of imprecision associated with each alternative; facilitates structuring of the decision

process; reduces several levels of complex information into a single chart; allows examination
of trade-o� between alternatives and interests; and forces examination of inter-relationships
between interest. The addition of using remote sensing data provides an e�cient method to

describe spatial variability in terms that can be related to a crop model, making the decision-
making approach feasible for precision farming applications. The crop model provides infor-
mation that can be used by the decision model, and the remote sensing data is used to ®ne
tune the calibration of the crop model, maximizing the accuracy of its results. # 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

1.1. Precision farming strategy

Precision crop management (PCM) has been de®ned as an ``information- and
technology-based agricultural management system to identify, analyze and manage
site-soil spatial and temporal variability within ®elds for optimum pro®tability,
sustainability and protection of the environment'' (Robert et al., 1995). Considering
this de®nition, it is ®rst noted that a considerable amount of data will be required to
assess and manage within ®eld spatial and temporal variability. Secondly, PCM is
de®ned as a multi-objective system that strives to optimize pro®tability, sustain-
ability, and environmental protection. The implementation of a management system
based on this de®nition is not a simple task. A proposed framework for incorpor-
ating a variety of data sources and models is shown in Fig. 1.

1.1.1. Remotely sensed data
The ®rst component, remotely sensed data, is considered essential as this data can

provide complete coverage of a farm at relatively frequent intervals. In the past, the
use of remotely sensed data for farm management was limited by spatial and tem-
poral resolution of civilian satellites (Jackson, 1984). However, the promise of new
satellites with high spatial resolution and Internet delivery should reduce these lim-
itations (Fritz, 1996). Additionally, reduced cost of digital camera systems and the
possibility of multispectral sensors mounted on agricultural equipment will increase
data availability.

Fig. 1. Proposed decision-making framework.
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1.1.2. Correction/calibration
In order to establish temporally consistent, quantitative relationships between

remotely sensed measurements and crop conditions, the data must ®rst be cali-
brated. For satellite and aircraft data, this involves correcting for atmospheric
interference, illumination intensity, and solar and viewing angles. Moran et al.
(1997b) provide an overview of possible calibration methods speci®cally for airborne
data, but some of the techniques presented could also be adapted for other plat-
forms (satellite or equipment-mounted sensors). Precise geo-referencing of the
data is required so the data can be directly integrated into a geographic information
system (GIS).

1.1.3. Remotely sensed data interpretation
In the next component, the corrected information is interpreted with a data model

to relate the re¯ectance or radiance to an agronomic parameter. Several relation-
ships have been established between multi-spectral data and parameters that are
relevant to PCM (Moran et al., 1997a). For example, remotely sensed data have
been found useful to detect crop water stress (e.g. Clarke, 1997), map nitrogen de®-
ciencies (e.g. Blackmer et al., 1996) and estimate absorbed photosynthetically active
radiation (e.g. Pinter, 1993). While this is valuable information, it does not provide
all the tools necessary for a grower to evaluate management decisions, nor does it
identify which alternative best satis®es multi-objective criteria.

1.1.4. Crop model
The fourth component (crop models) provides the ability to project results for the

rest of the growing season and test di�erent management scenarios on the computer
before they are implemented in the ®eld. Because it is usually not feasible to collect
enough plant-related data to characterize ®eld-scale variability for use in PCM, the
remotely sensed data are used as surrogates for crop growth observations in model
calibration.

1.1.5. Decision model
The decision model is necessary to organize and compare alternatives and be

capable of processing the multiple criteria set forth in the de®nition of PCM. Such
an assessment system was developed by Hagemeister et al. (1996). For example, the
predictions of yield from the crop model can be combined with ancillary data on
production cost and crop price to estimate the pro®tability of di�erent management
approaches. Data on nitrogen leaching and crop water use for the various manage-
ment scenarios provide the decision model with information on sustainability and
environmental protection. The decision model then ranks the proposed management
options in terms of pro®tability, sustainability, and environmental protection.

1.1.6. GIS
A GIS is a key component in managing both remotely sensed and ancillary data

(e.g. Usery et al., 1995). The GIS could contain soil sample results (e.g. fertility and
texture), variable rate application information, and historic yield maps. The GIS can
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be arranged to de®ne areas with similar soil properties, application rates and plant
response where both the crop and decision models can be executed.

1.2. Objective

The objective of this paper is to present a framework in which remotely sensed
data, crop models, and a decision model can be integrated to meet the PCM de®ni-
tion with emphasis on the decision model. A simple example is presented to
demonstrate each component of the framework.

2. Literature review

Extensive literature reviews have been published on the application of remote
sensing to PCM (Moran et al., 1997a) and the integration of crop models and
remote sensing (Moulin et al., 1998). Therefore, the literature review presented will
focus on decision models.

2.1. Overview of decision models

2.1.1. Multi-objective decision making
Decision models and decision-making tools have been developed over a number of

years. Many of them are over-simpli®ed to the point that they lack utility. Others
become so complex and detailed that the focus turns from decision making to data
collection. The type of decision models appropriate for application to PCM is clas-
si®ed as multi-criteria, multi-objective, competing objective, multi-attribute and a
number of other descriptors. The common component is that complete agreement
about a single objective of the decision is not achieved. Therefore the decision maker
is left to balance these competing issues.
A number of approaches have been used. Wei and Weber (1995) incorporated

expert opinion to address multi-criteria decision making for waste management
concerns. Lawrence et al. (1997) used a similar approach but combined measured
data and expert opinion to address semi-arid rangeland concerns.
Yakowitz et al. (1993) examined a technique to rank the priorities associated with

the importance of contributing attributes of the decision in question. This technique
allows the user to determine the in¯uence of advocacy and the sensitivity of the
overall decision to that advocacy. This technique has been applied to environmental
management (Yakowitz and Hipel, 1997), and water quality and economics (Heil-
man et al., 1997).

2.1.2. Fuzzy composite programming (FCP)
FCP is a distance-based multi-objective optimization problem that uses fuzzy

representation of uncertainty (Bardossy and Duckstein, 1992). Examples of FCP
methodology include management of a karstic aquifer (Bardossy and Duckstein),
nitrate risk management (Lee et al., 1992), management of dredged material (Lee et
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al., 1991) and land®ll hazard ranking (Hagemeister et al., 1996). In each case pre-
viously mentioned, as well as the example described in this paper, the authors use
fuzzy sets to describe the inherent imprecision and ambiguity associated with the
decision-making variables.
Crisp or non-fuzzy compromise programming, forms the basis for composite

programming and employs a single-level non-normalized distance-based methodol-
ogy (Zeleny, 1973). Bardossy et al. (1985) developed composite programming that
extended compromise programming to a normalized multi-level methodology.
Woldt and Bogardi (1992) have used composite programming to develop a metho-
dology for designing a groundwater monitoring network that can be used to detect
and map environmental contamination. The addition of fuzzy set theory (Zadeh,
1965) to compromise programming is used to represent uncertainties of the indica-
tors. In a manner similar to the composite programming extension, fuzzy compro-
mise programming can be extended to a normalized multi-level distance-based
methodology to account for uncertainties, also known as FCP (Bardossy and
Duckstein, 1992).
Zadeh (1965) proposed the use of fuzzy set theory (FST) to describe relationships

that are best characterized by compliance to a collection of attributes. The theory
allows for membership in fuzzy set to be partial. The partial or fuzzy membership is
scaled from 0 (no membership) to 1 (complete membership). The use of FST has
grown to include a wide variety of applications ranging from machine control to
management (Ross, 1995). One use of FST is the interpretation of linguistic infor-
mation. This is useful since many phenomena are described using linguistic descrip-
tions rather than quantitative measures. This is particularly true when interpreting
preferences or judgements (DiFrancesco et al., 1998).

3. Material and methods

3.1. Site description

The framework is demonstrated using data collected during the 1994 cotton sea-
son at the University of Arizona's Maricopa Agricultural Center (MAC, 33�0402100

N; 111�5804500 W). MAC is 770 ha and located approximately 40 km south of
Phoenix at an elevation of 360 m. This is an arid area, receiving only 185 mm of
rainfall per year and average summer temperatures ranging from 25 to 42�C.

3.2. Remotely sensed data

Airborne data, acquired on 15 dates from April to September 1994 over the MAC
in Central Arizona, were used to demonstrate the framework. The imagery had a 2-
m spatial resolution in the green (0.545±0.555 mm), red (0.645±0.655 mm), and near
infrared (NIR, 0.840±0.860 mm) region of the spectrum. Additional details on the
airborne data set are given by Moran et al. (1996). This study focused on one area of
the farm where the imagery provided indications of spatial variability in cotton
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development (Fig. 2). Fig. 2 shows both an interpolated soil map from Barnes and
Baker (1999) and a ratio vegetation image (RVI=NIR/red) for 6 July of the area
considered. This date was chosen as the cotton had not reached full cover (50±90%
cover, leaf area indexes [LAIs] ranging from 0.8 to 2.6), allowing better representa-
tion of the spatial patterns in canopy development in the RVI image. The cotton was
in the ¯owering stage of development at this time.
There is good agreement between the spatial distribution of the surface soil texture

and RVI levels. The entire area received the same amount of irrigation; thus it is
probable the sandy loam areas with lower water-holding capacity experienced
greater water stress during the season than those soils with higher clay content.

3.3. Calibration

Digital numbers corresponding to the visible and NIR bands were converted to
re¯ectance utilizing data from calibrated canvas tarps. Ground-based radiometer
measurements of a bare ®eld concurrent with time of the over ¯ights were also used
in the calibration procedure (see Moran et al., 1996, for details on the calibration
procedures). The imagery was also manually registered to a Universal Transverse
Mercator projection utilizing an existing GIS vector coverage of the farm.

3.4. Remotely sensed data interpretation

Coincident observations of red and NIR re¯ectance from a hand-held radiometer
and LAI were available for the study site from Pinter et al. (1994). Simple linear
regression was determined to provide a suitable relationship between the re¯ectance
and LAI data as illustrated in Fig. 3. This relationship was used with the calibrated

Fig. 2. Interpolated soil map (left) and ratio vegetation index (RVI) image from 6 July (right) of the study

area. In the soil map, CL represents the area of the ®eld with a clay loam surface soil texture, SCL sandy

clay loam, SL sandy loam, and the circles indicate approximate soil sample locations.
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imagery to generate LAI maps from ¯ight data. The mean values corresponding to
the areas of clay loam and sandy loam soil textures in Fig. 2 were then determined.
The sandy clay loam area was not considered in the analysis as it occupied a smaller
area and vegetation density estimates from the imagery indicated that this area did
not vary signi®cantly from the clay loam areas.

3.5. Crop model

The CALGOS (CALifornia GOSym,) cotton growth model was selected because
this model is a modi®ed form of GOSSYM (Baker et al., 1983) for semi-arid condi-
tions (Marani et al., 1992). The model can provide prediction of cotton growth and
development in response to variation in meteorological, soil water, and soil nitrogen
conditions. Management practices (i.e. tillage, planting, irrigation, fertilizer appli-
cations) were determined from farm records and input to the crop model for the
1994 growing season. Meteorological data was available from a station operated on
the farm (air temperature, humidity, wind speed, rainfall). Variety-speci®c calibra-
tion of the model for the study site was already available from Marani (personal
correspondence, A. Marani, Visiting Scientist, USDA, ARS Water Management
Research Laboratory, Fresno, CA, USA) using data from Mauney et al. (1994). The
cotton model also requires volumetric release curves for each soil type to be simu-
lated; however, soil data speci®c to the ®elds considered was limited to sand, silt and
clay percentages. Therefore, the cotton model's soil parameters related to water-
holding capacity were adjusted until predictions of LAI were consistent with the
remotely sensed estimates. The emergence date input to the model was also adjusted
to improve agreement between the model's predictions and remotely sensed esti-
mates of LAI. The `calibrated' model outputs compared to the remotely sensed

Fig. 3. Relationship used to relate the ratio vegetation index (RVI) to leaf area index (LAI) for cotton at

the Maricopa Agriculture Center.
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estimates are shown in Fig. 4. This calibrated version of model was then used to
supply information on yield and nitrogen use to the decision model and to simulate
a di�erent irrigation schedule (described in more detail in a later section). For this
demonstration, only a single year was simulated for each of the scenarios con-
sidered. In practise, simulations for a number of meteorologically di�erent years
(either from generated or measured data) should be used to determine the uncer-
tainty in the estimates due to weather conditions.

3.6. Description of decision model

The overall structure of the decision model must accommodate the consideration
of con¯icting and competing objectives. Each of these objectives must be fully
developed independently of the other objectives. In this case, those competing
objectives include pro®tability, preserving the environment, and maintaining sus-
tainability. Computational aspects of the fuzzy composite programming methodol-
ogy are detailed in the Appendix.

3.6.1. Model structure
The decision-making model is a hierarchical structure. At the top of the hierarchy

is the overall decision. This decision must balance the need for pro®tability, envir-
onmental concerns, and the need to maintain a sustainable system. This simple
structure is shown in Fig. 5.

3.6.1.1. Profitability. The pro®tability of the system is based upon the lint yield,
the lint price, the cost of irrigation water, and the operating cost associated with

Fig. 4. Model predicted (Model) and remote sensing (RS) observations of leaf area index (LAI) for the

sandy loam (SL) and clay loam (CL) soil types during the 1994 cotton growing season.
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producing the crop. In this decision model, the units of pro®tability were dollars per
hectare. The ambiguities associated with each of the factors that constitute pro®t-
ability are represented as fuzzy numbers. The arithmetic processes needed to calculate
the pro®tability followed the vertex method as outlined by Dong and Shah (1987).

3.6.1.2. Lint yield. Lint yield was determined using the CALGOS growth model
(Marani et al., 1992). The predicted lint yield changed as di�erent irrigation-
management practices were used and di�erent soil types were encountered. The
units on lint yield were tonnes of lint per hectare.

3.6.1.3. Lint price. The lint price was determined from prices reported by Arizona
Cooperative Extension (1996). The price was assumed to be most likely between
$1321.59 and 1585.90 per tonne but could be as low as $660.79 and as high as
$1762.11 per tonne of lint. The same price structure was used for each of the alter-
natives. Note that an economic model to predict future trends in lint price could be
incorporated as part of this system to reduce the uncertainty in this estimate. For the
sake of this demonstration, the variability associated with the lint price was arbi-
trarily assigned in order to give an example of how intuition and native knowledge
can be incorporated into the decision process.

3.6.1.4. Irrigation water costs. The inputs to the growth model include the amount
and timing of irrigation water that matches the management strategy under con-
sideration. The per unit cost associated with purchasing the irrigation water was
determined from Arizona Cooperative Extension (1996) which was reported to be
$284 per ha-m. This value was used for each of the alternatives. The total cost of
irrigation water was determined by multiplying the unit cost for irrigation water and
the amount of irrigation water used.

3.6.1.5. Operating costs. The labor costs associated with applying the irrigation
water using conventional management practices were determined from Arizona
Cooperative Extension (1996) and were estimated to be $74 per ha for the `normal
irrigation' alternative. This cost is compared to an estimated value of $1236 per ha
for the `linear move' management alternative. The di�erence in cost is re¯ective of
the increase capital requirements of the `linear move' alternative.

Fig. 5. Decision-making structure.
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3.6.1.6. Environmental. Environmental impacts can be measured in a number of
ways. The impact of irrigation and cotton production is easily seen in the quantity
of nitrogen that is leached from the soil resulting from cultural and management
practices. The CALGOS model, using the various management practices, was used
to determine the amount of nitrogen remaining in the soil. The type of soil,
amount of fertilizer applied, and type of irrigation strategy in¯uenced the amount
of nitrogen remaining in the soil. For each alternative and soil type, 0.157 tonnes of
nitrogen per ha was applied during the growing season. It was considered an
advantage to the environment when less nitrogen was left in the soil at the end of
the growing season. In this decision model, the units of the environmental variable
were tonnes of nitrogen per hectare. The CALGOS model reported the nitrogen
uptake by the crop and the amount of fertilizer remaining in the soil during the
growing season.

3.6.1.7. Sustainability. Sustainability is a concept that most agree is important but
little agreement exists on how to de®ne it. In this scenario, sustainability was related
to the amount of water used for irrigation. The amount of water used for irrigation
was determined using the CALGOS model and farm records from 1994 cotton sea-
son. In this decision model, sustainability was assessed as `low', `medium', or `high',
represented as a fuzzy number. Fuzzy numbers have been used to describe linguistic
descriptions of phenomenon and are described in Ross (1995) and Jones and Jones
(1999).

4. Decision-making scenario

To illustrate this methodology, consider the following decision-making scenario.
A decision maker (DM), such as a farm manager in Arizona, is considering how to
manage the irrigation scheduling for two di�erent ®elds each with a unique soil type,
namely, sandy loam and clay loam. Note that this example is limited to these two
soil types, but when applied across an entire farm, each soil type present would
require evaluation. Cotton is grown on each of the ®elds and three di�erent irrigation/
management strategies are available. Those strategies are described as a normal
irrigation practice, irrigation with a linear move system, and not plant a crop at all.
Considering these alternatives, the manager is left to choose the best management
for each of the ®elds. The decision is complicated by the need to balance the need for
pro®tability, environmental impact, and sustainability.

4.1. Assignment of weights and balancing factors

Prior to examining alternatives the DMmust describe the constraints and decision-
making criteria needed to objectively evaluate alternatives. Generally, this is an
internal process that is not typically well de®ned or thoroughly documented. The
description is in part the structure of the contributing factors as illustrated in Fig. 5,
but also includes the knowledge and preferences of the DM.
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To capture the knowledge and preferences of the DM, weights are used to indicate
the importance of competing objectives. Note that the weights are determined by the
DM and will change for di�erent DMs. For this example, the weights were valued as
real numbers to simplify the example for illustrative purposes. The goal is to capture
the intent of the DM and describe that intent in mathematical terms. They could be
valued as fuzzy variables, ranks, or scaled ranks to provide a more realistic
description of the contributing factors.
Consider the farm management decision. As illustrated in Fig. 5, this decision is

composed of Pro®tability, Environment, and Sustainability. The DM must indicate
as completely as possible the relative weight and relationship of each of these con-
tributors. For the sake of this example, assume that the DM is most concerned with
Pro®tability, least concerned with Sustainability and somewhat concerned about
Environmental. The resulting weights of the contributors using this example are
shown in Table 1. Note that the weights for each contributor must sum to 1 and
each must be between 0 and 1. Also included in Table 1 is the balancing factor. The
balancing factor is a computational necessity and is a measure of the exchangeability
of the contributors to each group. Descriptions of these and other computational
aspects of these details are described in the Appendix.

4.2. Description of alternatives

Three irrigation management alternatives were developed for each of the two
®elds. Recall that each of the ®elds have a unique soil type, namely, sandy loam and
clay loam. Each alternative had unique and various costs and consequences that
impacted the acceptance of the alternatives. The consequences of each alternative
are outlined below.
The alternatives denoted as `normal irrigation' attempted to represent typical

irrigation scheduling and management in the area and were based on the actual irri-
gation amounts applied to the ®elds in 1994 cotton season. The alternatives denoted
as `linear move irrigation' attempted to represent an idealized or perfect irrigation.
As determined by the CALGOS model, the crop was irrigated with the exact quan-
tity and at the exact time the crop required irrigation. Associated with the applica-
tion of the irrigation were labor and capital costs. The alternatives denoted as `do
not plant' attempted to represent the `do nothing' alternative. A summary of the
consequences of each alternative is shown in Tables 2 and 3.

Table 1

Assignment of weights and balancing factors for decision model representing preferences of a hypothetical

decision maker concerned mostly about `pro®tability'

Overall decision Balancing factor Group Weights

Pro®tability 0.5

Farm management decision 3 Environment 0.3

Sustainability 0.2
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Each of the six alternatives described in Tables 2 and 3 are similar in construction.
To illustrate the development of each of the alternatives, consider Alternative A:
normal irrigation (in the ®eld with sandy loam soil). The alternatives were similarly
developed and are summarized in Tables 2 and 3. The contributing factors for each
alternative were considered individually.

4.2.1. Pro®tability
The pro®tability of the system is based upon the lint yield, the lint price, the cost

of irrigation water, and the operating cost associated with producing the crop. Lint

Table 2

Description of contributors for sandy loam soil

Contributing/competing factors Alternatives

A: normal irrigation B: linear move C: do not plant

Pro®tability

Description Between $914 and

1137 per ha, but

could be as low as

$395 or as high

as $1334

Between $1310 and

1857 per ha, but

could be as low

as ÿ$74 or as high

as $2656 per ha

$0 per ha

Fuzzy representation

Environmental

Description 0.157 tonnes/hectare,

but it could be as low

as 0.112 tonnes/hectare

0.022 tonnes/hectare,

but it could be as low

as 0.017 tonnes/hectare

0 tonnes/hectare

Fuzzy representation

Sustainability

Description Low Medium High

Fuzzy representation
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yield was determined using the CALGOS growth model (Marani et al., 1992) to be
0.823 tonnes of lint per ha. It was recognized that the CALGOS model is not exact,
having predictions more than 50% di�erent than observed yield in the validation
data set. However, the relative response to di�erent input variables more closely
matched observed relative responses. As the goal is to compare between di�erent
alternatives, the yield predictions from the model were assumed to be within 5%. In
other applications, a larger range of yield may be appropriate. Therefore, the yield
was described as being 0.823 tonnes per ha but it could be as low as 0.786 or as high
as 0.865 tonnes of lint per ha based on the accuracy of the model with validation

Table 3

Description of contributors for clay loam soil

Contributing/competing factors Alternatives

D: normal irrigation E: linear move F: do not plant

Pro®tability

Description Between $2954 and

$3088 per ha, but

could be as low as

$1062 or as high

as $3756

Between $1828 and

$2466 per ha, but

could be as low

as $99 or as high

as $3261 per ha

$0 per ha

Fuzzy representation

Environmental

Description 0.056 tonnes/hectare,

but it could be as low

as 0.022 tonnes/hectare

0.011 tonnes/hectare,

but it could be as low

as 0 tonnes/hectare

0 tonnes/hectare

Fuzzy representation

Sustainability

Description Low Medium High

Fuzzy representation
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data sets. By combining the assumed range in lint price with these yield estimates,
the pro®tability was determined to be between $914 and 1137 per ha but could be as
low as $395 or as high as $1334 per ha.

4.2.2. Environment
Environmental considerations were measured by the amount of nitrogen fertilizer

remaining in the soil as determined by the CALGOS growth model (Marani et al.,
1992). For this alternative the model predicted that 0.157 tonnes of nitrogen per ha
remained in the soil. It was recognized that the CALGOS model is not exact;
therefore, the amount of nitrogen remaining in the soil was described as being 0.157
tonnes per ha, but it could be as low as 0.112 tonnes per ha.

4.2.3. Sustainability
Sustainability was measured by the amount of water used to irrigate the crop.

For this alternative the sustainability was considered `low' since it is based upon
`normal' irrigation practices which requires the most water. Furthermore, the
low designation is warranted given a comparison to the other alternatives
investigated.

4.3. Description of `worst' and `best' parameters

The computational algorithms require normalized values; therefore, `Worst' and
`Best' values for each contributor must be determined. This process is explained in
detail in the Appendix. Similar to each of the other values, these values can be lin-
guistic, crisp, fuzzy, etc. The `Worst' and `Best' values used in this example are
shown in Table 4.
The `Worst' and `Best' values for the Pro®tability contributors were determined

directly from the fuzzy representations of each of the costs. The worst case corre-
sponded to a pro®tability of ÿ$74 per ha whereas the best case corresponded to
pro®tability of $3756 per ha. The `Worst' and `Best' values for the environmental
contributor was determined directly from the fuzzy representations of each of the
variables. The worst case corresponded to 0.157 tonnes of nitrogen per ha and
the best case corresponds to 0 tonnes of nitrogen per ha. The `Worst' and `Best'
values for the Sustainability contributor was determined to be 0 for the worst case
and 1 for the best case. Further development and description of the computational
aspects are given in the Appendix.

Table 4

Worst and best values for each contributor

Contributors Worst Best

Pro®tability ÿ$74 per hectare $3756 per hectare

Environmental 0.157 tonnes of nitrogen per ha 0 tonnes of nitrogen per ha

Sustainability 0 1
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5. Results and discussion

Fuzzy representations of the results are shown in Figs. 6 and 7. The x-axis in Figs.
6 and 7 is the fuzzy distance towards the ideal solution (Bardossy and Duckstein,
1992). A value of 1 on the x-axis would indicate that the ideal solution has been
achieved. A value of 0.5 indicates that the solution is one-half the distance between
the worst solution and the ideal solution. The y-axis indicates the membership (or
degree of belonging) of each alternative to its position towards the ideal solution.
The results in Figs. 6 and 7 can be interpreted by saying that Alternative A will

most likely perform between 0.6 and 0.65 of the ideal solution (range where the

Fig. 6. Fuzzy performance of alternatives for sandy loam soil using weights and balancing factors as

shown in Table 1.

Fig. 7. Fuzzy performance of alternatives for clay loam soil using weights and balancing factors as shown

in Table 1.
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membership is 1); it could perform as low as 0.58, or as high as 0.78 of the ideal
solution. Each of the alternatives could be similarly interpreted.
There are several ways to `defuzzify' results such as those presented in Figs. 6 and

7. The techniques include determining centers of mass, weighted averages, etc. For
this example, the practical interpretation is to choose the alternative that most clo-
sely conforms to the description of the ideal solution. The breadth, or spread, of the
curves representing each alternative in Figs. 6 and 7 is meaningful. The ambiguities
captured in the ®rst-level indicators have been propagated through the systems and
are now manifest in Figs. 6 and 7. A wider spread represents more ambiguity or
uncertainty. Conversely, a narrower spread indicates less.
The performance of the management alternatives for growing cotton on a sandy

loam soil, as depicted in Fig 6, indicate that Alternative C, `do not plant', more
closely conforms to the ideal solution. This is evident since the curve representing
this alternative is closer to 1 than any of the other alternatives. Similarly, it is
obvious that Alternative A, `normal irrigation', performs worse than the other two
alternatives.
When examining the results for growing cotton on a clay loam soil presented in

Fig. 7, the best alternative is not as clearly determined. The curves representing the
performance of each of the alternatives are grouped closely together and less dis-
tinction between alternatives is evident.
Adjusting the weights applied to each of the contributors will result in di�erent

performance of each of the management alternatives. The results shown in Figs. 8
and 9 re¯ect the performance of the alternatives when the weights are assigned as
indicated in Table 5. The weights indicated in Table 5 are representative of a DM
who has di�erent goals and objectives for the farming operation.

Fig. 8. Fuzzy performance of alternatives for sandy loam soil using weights and balancing factors as

shown in Table 5.
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6. Summary and conclusions

This approach to decision making is useful for a variety of reasons, including that it:

1. allows users to express individual or corporate values and preferences;
2. highlights the degree of imprecision associated with each information source

used (i.e. model accuracy, uncertainty in costs and returns, etc.;
3. highlights the degree of imprecision associated with each alternative;
4. facilitates structuring of the decision process;
5. reduces several levels of complex information into a single chart;
6. allows examination of trade-o� between alternatives and interests; and
7. forces examination of inter-relationships between interest.

The addition of remote sensing provides an e�cient method to describe spatial
variability in terms that can be related to a crop model, making the decision-making
approach feasible for precision-farming applications. The crop model provides
information that can be used by the decision model, and the remote sensing data is
used to ®ne tune the calibration of the crop model, maximizing the accuracy of its
results.

Table 5

Assignment of weights and balancing factors for decision model representing preferences of a hypothetical

decision maker concerned mostly about `environment'

Overall decision Balancing factor Group Weights

Pro®tability 0.1

Farm management decision 3 Environment 0.8

Sustainability 0.1

Fig. 9. Fuzzy performance of alternatives for clay loam soil using weights and balancing factors as shown

in Table 5.
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Many layers of complexity could have been added to the example presented, such
as simulation of multiple weather seasons, economic forecasts and consideration of
numerous other alternatives. Consideration should be given to these additions
before such an approach is applied to an actual problem.

Appendix A

The computational aspects of the problem solution begin with normalization. Each
of the input variables must be normalized. The normalization process is performed by
using best and worst values for the ®rst-level indicators. The best and worst values for
the ®rst level indicators are determined by the user and are detailed in Table 4. Bar-
dossy and Duckstein (1992) noted that the best and worst values might be crisp or
fuzzy. For this example, the best and worst values are assumed to be crisp.
The normalization is performed with the following equation (Bogardi, 1992;

Hagemeister et al., 1996).

S0i �
Z0i ÿ Zmini

Zmaxi ÿ Zmini
when Z maxi is best; or

S0i �
Zmaxi ÿ Zi

Zmaxÿ Zmini
when Z mini is best

where S0i=normalized ith fuzzy indicator; Z0i=value of the i th fuzzy indicator;
Zmaxi=maximum possible value of the i th indicator; and Zmini=minimum possi-
ble value for the i th indicator.
Consider the contributor of pro®tability. The best value is $3756 per ha and the

worst value is ÿ$74 per ha. Consider also Alternative A (normal irrigation on sandy
load soil). The normalized value, using the previous equation can be described as the
pro®tability could be as low as 0.12 or as high as 0.37 (where membership=0) but
most likely between 0.26 and 0.32 (where membership=1). Notice that this process
not only normalizes the variable but non-dimensionalizes it well. This process is
repeated for each of the contributing factors for each alternative.
The hierarchical structure of this technique is used to aggregate the fuzzy indica-

tors into more complex second-level fuzzy indicators. This process of aggregation
continues until the ®nal-level fuzzy indicator is achieved. The aggregation process is
accomplished by combining weighted fuzzy distances. This process is described more
completely below. In this example, only ®rst level indicators are used (Fig. 5) to
aggregate into the overall decision. In more complex representations, additional
levels of indicators can be included.
The ®nal result will include inevitable uncertainties and ambiguities due to impre-

cise ®rst-level indicators and best and worst cases. Their structure can be established
such that ®rst-level indicators will utilize known or relatively easily obtained infor-
mation, which lead to ranking or assessment of a very complex system.
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The sets of related normalized ®rst-level fuzzy indicators are fuzzy distances and
are combined to obtain their respective second-level fuzzy composite distance. The
process of computing successive levels of fuzzy composite distances is repeated until
a ®nal fuzzy composite distance is reached for the system. This ®nal-level fuzzy
indicator composite distance represents the compliance of the particular alternative
to the description of the ideal solution as measured by a fuzzy composite distance.
The fuzzy composite distance is obtained by the following equation (Bogardi, 1992;
Hagemeister et al., 1996).

L0j �
Xnj
i�1

!� �i;j� S0i;j
� �pj" # 1

pj

;

where, L0j=fuzzy composite distance for group j of the indicators; S0i;j=normalized
fuzzy value of the input element indicator i in group j; !i,j=weights expressing the
relative importance of indicators in group j such that their sum is 1; pj=balancing
factors among indicators for group j; and nj=number of indicators in group j. In
this example, j=1 since there is only one group as shown in Fig. 5. There are three
indicators (pro®tability, environmental, and sustainability) in this group therefore
nj=n1=3.
The weight parameters and balancing factors must be speci®ed by the DM. These

weight parameters are established based on the degree of importance the DM con-
siders each indicator possesses relative to other indicators of the same group.
Therefore, the DM is expected to identify preferences in the analysis. Note that the
weights must sum to 1 and each must be between 0 and 1. The weight parameters
were assumed to be crisp and therefore valued as real numbers to simplify the
example for illustrative purposes. The goal is to capture the intent of the DM and
describe that intent in mathematical terms. In one part of this example, the DM is
assumed to be mostly concerned about pro®tability and the associated weights are
shown in Table 1. Alternatively, the weights shown in Table 5 re¯ect a DM con-
cerned mostly with environmental objectives.
The balancing factors must also be speci®ed by the DM. In one part of this

example, the balancing factor for the one group is found in Table 1. Balancing fac-
tors re¯ect the importance of the maximal deviations between indicators in the same
group. In other words, balancing factors determine the degree of substitution
between indicators of the same group. Low balancing factors (i.e. near 1) are used
for a high level of allowable substitution between indicators of the same group. If
the level of substitution is moderate, a balancing factor of 2 will su�ce. A balancing
factor of 3 re¯ects a situation of minimal substitution. The balancing factors were
assumed to be crisp. Balancing factors are not well de®ned in current literature.
However, analysis implies that as the balancing factor increases, the less in¯uential
the weights become. Therefore, the practical application of the balancing factor is
not lost, since limiting the balancing factor to modest levels seems appropriate. For
additional information on balancing factors, please refer to Bogardi (1992), Lee et
al. (1991, 1992).
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To further illustrate this, consider factors that have the same units such as dollars.
In that case, the model would choose between dollars or dollars indicating a high
degree of exchangeability between the factors. This is similar to comparing `apples
to apples' and would be assigned a balancing factor of 1. Contrast this to the units
of the factors shown in Table 1. The units include dollars per hectare, tonnes of
nitrogen per hectare, and millimeters of irrigation water. Since there is no common
unit, there is a low degree of natural exchangeability between the factors, yet they
must be combined. This is analogous to comparing `apples to oranges' and is
assigned a balancing factor of 3. By extension it is obvious that the groups could fall
somewhere between the previous two explanations and would be assigned a balan-
cing factor of 2. This is analogous to comparing `Red Delicious apples to Jonathan
apples'. The utility of the balancing factor is to combine and compare dissimilar
interest. It should be noted that the DM has the freedom to assign the balancing
factor to a value that is appropriate without regard for the commonality of the unit.
This is important if the DM will genuinely exchange, as in this example, tonnes of
nitrogen per hectare with millimeters of irrigation water with dollars per hectare.
The range of 1±3 is a su�cient limit for balancing factors but can also be represented
as fuzzy number (Jones and Jones, 1999).
The weights and balancing factors could be valued as fuzzy variables, ranks, or

scaled ranks to provide a more realistic description of the contributing factors. A
spreadsheet calculator was developed to perform the calculations. Example outputs
are shown in Figs. 6±9.
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