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Nanotube magnetism
Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyera)

Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

~Received 20 October 2003; accepted 6 January 2004!

FePt and Fe3O4 nanotubes are produced by hydrogen reduction in nanochannels of porous alumina
templates and investigated by electron microscopy, x-ray diffraction analysis, and magnetic
measurements. Loading the templates with a Fe chloride and Pt chloride mixture followed by
hydrogen reduction at 560 °C leads to the formation of ferromagnetic FePt nanotubes in the alumina
pores. Using a Fe nitrate solution, thermally decomposed at 250 °C and reduced in hydrogen for 2.5
h at the same temperature, yields Fe3O4 tubes. The length of the nanotubes is about 50mm and their
diameters range from about 150 to 220 nm, depending on the thickness of the template film and the
pore diameter distribution. Reflecting the different magnetocrystalline anisotropies of the
compounds, the coercivities range from 0.61 kOe for Fe3O4 to 20.9 kOe for FePt. The hysteresis is
explained in terms of a tubular random-anisotropy model, which yields a diameter and anisotropy
dependent transition from a curling-type mode (Fe3O4) to a localized mode~FePt!. © 2004
American Institute of Physics.@DOI: 10.1063/1.1655692#

Magnetic nanostructures are a scientifically interesting
and technologically important area of research with many
present and future applications in permanent magnetism,
magnetic recording, and spin electronics. Recent research
has led to structures such as nanodots, nanowires, and antidot
structures,1–3 and the search for novel geometries continues
to be an important aspect of magnetic nanotechnology. There
are many ways of producing nanostructures, such as chemi-
cal synthesis techniques1 and template-directed growth.4–6

An emerging area is the synthesis of tubular nanostructures,
which was pioneered in inorganic chemistry.7–9 For example,
Brumlik et al. have produced Au microtubules by electro-
chemical deposition,10 and it has been noted that the method
is comparatively easy to extend to other elements, such as
transition metals.8 However, the techniques used up until
now make it difficult to tune the magnetic properties of the
structures. This refers, in particular, to magnetic compounds,
such as hard-magnetic intermetallics and ferrimagnetic ox-
ides used as soft and semihard magnets.

In this letter, we introduce and investigate nanotubes cre-
ated by chemical deposition and hydrogen reduction in po-
rous alumina templates. Focusing on hard-magneticL10

FePt and on ferrimagnetic Fe3O4, we describe the highly
efficient approach to template-directed chemical synthesis of
magnetic nanotubes using hydrogen processing, elaborate
upon the new physics offered by the nanotubes, and discuss
potential applications.

FePt nanotubes are fabricated by wetting the substrates
with alcohol and loading with a mixture of H2PtCl6•6H2O
and FeCl3•6H2O having a Fe:Pt atomic ratio of 1:1. The
loaded templates are then fixed on a sample holder, with
pores mounted horizontally, and placed in an oven with flow-
ing hydrogen for 1.5 h at 560 °C. To form the ferrimagnetic
Fe3O4 nanotubes, the substrate is similarly prepared, but the
pores are loaded with 65 wt % Fe(NO3)3•9H2O in alcohol

solution. After mounting on a sample holder and placing in
an oven, the template is first heated to 250 °C to decompose
the iron nitrate before conducting hydrogen reduction at the
same temperature for 2.5 h. After the nanotubes have
formed, samples are etched in 0.3 M NaOH aqueous solution
and the precipitates are dispersed in acetone. In both cases,
templates are used to provide an array of pores with nominal
diameter of 200 nm. Substrates are purchased commercially
and are prepared for consistent results by preannealing in air
at 600 °C for 10 min to oxidize all aluminum and remove
water from the pores.11

Figure 1~a! shows a transmission electron microscope
~TEM! image of the FePt sample taken after etching for 50
min and dispersing in acetone. The image is, actually, a com-
posite tube, a FePt tube encased by alumina. The alumina
case is retained to insure that the fragile tube, that would not
be freestanding apart from the matrix, remains intact. With
regard to the driving force for the formation of FePt tubes,
and considering the laminar growth of Co on an Al2O3

substrate,12 it is reasonable to assume a chemical bond be-
tween the interface of the FePt alloy and the inner walls of
the nanochannels. Figure 1~b! shows one Fe3O4 nanotube
released from the template. In this image, the alumina matrix
is removed completely and only the magnetic nanotubes are
left. Figure 1~c! shows a bundle of Fe3O4 nanotubes with
ends pointing upward, which demonstrates clearly that mag-
netic nanotubes can be produced efficiently by hydrogen re-
duction.

Figure 2 shows x-ray diffraction~XRD! patterns of FePt
and Fe3O4 after hydrogen reduction. The XRD data reveal
that the crystal structure of Fe3O4 is cubic, whereas the FePt
crystallizes in the tetragonalL10 structure. Both structures
agree with what one expects from corresponding bulk com-
pounds. With respect to the linewidths, the patterns are remi-
niscent of those of typical nanowires deposited in alumina,4

indicating that the tubes are polycrystalline with crystallite
size of a few nanometers. Polycrystalline tubes are to bea!Electronic mail: dsellmyer@unl.edu
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expected, due to the precipitation from numerous random
sites.

Figure 3 shows room-temperature hysteresis loops of
FePt and Fe3O4, measured by superconducting quantum in-
terference device~SQUID! magnetometry parallel~solid
lines! and perpendicular~dashed lines! to the tube axes.
While sharing some basic characteristics of magnetic hyster-
esis loops, the two curves exhibit two striking differences.
First, the coercivity of the FePt nanotubes, about 2.09 T
~20.9 kOe!, is much larger than that of the Fe3O4 nanotubes,
which is about 0.061 T~0.61 kOe!. Second, the difference
between the parallel and perpendicular curves is much more
pronounced for the oxide tubes. Both features are related to
the magnitudes of the magnetocrystalline anisotropies of the
two compounds, about 6.6 MJ/m3 for L10 FePt and20.011
MJ/m3 for Fe3O4.2

First, in crude approximation, the hysteresis-loop slope
~or susceptibility at coercivity!, a5dM /dH(Hc), is given by

a5CHa /Ms2D. ~1!

HereMs is the saturation magnetization,Ha52K1 /Ms is the
anisotropy field,c is a dimensionless but real-structure de-
pendent parameter, andD is the orientation-dependent de-
magnetizing factor. Equation~1! predicts that the directional
dependence of the hysteresis loop is least pronounced for
magnetically hard materials~FePt!, whereHa@DMs . Fig-
ure 3 shows that this is indeed the case.

The huge difference in anisotropy between FePt and
Fe3O4 leads not only to quantitative differences inHc and
the direction dependence of the loop slope it also modifies
the mechanism of magnetization reversal. Figure 4 illustrates
several reversal mechanisms. Magnetization curling, as
shown in Figs. 4~a! and 4~b!, benefits from flux closure dur-
ing magnetization reversal. Coherent rotation, illustrated in
Fig. 4~c!, is favorable from the point of view of exchange but
leads to surface poles. Like in other nanostructures, such as
nanospheres and nanowires, there is a transition from coher-
ent rotation to curling when the radiusR exceeds a certain
value. However, in nanotubes, this transition occurs at very
small tube radius R. Using the methods outlined
elsewhere2,13,14 and evaluating the exchange energy

FIG. 1. TEM micrographs of the magnetic nanotubes:~a! one isolated com-
posite nanotube of FePt surrounded by alumina,~b! one Fe3O4 nanotube
released from the matrix, and~c! a bundle of Fe3O4 nanotubes.

FIG. 2. X-ray diffraction patterns of FePt and Fe3O4 samples reduced at 560
and 250 °C, respectively.

FIG. 3. Hysteresis loops measured at 300 K:~a! FePt and~b! Fe3O4 . The
external field is along and perpendicular to the tubes.
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*A(¹M /Ms)
2dV yields, for curling mode in tubes having

wall thicknesses much smaller than the tube radius (t!R),

Hn5Ha1A/m0MsR
2. ~2!

HereA is the exchange stiffness andMs is the spontaneous
magnetization. Comparing this expression with that for co-
herent rotation in long structures2,13 shows curling occurs for
radii larger than 2,0 , where ,05(A/m0Ms

2)1/2 is the ex-
change length of the system. For both soft-magnetic and
hard-magnetic materials,2 2,0 is of the order 5 nm. This is
smaller by a factor of 5 compared with spheres, cylinders,
and other ellipsoids of revolution. The physical reason for
the low exchange energy in tubes is the absence of curling-
related vortices as compared to cylinders and spheres. Since
the cylindrical nanotubes considered here have a radius of
about 50 nm, coherent rotation can safely be ruled out.

A different issue is polycrystallinity, which may distort
the curling character of the reversal mode. Figure 4~c! shows
a weakly perturbed curling mode, whereas Fig. 4~d! shows a
mode that has lost its curling-type flux closure. The transition
between the curling mode and the localized mode in Fig.
4~d! occurs at some radiusRrand that depends on the magne-
tocrystalline anisotropy: The configuration in Fig. 4~d! is fa-
vorable from the point of anisotropy, because it has two ‘‘do-
mains,’’ but is unfavorable from the point of view of
exchange and magnetostatics. Applying standard random-
anisotropy analysis~see, e.g., Ref. 2! to the problem yields

Rrand'dB
2 t1/2/a3/2, ~3!

where a is the polycrystalline grain size anddB

;(A/uK1u)1/2 is the Bloch-wall thickness of the correspond-
ing bulk material. Takinga55 nm, t510 nm, dB (FePt)
54 nm, anddB (Fe3O4)550 nm yields estimates ofRrand

(FePt)'5 nm andRrand (Fe3O4)'700 nm. In other words,
the reversal mode of the FePt nanotubes is strongly localized
and has no similarity to curling, whereas the reversal in the
Fe3O4 tubes is curling like. Note that magnetostatic self-
interaction is not included in the random-anisotropy analysis
leading to Eq.~3!, but it can be shown that internal poles,
such as those around the dashed lines in Fig. 4~e!, enhance
Rrand without invalidating the qualitative picture elaborated
upon in this paragraph.

The modes shown in Fig. 4 are reversal modes, that is,
they are created by a homogeneous external magnetic field.
Other modes may be realized as excited modes or by apply-
ing inhomogeneous fields. For example, higher-order excita-

tions yield spin waves with weakly localized2 plane-wave
character parallel to the tube axis but quantized in the other
two directions, due to the cut-off lengths of wall thicknesst
and 2pR. Nanotubes with very smallt may lead to the direct
observation of quantum-mechanical effects, such as sam-
pling of spin-dependent electron states with quantization
length of 2pR.

With regard to potential applications, magnetic field
sources at the nanoscale are prerequisites for making nano-
electromechanical system~NEMS! devices feasible and
reliable.15 Magnetic nanotubes are a conceivable solution to
that problem. Halbach cylinders create a homogeneous cav-
ity field which is, in general, larger than the saturation mag-
netization of the material. If templates with an ordered pore
structure were employed, ordered arrays of magnetic nano-
tubes could be fabricated, and nonvolatile memory units
based on the magnetization states of the nanotubes could be
fabricated.16 In addition, magnetic nanotubes also may have
possible application in high-density magnetic recording,3

biomagnetic sensors, nanomedicine, and catalysts.16,17

In conclusion, we have used hydrogen reduction to pro-
duce ferromagnetic nanotubes of FePt and Fe3O4, and inves-
tigated their structure and magnetism. A specific feature of
the tubes investigated is that the magnetization reversal
mode in the oxide tubes is of curling type, whereas reversal
in the FePt tubes is realized by localized magnetization re-
versal.

This work was supported by DOE, NSF–MRSEC,
AFOSR, the Center for Materials Research and Analysis, and
Nebraska Research Initiative. The authors would like to
thank Xingzhong Li, Jian Zhou, Kit Lee, and Joe Zhou for
assistance and helpful discussions.
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FIG. 4. Reversal modes in magnetic nanotubes:~a!, ~b! curling, ~c! coherent
rotation, ~d! perturbed curling, and~e! low-lying noncurling mode. In~b!
and~e!, the arrows point to a small perpendicular magnetization component.
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