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 The purpose of the first part of the study was to develop a simplified near-infrared 

reflectance (NIR) spectroscopy method for detecting insect larvae in individual wheat 

kernels.  Discriminant analysis, based on Mahalanobis distances calculated from log 1/R 

data at only four discrete wavelengths, yielded better results for classification of sound 

and insect infested wheat kernels than principal component analysis (PCA) using the 

spectral region from 1100 to 1900 nm.  This simplified technique was then used to detect 

3- and 4-week-old larvae of granary and maize weevils in wheat kernels.  A model 

developed from a calibration set containing sound kernels and kernels infested with 3-

week-old larvae was applied to a validation set containing sound kernels, sound air-dried 

kernels, kernels containing 3-week-old larvae of granary and maize weevils, kernels 

containing 4-week-old larvae of granary and maize weevils, and infested air-dried kernels 

containing dead larvae of both species.  Correct classification rates of 92, 98, 77, 73, 95, 

98, 96, and 94%, respectively, were achieved.  Additionally, 99% of sound kernels from 

ten different wheat varieties were correctly classified into their respective classes.  First 

and second derivative spectral treatments did not improve classification results for 3-

week-old infested kernels. 
 NIR spectroscopy was also used to predict the degree of cook in products 

produced by HTST extrusion of corn meal.  Corn meal was cooked with a Wenger TX-57 

twin screw extruder using screw speeds ranging from 250 to 350 rpm, and moisture 

contents ranging from 13-20%, providing a wide range of pressures and shear conditions 

in the extruder barrel.  Extruded samples were analyzed using reference methods that 

measure different aspects of cooking, including water absorption index (WAI), water 



solubility index (WSI), viscosity profile as measured with a Rapid Viscoanalyzer (RVA), 

hardness and fracturability as measured by Texture Profile Analysis.  Calibrations for 

each parameter were developed using multiple linear regression (MLR) and partial least 

squares (PLS) regression. Correlations with r-value>0.95 were achieved between the NIR 

and laboratory values.  Relative predictive determinant (RPD) values ranged from 5.3 to 

6.3 for the various parameters (except for hardness, and trough viscosity) indicating that 

the NIR measurements should be useful in quality control applications.  
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OVERVIEW 

Insect infestation in stored grain can cause serious economic losses, since damage 

can be developed without any visible external signs.  Several methods such as an acid 

hydrolysis test for insect fragments, cracking and flotation methods, and X-ray inspection 

have been accepted as official procedures; however, they still lack reliability and 

reproducibility.  In addition, they are time-consuming, difficult to automate, and labor-

intensive.  They also require specialized equipment and skilled technical personnel, and 

the use and disposal of hazardous organic solvents.  Several studies have been published 

indicating that the NIR technique is feasible and reliable to detect internal insect 

infestation in wheat kernels.  This study was carried out to investigate the use of a 

simplified method by using a limited number of selected discrete wavelengths.  This 

method would allow the use of much simpler and less expensive NIR instruments for 

detecting insect infestation than the use of full spectrum methods that have been 

previously reported.   

NIR reflectance spectroscopy was also applied to cereal products for predicting 

the degree of extrusion cooking of corn meal at different extrusion parameters.  Only a 

few studies have been reported on a rapid method, which can directly measure the 

dependent variables related to starch structure during extrusion processing.  Multiple 

linear regression (MLR) and partial least squares (PLS) regression were used to develop 

NIR calibrations for predicting the various indicators of degree of cook. 

This dissertation consists of a literature review, research topics in three chapters, 

and a conclusion.  Chapter 1 shows a comparison of selected discrete wavelength and 

principal component analysis methods for insect infestation detection.  Chapter 2 



 xiii
describes a simplified near-infrared method for detecting internal insect infestation in 

wheat kernels.  Chapter 3 demonstrates prediction of degree of extrusion cooking of corn 

meal by near-infrared reflectance spectroscopy.  Finally, a conclusion section summarizes 

the major research findings presented within this dissertation. 
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LITERATURE REVIEW 

1.  Near-Infrared Spectroscopy 

Near-infrared spectroscopy (NIRS) can measure the chemical composition of 

biological materials by using the diffuse reflectance or transmittance of the sample at 

several wavelengths (Workman and Shenk, 2004).  The NIR spectrum consists of a 

number of absorption bands that vary in intensity due to energy absorption by specific 

functional groups in a sample (Dunmire and Williams, 1990).  NIRS is useful for the 

study of hydrogen bonding because it measures overtones and combinations of the 

molecule’s vibrational modes, principally those involving hydrogen.  In other words, 

NIRS can measure the concentration of components having different molecular structures 

such as protein, water, or starch (Murray and Williams 1990).  The NIR spectral region, 

from 700 to 2500 nm, lies between the visible and mid-infrared regions of the 

electromagnetic spectrum.  Other names for spectroscopy in this range are “far-visible 

spectroscopy” or “overtone vibrational spectroscopy”.  NIR spectra consist of overtones 

and combination bands of the fundamental frequencies in the mid-IR region.  Low 

reflectivity and low absorptivity allow NIR energy to pass readily into many organic 

substances.  Low reflectivity means that energy penetrates readily beneath the surface of 

most samples, including visually opaque samples.  Low absorptivity means that NIR light 

energy passes easily through samples without rapid attenuation.  

NIRS has been widely used for various foods and commodities, especially in the 

grain, cereal products, and oilseed processing industries (Wehling, 1998).  It also is used 

in breeding programs for quality improvement of cereals, such as wheat flour yield, 

barley malting quality, durum semolina yield, rice milling yield and oat groat percentage.  
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In addition, it can be applied to crop management, receivable testing, and on-line process 

control (Osborne, 2006; Osborne, 2007).  The NIR technique is fast (analysis time varies 

from seconds to minutes per test), reliable, non-destructive, and inexpensive in terms of 

cost-per-test for various uses (Osborne, 2000). Furthermore, there is no sample 

preparation or pretreatment, no need for dangerous reagents or solvents, and no disposal 

problem, either.  These advantages can eliminate sampling errors caused by manual 

sample handling and reagent contamination.  Samples may also be retained for further 

analysis.  It can also be performed by technically unskilled personnel at-line or 

automatically on-line.  Additionally, NIR analysis can obtain results for many 

constituents simultaneously by collecting the NIR spectrum of a sample over a range of 

wavelengths during a single scan, and analyzing the spectrum using multiple calibration 

equations.  The calibration equations are developed through a modeling process, using 

chemometric methods, that employs a training set of samples to teach the computer to 

relate the subtle differences in spectral features to sample composition (Drennen et al, 

1990).  A single spectrum can be subjected to many different calibration models, to 

measure any number of constituents.   

1.1 Application of NIR Spectroscopy in Qualitative Analysis 

  NIRS has been used extensively in the chemical and pharmaceutical industries for 

classification of raw materials (Wehling, 1998).  It is currently becoming more useful in 

food applications.  Brimmer et al (2002) reviewed the capabilities of using online NIRS 

to monitor and control manufacturing processes.  By using pattern recognition 

algorithms, NIRS can provide a qualitative assessment of a process sample to ensure that 

its NIR spectrum is within an acceptable range of variability for what is considered a 
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good quality product.  For example, a qualitative process NIR analyzer can be used in 

industrial manufacturing processes for product identification, product composition 

measurement, and product uniformity evaluation. 

  Dowell (2000) used NIRS to classify vitreous and nonvitreous single kernels of 

durum wheat.  They found that the vitreousness of durum wheat could be quantified, 

perhaps because of scattering effects, or the differences in protein and starch content on 

NIR absorption.  Studies by Wang et al (2002) showed that dark hard vitreous and 

nonvitreous kernels of hard red spring wheat, including kernels that are checked, cracked, 

sprouted, and bleached can be classified by using visible/NIR spectroscopy.  They 

surmised that scattering is a major factor contributing to the classification of those 

kernels.  Protein content, kernel hardness, starch content, and kernel color also are main 

contributors to the classification.  

  There are several studies focused on using NIRS in qualitative analysis based on 

discriminant analysis.  Shah and Gemperline (1990) found that the use of principal 

component analysis (PCA) and Mahalanobis distances provided accurate models for 

classification of pharmaceutical raw materials.  Delwiche and Norris (1993) also obtained 

the best results for classifying hard red winter and hard red spring wheats when using a 

discriminant analysis model based on the same technique of combining PCA and 

Mahalanobis distances.  Subsequently, Chen et al (1995) using the same NIR spectra as 

Delwiche and Norris (1993), found that Neural Networks yielded better results than PCA 

coupled with Mahalanobis distances for classification of those wheats.  However, they 

mentioned that Neural Networks are less interpretable than PCA techniques because of 

non-linear transfer data.  Classification of bulk wheat (hard red spring vs. hard red 
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winter) was reported by Delwiche et al (1995). 

 In breeding programs, Delwiche and Graybosch (2002) used NIR reflectance 

spectroscopy to classify waxy wheat from partial-waxy or wild-type wheat using PCA 

according to variation of amylose content. Those results showed that linear or quadratic 

discriminant functions of the PC scores successfully separated waxy from non-waxy 

wheat.  Delwiche et al (2006) recently examined the potential of NIRS of single durum 

wheat kernels for classification by waxy allele using linear discriminant analysis models.  

They successfully classified the full waxy genotype, whereas the classification accuracy 

of the non-waxy genotypes was very poor.  Pasikatan and Dowell (2004) also created a 

means to rapidly segregate high- and low-protein single wheat kernels using a high-speed 

color sorter equipped with near-infrared optical filters at 920/1660 nm.  They, however, 

found that the sorting was partly driven by vitreousness and color differences.   

1.1.1 Discriminant Analysis 

  Unlike quantitative analysis, the need for actual calibration of variables is not 

necessary in qualitative analysis.  One approach that has been used successfully for 

qualitative analysis is discriminant analysis, which is sometimes called pattern 

recognition.  The purpose of this technique is to classify samples into well defined groups 

based on a “training set” of similar samples with limited knowledge of the composition of 

the group samples.  Johnson and Wichern (1998) stated that the concept of using 

discriminant analysis is to use several variables and to see how the observations cluster 

together.  Two methods are used in this study for developing calibration models in 

discriminant analysis, e.g., Mahalanobis distances, and PCA coupled with Mahalanobis 

distances. 
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1.1.2 Mahalanobis distances 

  Discriminant analysis based on the unit distance vector in multidimensional 

space, called Mahalanobis distances, has been described (Mark and Tunnell, 1985).  The 

Mahalanobis distance can be described by an ellipsoid in multidimensional space that 

circumscribes the data.  This method uses a matrix that describes the inverse of the matrix 

formed by pooling the within-group covariance matrices of all groups, which is generated 

by combining information from all the different materials of interest into a single matrix.  

Use of this matrix, therefore, defines a common metric for all groups in the data set, 

indeed for the multidimensional space.  Dunmire and Williams (1990) described the 

Mahalanobis distance as the mathematical quantity that defines the position, size and 

shape of the ellipsoid for all clusters. 

 From a statistical viewpoint, the Mahalanobis distance takes the sample 

variability into account, whereas the Euclidian distance method does not take into 

account the variability of the values in all dimensions.  In other words, Mahalanobis 

distances look at not only variation between the responses at the same wavelengths, but 

also at the inter-wavelength variations.  Instead of treating all values equally when 

calculating the distance from the mean point, it weights the differences by the range of 

variability in the direction of the sample point.  The location of each cluster in 

multidimensional space is described by the mean value of the absorbances (the group 

mean) at each wavelength.  Theoretically, one Mahalanobis distance is the distance from 

the center of each data cluster to the edge of the ellipsoid in the direction of the 

measurement, and samples that have a Mahalanobis distance of 3σ (three standard 

deviations) or greater have a probability of 0.01 or less and can be classified as non-
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members of the group.  Dunmire and Williams (1990) stated that the sample can be 

classified unambiguously if it falls within three times the Mahalanobis distance from the 

respective centroid and at least six times the Mahalanobis distance from the ellipses of 

other groups.  Mark and Tunnel (1985) briefly explained that the Mahalanobis distance is 

a multidimensional distance D defined by the matrix equation as follows: 

D2 = (x-x ́) ̔M (x-x ́) 

 Where D is the Mahalanobis distance, x is a vector consisting of optical readings 

at several wavelengths which describes the position in multidimensional space 

corresponding to the spectrum of a given sample, x ́ is a vector describing the position of a 

reference point in space, and M is the pooled inverse covariance matrix describing 

distance measures in the multidimensional space of interest. 

1.1.3 Principal Component Analysis coupled with Mahalanobis distances 

  PCA has been coupled with Mahalanobis distances to reduce dimensionality 

before carrying out the discriminant analysis (Osborne et al, 1993).  PCA is a reduction 

technique that extracts from a large number of variables to a much smaller number of 

new variables, which account for most of the variability between samples and contain 

information from the entire spectrum.  In other words, PCA decomposes the training set 

spectra into mathematical spectra (i.e. loading vectors, factors, principal components, 

etc.) which represent the most common variations to all the data.  Johnson and Wichern 

(1998) summarized that the first principal component (PC) explains most of the variation 

in the original data set.  It is, therefore, the most significant principal component.  The 

second PC is less important and uncorrelated with the first one.  Plots of PCs versus each 

other show how the variables that they account for are related.  To see how the 
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observations cluster together, information from PCA is needed to calculate a set of 

scaling coefficients, called scores.  Plots of PC scores versus each other can then be used 

to see how the observations are related. 

 The scores for each factor can be calculated for every spectrum in the training set.  

When the scores are multiplied by the loading vectors, and the results are summed, the 

original spectra are then constructed.  Therefore, by knowing the set of loading vectors, 

the scores will represent the spectra as accurately as the original responses at all the 

wavelengths.  Principle component analysis avoids the problem of overfitting by 

selecting too many wavelengths.  This pattern recognition technique was used to measure 

the Mahalanobis distances that are calculated in units of standard deviations from the 

center (mean) of the training set cluster.   

 According to PLSplus/ IQ manual (Galactic Industries, Salem, NH), the use of an 

optimum number of factors can protect against  underfitting which represents models that 

do not contain enough factors.  Cross-validation is one approach that is used for 

determining the optimum number of factors.  For performing this diagnostic, each sample 

in the calibration set is removed one by one and the remaining samples are used to 

construct a Mahalanobis matrix for one, two, three factors, and so on.  Then using the 

models developed for Mahalanobis grouping, the excluded sample is predicted.  The 

excluded sample is then returned to the calibration set, and a new sample is removed.  

The process is continued until all samples are removed from the calibration set and 

predicted.  This provides an advantage of cross-validation over other methods since the 

predicted samples are not the same as the samples used to build the model.   

 The sensitivity of the analysis can be enhanced by using a spectral residual, which 
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is calculated by subtracting the reconstructed spectrum from the original spectrum 

(PLSplus/IQ manual).  The reconstructed spectrum is derived from multiplying the 

spectrum scores by the set of primary factors and summing the results.  Including the sum 

squared spectral residual as an additional spectral score for the Mahalanobis group can 

improve the sensitivity of the unknown sample classifications.   

1.2  Application of NIR Spectroscopy in Quantitative Analysis 

NIR instruments can be calibrated to quantitatively measure various constituents 

in food and agricultural commodities.  Wehling (1998) described an equation that can be 

used to predict the amount of a constituent present in a food from its spectral 

measurements as follows: 

% constituent = z + a log (1/R1) + b log (1/R2) + c log (1/R3) + ..... 

where each term represents the spectral measurement at a different wavelength multiplied 

by a corresponding coefficient.  Each coefficient and the intercept (z) are determined by 

multivariate regression analysis.  

There are numerous studies describing quantitative analysis by NIRS in various types of 

food.  It provides an excellent method for the measurement of chemical composition (i.e. 

protein, starch, lipid, and moisture contents) in raw pork and beef (Lanza, 1983), in 

cheese and other dairy products (Baer et al, 1983; Rodriquez-Otero et al, 1995), and in 

feed for ruminant animals (Liu and Han, 2006).  However, it is most widely used in the 

field of grains and cereal products.  In some cases, such measurements are important to 

achieve the end-used objectives of a plant breeding program.  

 There are several investigations using NIRS to predict viscosity properties of rice.  

Delwiche et al (1996) developed calibration models on whole-grain milled rice using PLS 
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regression to predict viscosity properties of a flour-water paste as recorded by the Rapid 

ViscoAnalyzer (RVA), and other measurements that determine the cooking and 

processing characteristics of rice. Their results showed that none of the RVA parameters 

were modeled by NIR with high accuracy (r2 ranged from 0.424 to 0.737).  They 

reasoned that the variations in amylose-amylopectin ratio may be the primary reason why 

the NIR models for RVA constituents were not highly accurate.   

 Meadows and Barton (2002) later used NIRS to predict RVA data in rice flour.  

Instead of using the RVA profile obtained by following the AACC procedure as reported 

by Delwiche et al (1996), they used a different set of experimental conditions for RVA 

measurements.  A PLS regression of NIR spectra (1,100-2,500 nm) vs. RVA viscosity at 

0-752 sec was performed and showed that the highest correlation (r = 0.961-0.903) to 

NIR was at 212-228 sec, which is between the initial pasting time and peak viscosity.  

They mentioned that this period of time is crucial because of water absorption and rapid 

granular swelling.  The potential of rice flours to form pastes can be distinguished 

because of their differences in water absorption, granule disruption, and the development 

of gelatinization.  Furthermore, Bao et al (2001) successfully used NIRS to predict the 

pasting parameters of set back and break down, and gelatinization peak temperature of 

rice flour.  Gel consistency, cool paste viscosity, gelatinization onset temperature, and 

textural properties were not as well predicted by NIR as those preceding parameters.  

Texture of cooked rice also is predicted by NIR analysis of whole grain rice (Meullenet, 

2002).  Five of seven sensory texture attributes can be predicted by NIR using PLS 

analysis of second derivative spectra to develop calibration models. 

 The determination of phosphate content and viscosity properties of potato starch 



 10

was studied by Thygesen et al (2001).  Their results showed that NIR-based prediction of 

phosphate content using PLS regression was possible with a root mean square error of 

cross validation (RMSECV) of 0.006%.  They also found that the PLS regression of NIR 

data was successful to predict RVA peak viscosity and breakdown.  Prediction of other 

RVA variables was not possible. 

 Additionally, NIRS has been used to predict corn processing quality.  Wehling et 

al (1993) studied the feasibility of the NIR reflectance technique to predict wet-milling 

starch yield from whole-kernel corn.  Calibrations were developed using MLR and PLS 

regression.  MLR of second-derivative spectra yielded the best results.  However, a 

limiting factor in the performance of the NIR method was the lack of reproducibility of 

the laboratory wet-milling reference method.  The NIR technique was later applied to the 

dry-milling process.  Wehling et al (1996) found that dry-milling characteristics of corn 

can be reliably predicted for at least rough screening purposes.  Campbell et al (1999) 

also predicted starch and grain amylose contents in corn by NIR transmittance 

spectroscopy.  Calibrations were developed using PLS and artificial neural network 

(ANN) analyses.  The results showed limited precision of this method.  However, it can 

be used as a rough screening method for starch amylose content.  

 Additionally, NIRS can be used to investigate some properties of final products.  

Wesley et al. (1999) developed the use of dynamic NIRS with a diode array instrument to 

assess dough mixing time, a crucial stage in the production of bread products.  In studies 

by Xie et al. (2003), an NIRS method was compared to a texture analysis (TA) method 

for measuring bread staling during storage.  Their results indicated that NIR spectra (550-

1700 nm) had a high correlation to firmness as measured by TA.  They also found that 
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NIRS measures bread changes more accurately and more precisely than the TA.  They 

explained that NIRS measurement is based on both physical and chemical changes during 

bread staling, whereas the TA method measures only bread firmness.  Xie et al (2004) 

later reported that NIR spectra correlated strongly with differential scanning calorimetry 

(DSC) for measuring amylopectin retrogradation in bread staling.  The important 

wavelengths were 550, 970, 1155, 1395, and 1465 nm.  NIRS not only provided 

information about changes in bread moisture and starch structure, also differences in 

bread color and protein content. 

 In addition, different types of manufacturing processes can be controlled by 

quantitative information obtained from NIR measurement.  Nowadays, requirements of 

quality control in grain milling and food processing increasingly call for on-line analyses 

(Osborne, 2006).  Gradenecker (2003) reviewed some applications of NIR on-line 

measurement.  They surmised that it can be used to monitor the quality of wheat in grain 

milling.  Moreover, it can determine protein, moisture, and ash contents of wheat flour 

and semolina products.  Changes in water absorption rate, starch damage, particle size 

distribution, and color measurements can also be achieved.    

1.2.1 Chemometric Methods in Quantitative Analysis 

 Chemometric methods are means to perform calculations on measurements of 

chemical data.  Selecting a set of calibration, or training, samples is the first and most 

crucial step in the chemometric application of NIR to process analytical control.  Unlike 

usual laboratory practices for building a calibration curve, chemometrics require that a 

large number of samples be included in the calibration set for quantitative analysis.  The 

best set of calibration samples should represent all of the possible variations in the 
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process (Cartagena et al, 1994).  These include containing the constituent of interest at 

levels covering the range that is expected to be received, and containing a relatively 

uniform distribution of concentrations across that range.  Once the calibration model is 

built using algorithms, it must be tested to ensure that the model is representative of the 

analyte under investigation and will produce accurate predictions for samples not used in 

the development of the model. 

 Derivatized reflectance data, either first or second derivative, has been applied to 

reduce particle size effects of samples (Osborne et al, 1993).  It reduces the high 

correlations between spectral data at different wavelengths, simplifies the calibration 

procedure, and therefore, should lead to calibrations more robust to particle size 

variations.  The use in NIR of derivatives beyond the second has not been successful 

since the signal to noise ratio decreases with each successive operation.  Multiplicative 

scatter correction (MSC) also has been used to compensate for particle size effects 

(Delwiche, 1998).  It rotates the spectra to remove some of this effect.  MSC rotates each 

spectrum so that it fits as closely as possible to the mean spectrum.  There are several 

calibration modeling methods, or algorithms, that are used to explain the relationships 

between a given constituent and an absorbance spectrum.  Each method provides its own 

advantages and drawbacks, and none of them is better than others for every application.  

MLR is based on a multilinear equation, and is used to select the optimum wavelengths 

for measurement and the associated coefficients for each wavelength (Wehling, 1998).  

Wavelengths are selected by using a forward or reverse stepwise regression procedure, or 

by using a computer algorithm that tests all possible combinations of two, three, or four 

wavelengths to determine the combination that gives the best results.  In the forward 
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stepwise regression, an equation is built up by adding wavelengths one at a time, each 

wavelength being chosen so that the resulting equation has the smallest residual sum of 

squares possible.  Reverse stepwise regression is backward elimination, applicable only 

where an equation involving all the candidate wavelengths may be fitted as a first step.  

The wavelengths are then removed one at a time, the one removed at each step being that 

which causes the least increase in the residual sum of squares.   

 Partial least squares (PLS) regression and principle component regression (PCR) 

are examples of quantitative regression algorithms that are currently used for linear data.  

Both PLS and PCR are factor-based models.  Instead of using a few selected 

wavelengths, PLS and PCR use information from all wavelengths in the entire NIR 

spectrum to predict sample composition.  Wehling (1998) explained that PLS and PCR 

use data reduction approaches to reduce a large number of variables to a much smaller 

number of new variables that account for most of the variability in the samples.  The 

amount of a constituent in samples can then be predicted by these new variables.  PLS is 

similar to PCR but is more sensitive to variations in sample concentration.  Osborne et al 

(1993) stated that PLS tends to produce solutions that require fewer factors than 

calibrations of comparable performance produced by PCR.  PLS is a regression algorithm 

that uses concentration data during the decomposition process and includes as much 

information as possible into the first few loading vectors (Dowell et al, 1998).  It 

performs the decomposition on both the spectral and concentration data simultaneously.  

A small number of factors are constructed as linear combinations of the original spectral 

data and regression on the factor scores is used to derive a prediction equation.  

 Some examples of nonlinear regression algorithms are artificial neural networks 
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(ANN), projection pursuit regression (PPR), and multivariate adaptive regression splines 

(MARS).  Micklander et al (2006) studied the possibility of using different types of food 

with known fat content to develop calibration models and evaluated prediction results 

from different linear (PLS) and non-linear (neural networks and local regression 

techniques) calibration models.  They found that the non-linear models gave the smallest 

root mean square error of prediction (RMSEP) for multi-product models.   

 

2. Problems of Insect Infestation in Stored Grain 

Insect infestation of stored grain has long been a major problem.  In the US, grain 

loss due to insect damage is estimated to be around millions of dollars per year (Flinn et 

al, 2003).  The U.S. standards consider wheat to be infested if   2 live insects injurious to 

wheat are found in a 1-kg sample (FGIS, 1997).  The Food and Drug Administration 

(FDA) has set the defect action level (DAL) as the regulatory standard for quality control.  

For insect contamination, the DAL is 32 insect damaged kernels per 100 g of wheat and 

75 insect fragments per 50 g of wheat flour (FDA 1998).  Internal infesters, referred to as 

“hidden insects” (USDA, 1986), are the most serious grain infesting insects, since 

damage can develop without any visible external signs and cannot be completely 

removed by standard grain cleaning operations.   

The primary infesters, granary weevil [Sitophilus granarius (L.)], maize weevil 

(Sitophilus zeamais), rice weevil [Sitophilus oryzae (L.)], and Lesser grain borer 

[Rhyzopertha dominica (F.)] are the most damaging species that develop to maturity 

inside grain kernels.  They may also cause serious problems in the later stages of 

marketing channels (Vick et al, 1988) by causing products to become unsuitable for use 
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as human food (Russell, 1988), since they are the main source of insect fragments in flour 

(Harris et al, 1952). In contrast, external feeders, such as Indian meal moth [Plodia 

interpunctella(Hbn)], Cigarette beetle [Lasioderma serricorne (F.)], and Cadelle 

[Tenebroides mauritanicus (L.)] develop outside whole grain kernels.  They are more 

easily removed by grain cleaning processes (Toews et al, 2007). 

2.1 Detection of Insect Infestation 

Numerous studies have focused on the development of methods for detecting 

internal insects.  The most commonly used methods for insect detection generally rely on 

visual inspection of grain for insects and insect damaged kernels (Nicholson et al, 1953; 

USDA/FGIS, 1987).  However, none of these methods can be used for detecting hidden 

or internally developing insects that have not emerged (Russell, 1988).  Several methods 

have been developed to identify internal infestation including staining of egg plugs made 

by female weevils after laying eggs in the kernels (Goossens, 1949); flotation of 

hollowed kernels left by feeding insects (Apt, 1952); cracking of kernels followed by 

flotation to concentrate the released insect parts (Harris et al, 1952); and crushing the 

kernels onto paper impregnated with ninhydrin to detect amino acids corresponding to the 

insect (Dennis and Decker, 1962).  

 Other methods include measurement of respired carbon dioxide (Street and Bruce, 

1976) using headspace infrared analysis.  It is, however, unreliable because of the 

difficulty in correcting for the background level of carbon dioxide released by respiring 

grains.  An additional complication is that the instrument must detect as little as a few 

ppm of CO2 produced by insects, against a normal atmospheric background of CO2.  

Hackman and Goldberg (1981) used a colorimetric procedure for measuring chitin, a 
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major component of insect cuticle, as an index of insect infestation in grains.  This 

method, however, may not be adequately specific for use as an index of insect infestation 

in grain because a high concentration of chitin may also be found in stored grain 

contaminated with fungi.  Chambers et al (1984) developed a technique using a nuclear 

magnetic resonance (NMR) spectrometer for monitoring the development of granary 

weevils in wheat kernels.  Peaks for water and lipid were reported in wheat kernels 

containing third and fourth larval instars.  Nevertheless, this method is not widely 

accepted due to the complexity of the instrument.  Determination of uric acid, which is 

the principal end product of nitrogen metabolism of almost all terrestrial insects and 

accounts for more than 80% of the nitrogen of their excreta, using high-performance 

liquid chromatography (HPLC) has been studied (Pachla and Kissinger, 1977; Wehling 

and Wetzel, 1983; Ghaedian and Wehling, 1996).  Fluorometry has also been used to 

detect uric acid (Lamkin et al, 1991).  An enzyme-linked immunosorbent assay (ELISA) 

of kernel extracts for measuring myosin, which is a muscle protein found in all insects, 

has been studied (Kitto, 1991; Chen and Kitto, 1993; Rotundo et al, 2000).  All these 

procedures can detect internal insects or larvae in kernels with varying degrees of 

success.   

 An advanced technology of acoustic detection has also been investigated (Vick et 

al, 1988; Shuman et al, 1993; Mankin et al, 1996; Hagstrum et al, 1996).  Drzewiecki and 

Shuman (2001) later developed acousto-fluidic sensors to exploit the high sensitivity and 

signal-to-noise ratio.  However, it has not been accepted as an official method, since the 

false positives are most often caused by electrical noise because grain is a good insulator.  

Pearson et al (2003) subsequently used electrical conductance, which is monitored by 
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measuring the voltage across the kernel.  Infested kernels are classified from sound 

kernels based on the signal characteristics of the system and by computing the range of 

voltage levels in the conductance signal.  Although this method is inexpensive, it is time 

consuming and cannot detect kernels containing dead larvae or pupae.  In addition, the 

classification rates by this technique are very low when compared with the inspection by 

soft X-rays, and X-ray imaging (Karunakaran et al, 2003; Karunakaran et al, 2004; Fornal 

et al, 2007). 

 According to Schatzki and Fine (1988), an X-ray inspection technique has been 

developed to detect single wheat kernels infested with maize weevil, rice weevil, lesser 

grain borer, and angoumois grain moth at various ages of the insect.  They reported that 

the presence of hidden insects was detected with 80% accuracy for large larvae (3rd and 

4th instar), but misclassification increased exponentially as the size of insect decreased.  

False positives were also reported to be 0.8%.  This was due to difficulty in 

distinguishing between the germ portion of the kernels and insect larvae, and damaged 

kernels appearing identical to 2nd  and 3rd instar larvae.  Time consumption is another 

concern for this method since only 13 grams of wheat could be measured per day.  Keagy 

and Schatzki (1993) developed an image processing algorithm for machine recognition of 

hidden weevils in wheat radiographs; however, a low percentage of recognition (50% and 

72% recognition of fourth instar larvae of maize and granary weevils, respectively), and a 

false positive rate of 0.5% were reported. 

 Although the acid hydrolysis test for insect fragments, the cracking and flotation 

methods, and X-ray inspection have been subsequently accepted as official procedures 

(AACC, 2001), they still lack reliability and reproducibility.  In addition, they are time-
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consuming, difficult to automate, and labor-intensive.  They also require specialized 

equipment and skilled technical personnel, and the use and disposal of hazardous organic 

solvents.  Pedersen (1992) and Brader et al (2002) reviewed some of these screening 

methods used to detect insect infestation in wheat.  

2.2 Use of NIR Spectroscopy for Detection of Insect Infestation 

 Detection of internal insect infestation of wheat kernels using NIR reflectance 

spectroscopy has been reported.  In the United Kingdom, Ridgway and Chambers (1996) 

successfully detected internal infestation by granary weevil.  They investigated both bulk 

samples infested with larvae and pupae, and single wheat kernels infested with larvae.  

Their best calibration equation was obtained from PLS regression of standard normal 

variate-transformed spectral data (1100-2500 nm) against the infestation level.  They 

concluded that both physical and chemical effects are responsible for differences in 

absorption intensity of the spectra.  Chemical effects are thought to be due to moisture 

arising from metabolic processes of insects, insect protein and/or chitin.  They also found 

that the criterion log1/R(1194 nm)- log1/R(1304 nm), without any form of scatter 

correction, can be used to classify sound kernels and kernels infested with pupae. The 

intensity of log 1/R spectra of infested kernels was lower at 1194 nm, which represented 

the starch band, leading them to conclude that the spectral response could likely be due to 

wheat starch lost as a result of insect feeding.  Ridgway and Chambers (1998) further 

incorporated a simple filter-based NIR imager into a machine vision system.  Differences 

between infested and uninfested kernels were enhanced by subtracting the image at 1300 

nm from the image at 1202 nm.  They concluded that the differences between those 

kernels are most likely due to chemical composition changes, such as loss of starch by 
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insect feeding, rather than increased light scattering from the insect cavity in the kernels.  

Ridgway et al (1999) later investigated the region from 700 nm to 1100 nm for detection 

of grain weevil larvae and pupae inside single wheat kernels and found that two-

wavelength models based on either log 1/R (982 nm)- log 1/R (1014 nm) responding to 

decreasing grain starch, or log 1/R (972 nm)- log 1/R (1032 nm) responding to increasing 

grain moisture caused by insect activity, could correctly classify (>96% accuracy)  

uninfested and infested kernels by S. granarius larvae.  The result was comparable to that 

of a full spectrum method (1100- 2500 nm).  

 Research in our laboratory by Ghaedian and Wehling (1997) developed 

calibration models using discrimant analysis based on loadings derived from PCA of full 

(1100–2498 nm) or partial (1100–1900 nm) NIR spectra to classify sound and granary 

weevil infested kernels.  PCA of NIR spectra from sound kernels was used to construct 

calibration models by calculation of Mahalanobis distances.  A five-factor PCA model 

from a first derivative spectral transformation in the 1100-1900 nm region provided the 

highest overall correct classification rates.  Eliminating the region from 1900-1980 nm 

probably removed the differences in kernel moisture content.  They found that the region 

1980 to 2498 nm did not contain enough information for reliable classification. They 

further applied discriminant analysis based on Mahalanobis distances to log 1/R data 

from selected discrete wavelengths.  Similar results were obtained when using 12 

wavelengths, except for infested air-dried kernels.  They concluded that protein, lipid 

(1200, 1360, 1440 and 1660 nm), and phenolic (1420 nm) compounds are the major 

sources of variation between sound and infested wheats. 

 Dowell et al (1998) showed the feasibility of using a near-infrared diode array 
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spectrometer integrated with an automated, single kernel characterization system to 

detect the presence of rice weevil, lesser grain borer, and Angoumois grain moth larvae.  

PLS regression in the wavelength ranges of 1000-1350 and 1500-1680 nm was used to 

build the calibrations.  They observed that absorbance peaks of ground insect cuticle or 

chitin were at 1178 nm and 1500 nm.  Thus, chitin present in insect tissues may explain 

differences between sound kernels and those containing larvae.  They also studied the 

ability of NIRS to detect the smallest larval size in the kernels and found that 3rd and 4th 

instars were detected with 95% confidence, but the technique could not reliably detect 

smaller larvae.  Classification accuracy of insect larvae was not dependent on wheat 

class, protein and moisture content, or insect species. They also stated that no additional 

useful information was obtained by including the wavelength region lower than 1100 nm.  

This can be explained, as absorbances from 700 nm to 1000 nm are primarily caused by 

weak third overtones of fundamental absorptions, and are difficult to measure (Murray 

and Williams, 1990).   

 Maghirang et al (2003) also reported the use of an automated NIRS system to 

detect single wheat kernels containing live or dead rice weevils.  They developed 

calibrations using the wavelength region 950-1690 nm to detect both live and dead 

insects in wheat.  The results showed that calibrations developed using live pupae and 

live large larvae correctly classified 86% to 96% of kernels having dead pupae and dead 

large larvae.  The dead pupae and dead large larvae calibration correctly detected 92% to 

93% of live pupae and live large larvae present. 

 In Canada, a study using NIR spectroscopy to detect rice weevil and lesser grain 

borer in stored wheat has also been reported by Paliwal et al (2004).  They used PCA to 
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distinguish wheat kernels infested with pupae of those insect species at different 

infestation levels, and found that it was possible to differentiate those kernels with at least 

25% infestation level.  Easier of differentiation of insect species was obtained as 

infestation levels increased.  They also developed calibration models for quantitative 

determination of infestation levels using PLS regression and found that high 

classification accuracies were achieved for high infestation levels but lower at low 

infestation levels. 

   Neural network analysis was subsequently applied for calibration development, 

and compared with PLS to detect different species of beetles commonly associated with 

stored grain (Dowell et al, 1999).  The neural network analysis gave a higher percentage 

of correct classification (>99%) for primary and secondary insects, whereas PLS gave a 

lower classification percentage.  Both calibrations classified insects by genus within 

primary and secondary groups with an accuracy of >95%.  Baker et al (1999) used the 

same method and analysis procedure as Dowell et al (1998),  to detect wheat kernels 

containing the parasitoid Anisopteromalus calandrae from rice weevils, and to separate 

sound kernels from those containing weevil or parasitoid larvae or pupae.  They 

demonstrated that their model correctly classified 97.4% of sound kernels, and correctly 

classified as infested 90–100% of kernels with either host or parasitoid larvae or pupae, 

when using 13 PLS factors.  When differentiating weevils from parasitoids, kernels 

containing weevil larvae and pupa could be classified with 100% accuracy from 

parasitoid pupa. The method could not reliably classify parasitoid larva, probably because 

of their small size.  

 There are additional studies on NIR detection of insect infestation.  Tigabu and 
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Oden (2002) successfully classified sound and insect-infested tropical multipurpose trees, 

Cordia africana.  A partial least squares model derived from orthogonal signal corrected 

(OSC) spectra provided the best classification results.  OSC removes undesired spectral 

variation by taking into account the variables in its algorithm and minimizing the 

covariance between response variables.  They stated that differences in composition of 

chitin, cuticular lipid in insects, and moisture content resulted in the difference spectrum 

and partial least squares weight.   

Detection of insect fragments in wheat flour using NIRS has been studied by 

Perez-Mendoza et al (2003).  They reported significant correlation between an NIR 

method with a spectral range of 400-1700 nm, and the actual number of insect fragments 

(less or higher than 130) from rice weevils in flour samples.  However, the method was 

not sufficiently accurate for predicting numbers below the FDA defect action level.  

Further, Perez-Mendoza et al (2004) successfully graded chronological age of adults of 

rice weevil, lesser grain borer, and red flour beetle, three pests of stored grain.  

Decreasing water content and increasing cuticular lipids with increasing age were the 

major factors for NIRS to classify young from old beetles.  Subsequently, Perez-Mendoza 

et al (2005) extended the NIR region to 2500 nm and detected insect fragments in flour 

produced from infested wheat.  They found that wheat infested with a single preemergent 

adult of lesser grain borer provided more fragments than wheat infested with a single 

larva or pupa.  They also surmised that the maximum level of internal infestation that can 

be accepted by millers to produce flour with fragment counts below the FDA defect 

action level ranged from 0.95 to 1.5% (380-640 infested kernels/kg of wheat) for pupae 

and larvae.  But when the grain is internally infested with preemergent adults, the level of 
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maximum infestation is decreased to less than 0.05% (20 infested kernels/kg of wheat).   

 

3. Extrusion Cooking 

The extrusion technique has been used widely for processing snack foods.  It has 

provided an approach for manufacturing new and novel products and has revolutionized 

many conventional snack manufacturing processes.  Extrusion equipment gives many 

basic design advantages that result in minimizing time, energy, and cost while increasing 

the degree of versatility and flexibility that were not previously available (Sevatson and 

Huber, 2000). 

Textural and nutritional properties of extruded products depend on the chemical 

interactions and structural changes undergone by the constituents in the extruder.  Starch 

plays a major role in the overall quality of many processed foods.  Starch consists of two 

glucose polymers: amylose, which is linear, and amylopectin, which is highly branched.  

In the starch granule, the amylose and amylopectin are intermingled but when the short 

linear segments of amylopectin align they become ordered into crystallites.  The 

crystallinity arises from the extensive hydrogen bonding, both intramolecular and to 

water molecules, of the amylopectin molecules.  The addition of thermal energy, either 

transferred from a heater through the barrel and/or generated by viscous dissipation, is 

very important in extrusion cooking (Harper, 1981).  It also causes progressive disruption 

of the hydrogen bonds and changes in the physical characteristics of the starch granules.  

When starch is heated in water, the hydrogen bonds are progressively broken causing the 

granule to swell so that the amylose gradually diffuses out of the granule, destroying the 

crystalline structure and resulting in the formation of a gel.  The increase in viscosity is 
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referred to as pasting, and occurs following gelatinization, which is the initial loss of 

order in the granule.  A major difference between extrusion and other forms of food 

processing is that gelatinization occurs at much lower moisture levels (12-22%), since 

intensive shear force also is developed in the extruder.  The extent of transformation of 

raw materials in extrusion cooking, referred to as the degree of cook, is crucial to final 

product quality.  Cooking degree increases when there is an increase in depolymerization 

eof the starch molecules, resulting in an increase in the number of free hydroxyl (O!H) 

bonds and a decrease in paste viscosity. 

Direct expanded snacks such as corn curls, balls, and rings are the majority of extruded 

snacks.  Cornmeal is fed into an extruder with a feeding device at a constant rate.  The 

meal is exposed to moisture, heat, and pressure as it is transported through the extruder 

toward the extruder die.  Extruders for direct expanded snack products are normally short 

in length.  Additionally, it is important that the extruder configuration consisting of 

screws, steamlocks, and barrel segments be properly selected to feed, knead, and cook the 

process material as it passes through the extruder. 

3.1 Analysis of Extruded Products 

Measurement of starch changes serves as an indicator of the amount of 

degradation during the cook, and also represents functional aspects of the product.  

There are several analytical methods that have been used to evaluate extruded 

products.  The Brabender amylograph has been used previously to measure viscosity 

of extrusion-cooked starch (Mason and Hoseney, 1986).  The Rapid ViscoAnalyzer 

(RVA) was later developed to permit measurement of viscosity properties similar to 

those measured on the Brabender Amylograph, but in one-fifth the time (Whalen et 
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al, 1997).  RVA has been used extensively to study starch pasting characteristics for 

starch-based extruded products (Whalen et al, 1997; Becker et al, 2001; Ganjyal et 

al, 2006). Pasting parameters from RVA provide information related to starch 

gelatinization, disintegration, swelling, and gelling ability.  In spite of this saving in 

time, fewer than five samples per hour can be run on the RVA instrument.  The 

effect of extrusion on water solubility (WSI) and water absorption (WAI) indices of 

starch has been reported (Chinnaswamy et al, 1989; Hashimoto and Grossmann, 

2003; Baik et al, 2004; Ganjyal et al, 2006).  High-performance size exclusion 

chromatography (HPSEC) has been subsequently used to provide information on the 

molecular size distribution of starch polymers due to a cook (Jackson et al, 1990).  

Differential scanning calorimetry (DSC) has been used to study the gelatinization or 

melting characteristics of crystalline forms in starch (Bao et al, 2001; Becker et al, 

2001; Xie et al, 2004).  It can measure starch gelatinization temperature, the heat 

energy input required for gelatinization, and the degree of starch gelatinization.  

Chinnaswamy et al (1989) also reported the use of scanning electron microscopy 

(SEM) to study the microstructural changes, X-ray diffraction to determine the 

pattern of crystalline form, and SEC to discover macromolecular degradation of 

extruded starch.  Additionally, expansion ratio, bulk density, and texture profile 

analysis (TPA) are generally used to determine physical properties of extruded 

products (Liu et al, 2000; Li et al, 2005).  However, none of these methods are fast 

or allow on-line evaluation.  

 

3.2 Use of NIR Spectroscopy for Predicting Degree of Cook 
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NIRS, as mentioned previously, is applicable to the study of chemical changes 

involving the O–H bond in different states of hydrogen bonding (Osborne et al., 1993).  

As the disruption of the hydrogen bond network within each starch granule happens, it 

allows water molecules to occupy new spaces within amylopectin molecules.  These 

changes can be detected by NIRS because of differences in the spectra attributed to O–H 

stretching motions of bonded and free water, respectively (Osborne, 2007).  

To date, a small amount of information has been published on the application of 

NIRS for monitoring starch degradation during the extrusion cooking process.  Some 

applications of discriminant analysis have been recently investigated.  Ben-Hdech et al 

(1993) applied NIRS to evaluate the intensity of extrusion cooking of pea flour, and 

successfully classified extrudates based on the degree of severity of extrusion cooking.  

Guy et al (1996) studied the feasibility of using NIRS to measure structural changes of 

starch in extruded wheat products.  They found that the spectral data can be used to 

predict specific mechanical energy (SME), especially for whole meal.  They also stated 

that the measurements are thought to be related to changes in the hydrogen bonding of 

the hydroxyl groups in the starch molecules.  Fiber-optic probes have been further used 

with NIRS to measure degree of cook on-line and in-line during extrusion processing.  

Evans et al (1999) proved that on-line measurements using transmittance fiber optic 

probes can be used to track changes in degree of cook during extrusion processing of 

wheat flour.  They showed that the second derivative of the minimum absorbance in the 

region of 1400 to 1450 nm of the extrudate melts can be used to follow changes in degree 

of cook when three process variables were changed in a factorial design.  They found that 

the intensity of the minimum absorbance peak increased as the corresponding viscosity of 
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the powdered extrudates decreased.  Apruzzese et al (2000) investigated in-line color and 

composition changes in an extruder MMduring the extrusion of yellow corn flour.  They 

showed that differences in the peak intensities of NIR spectra of corn flour during 

extrusion cooking at different screw speeds could be observed at wavelengths of 2100 

and 2280 nm.  These wavelengths are associated with amylopectin molecules being 

broken down during the extrusion process.  Sahni et al (2004) later used fiber-optic 

transmittance probes for in-line monitoring and prediction of critical parameters in 

emulsion-based products.  They reported that NIR analysis contains information related 

to both the input parameters (raw materials and process variables) and the final product 

quality (viscosity).  Furthermore, they successfully classified samples with different 

recipes and process variables using PCA. 
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RESEARCH TOPICS 

 

Chapter 1 

Comparison of Selected Discrete Wavelength and  

Principal Component Analysis Methods for Insect Infestation Detection  

 

Abstract 

Discriminant analysis using Mahalanobis distances based on selected discrete 

wavelengths was investigated as to whether it can provide comparable results to correctly 

classify sound and infested wheat kernels containing late instar granary weevil larvae, 

compared to using principal component analysis (PCA).  Based on PCA, full or partial near-

infrared (NIR) spectra from sound kernels were used to construct calibration models by the 

calculation of Mahalanobis distances from principal component scores.  A five factor PCA 

model of second derivative spectra, coupled with the use of standard normal variate (SNV) 

over a spectral range of 1100 - 1900 nm, gave the best results overall.  Correct classification 

rates were 100% of sound, 93% of infested, 95% of sound air-dried, 91% of infested air-

dried, and 92% of sound kernels from six different wheat varieties.  When discriminant 

analysis was applied to selected discrete wavelengths, calibrations based on the calculation 

of Mahalanobis distances were developed from both sound and infested wheat kernels using 

the NIR spectral region from 1100 to 1900 nm.  The best results were achieved with a model 

based on four selected wavelengths at 1120, 1130, 1280 and 1860 nm.  Correct classification 
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rates were 98% of sound, 98% of infested, 100% of sound air-dried, 96% of infested air-

dried, and 100% of sound kernels from six different wheat varieties.  These results indicated 

that the method based on selected wavelengths provided a more robust calibration than did 

the PCA method. 
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Introduction 

Internally infesting insects are generally considered the most damaging of the stored-

grain insects, since damage can occur with very little or no visible indication.  After 

oviposition, females of these hidden insects secrete a gelatinous substance to glue the hole, 

usually flush with the seed coat (Pedersen, 1992).  The hidden infestation is not easily 

detected, nor is it easily removed in processing.  Detecting the presence of insects in grain 

and grain products is thus an important factor in the integrated approach to stored grain 

insect control.  

NIR spectroscopy has shown some applications for detecting insect infestation.  

Previous research, including work in our laboratory (Ghaedian and Wehling, 1997), and at 

the USDA laboratories (Dowell et al, 1998 and 1999; Maghirang et al, 2003) in Manhattan, 

KS, has shown that full spectrum NIR methods can successfully detect larvae inside wheat 

kernels.  Qualitative NIR reflectance analysis, using Mahalanobis distances based on 

selected discrete wavelengths, is a simple technique and requires less sophisticated 

instrumentation than do full spectrum techniques.  The purpose of this research was to 

develop a protocol for detecting internal infestation that requires measurements to be taken 

at only a few discrete wavelengths. 

 

Materials and Methods 

Preparation of Sound and Infested Wheat Kernels 

Preliminary work was done by comparing the results of discriminant functions using 

NIR spectra of sound, infested, air-dried, and 6 different varieties of sound wheat kernels 
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from a previous study in our laboratory (Ghaedian 1995).   Sound and infested kernels 

containing 4-week-old instar larvae of granary weevil were taken from a mason jar which 

was maintained at 27 ∀ 3oC and 65 ∀ 5% relative humidity for four weeks.  To identify 

infested wheat kernels, a radiograph was obtained using a General Electric X-ray Grain 

Inspection unit using 20 kV at 5 mA and a 2.5 min exposure time (Ghaedian 1995).  Sound 

wheat kernels were also picked from the same radiograph.  Infested and sound air-dried 

kernels were obtained by freezing wheat kernels for two days to kill the larvae, followed by 

drying at room temperature.   

NIR Analysis and Data Collection 

Spectral data were collected with an NIRSystems model 6500 spectrometer 

(NIRSystems Division of Foss Instrument, Silver Spring, MD) from 1100 to 2498 nm.  

Spectra were collected in the form of log (1/R) at a wavelength interval of 2 nm.  Thirty two 

monochromator scans were averaged from each kernel.  Steps for collecting NIR spectra 

have been previously described in more detail (Ghaedian 1995).  For data collection, the 

Near Infrared Spectral Analysis Software (NSAS) package (version 3.16, NIRSystems) was 

used.   

Data Analysis 

Two methods were used to develop calibration models: 

1) Discriminant analysis based on the loadings derived from Principal Component Analysis 

(PCA) of full or partial NIR spectra using PLSplus/IQ software (Galactic Industries, 

Salem, NH).  Spectra from NSAS were imported into PLSplus/IQ software for analysis. 

2) Discriminant analysis based on Mahalanobis distances of NIR reflectance data from 
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selected discrete wavelengths using MultiQual software (Near Infrared Research Corp., 

Suffern, NY). Unlike PLSplus/IQ software, spectra from NSAS were converted into 

ASCII (JCAMP-DX) format before analyzing data with the MultiQual software. 

Development of Calibration Models Based on Principal Component Analysis 

Grams/32 software (version 3.03, PLSplus/IQ, Galactic Industries, Salem, NH) was 

used for data analysis.  This technique combines PCA and Mahalanobis distances into a 

single method.  As mentioned earlier in the literature review section, it uses principal 

component scores from spectra of samples in a training set to calculate the Mahalanobis 

matrices, and discriminant models are then constructed.  Generally, samples with 

Mahalanobis distances less than 3 are considered to be members of the same group as those 

used to develop the model.  Kernels with Mahalanobis distances greater than 3 are then 

considered to be non-members.  In this trial, a calibration set containing sound kernels was 

used; therefore samples having a Mahalanobis distance of less than 3 standard deviations 

from the training set center were classified as sound, while those with a Mahalanobis 

distance of 3 or greater standard deviations were classified as infested.  Effectiveness of the 

model was evaluated by the percent correct classification of sound and infested kernels in the 

validation sets.   

According to the PLSplus/IQ manual, several options can be applied to the data set 

including selection of the wavelength range to be used and the number of factors to be 

calculated.  Fifteen  factors are normally the maximum number that is recommended for use 

in the analysis.  Models that contain excessive numbers of factors result in overfitting  or 

over-discrimination, and may include noise vectors or vectors that are not necessary.  
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Additionally, a number of data pretreatments, called preprocessing algorithms, which may 

enhance the accuracy of the final calibration model can be applied in this software.  Mean 

centering improves mathematical accuracy of the spectral decomposition and correlation by 

calculating the average spectrum of all spectra in the training set, and then subtracting the 

result from each spectrum.  Generally speaking, mean centering enhances the subtle 

differences between the spectra.  Variance scaling is used to give the data equal weighting, 

such as when analyzing low concentration constituents that have spectral bands that overlap 

those of higher concentration constituents.  It is calculated by dividing the response at each 

spectral data point by the standard deviation of the response of all training set spectra at that 

point.   

Furthermore, multiplicative scatter correction (MSC), and standard normal variate 

(SNV) transformation can be used for pathlength correction and removing the effects of light 

scattering (PLSplus/IQ manual).  The use of MSC is suggested for data sets where the 

spectral variation between training samples is small.  It corrects indeterminate pathlength 

effects resulting from scattering when the diffuse reflectance technique is applied, by 

adjusting the slope and baseline offset of each spectrum to the Aideal@ average spectrum.  

SNV transformation can be applied to the spectra alone or with detrending.  Unlike MSC, no 

ideal spectrum is required for SNV.  The scattering is removed by normalizing each 

spectrum by the standard deviation of the responses across the entire spectral range.  

Detrending can be applied after the SNV correction.  A linear least squares regression is used 

to fit a second order polynomial to the SNV corrected spectrum.  This curve is then 

subtracted from the spectrum to give the result.  Effects due to changes in the physical 
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properties of the samples are then removed.  Ridgway and Chambers (1996) stated that SNV 

transformation generally removes the effects of particle size and scatter; whereas, detrending 

corrects for variation in baseline shift and curvelinearity.  

Due to a number of problems including detector drift, changing environmental 

conditions such as temperature, sampling accessories, etc., the baseline of a given spectrum 

can be changed.  Therefore, derivatization (1st or 2nd) of the spectra is used for removing 

baseline effects.  The first derivative is a measure of the slope of the spectral curve at every 

point.  The second derivative is a measure of the change in the slope of the curve.  They both 

are effective methods for removing baseline offsets because the slope of the curve is not 

affected by baseline shifts in the spectrum.  The algorithms of Savitsky-Golay (SG) and gap 

methods are used for calculating derivatives.  The size of the spectral segment used for 

calculation of the derivative can be selected.  

Data Pre-treatment 

The entire spectral region from 1100-2498 nm was used to develop calibration 

models.  Mean centering was applied to all calibration spectra.  Variance scaling, MSC, SNV 

(alone and with detrending), and derivatization were also tested to investigate if they yielded 

better classification rates.  Using different numbers of PCA factors was also tried in an 

attempt to achieve more robust classification of samples. 

Calibration Set 

In this trial, a calibration set for developing discriminant analysis models contained 

only the spectra of sound kernels (n=50). 
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Validation Set 

Once calibration models were built, they were tested with several validation sets 

including sound (n=25), infested (n=75), sound air-dried (n=75), infested air-dried (n=75), 

and six different varieties of sound wheat kernels (n=60). 

Development of Calibration Models Based on Selected Wavelengths 

In MultiQual software, instead of using full or partial spectra, the best possible 

combinations algorithm is used to select a proper number of wavelengths that prove most 

effective for distinguishing between the materials based on the spectroscopic data, according 

to the computation of Mahalanobis distances.  Several approaches (e.g., forcing wavelengths, 

skipping wavelengths, interleaving wavelengths, etc.) are permitted in this program, 

allowing the incorporation of such prior information to improve the chemometric model, 

reduce the amount of computation required, and also to minimize the computation time.  

According to the MultiQual software user=s guide, the Mahalanobis distances between each 

pair of materials are the most important result output by the program.  If two materials have 

a small distance between them, it means that the computer could not find wavelengths where 

the spectra were appreciably different and misclassification may occur.  Determination of 

outliers is a criterion of developing  a Agood@ model.  This can be recognized from the 

classification output of the calibration set, since the computer rereads the calibration data 

file, and uses the model to calculate the Mahalanobis distance of each sample from each of 

the calibration sets.  Generally, once a model is built, the calibration program then tests the 

model using a leave-one-out algorithm.  Using the same wavelengths found from the search, 

each sample is successively deleted from the model.  A model is then created from the 
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remaining data and applied to the spectral data from the deleted sample to verify the 

classification capabilities of the model using the selected wavelengths (MultiQual software 

user=s guide).   

Data Processing 

In this approach, log (1/R) values from NIR reflectance spectral data of sound and 

infested kernels were used directly in discriminant analysis.  Results from the preliminary 

work using Galactic software show that the correct classification rate was slightly increased 

when using the spectral region from 1100-1900 nm.   Ghaedian and Wehling (1997) also 

indicated that the spectral region from 1100-1900 nm contains more information for 

classification than does the region from 1901-2498 nm.  Delwiche et al (1996) also 

attempted to use the lower half of the near-infrared region (1120-1800 nm).  They claimed 

that, in this wavelength region, overtone frequencies of OH, CH, and NH occur and the 

reflected energy signal is relatively strong.  Furthermore, they surmised that using a broader 

region from1120 to 2478 nm to develop models resulted in lower accuracy because of 

weakness in signal and nonlinear response at longer wavelengths.  Therefore, in this trial, 

spectral data from 1901-2498 nm was removed from the calibration (training) set, leaving a 

wavelength range from 1100 to 1900 nm for developing models.  Different combinations and 

numbers of wavelengths were then tested with separate validation (prediction) sets to select 

the best model that provides the highest correct classification rate.   

Calibration Set 

Unlike the PLSPlus/IQ software, the calibration set in this test was developed from 

both sound and infested wheat kernels.  Twenty spectra from each set of sound, infested, 
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sound air-dried, and infested air-dried kernels were randomly selected to form a calibration 

set (n=80).   

Validation Sets 

Each model was used to predict samples in separate validation sets which are sound 

(n=55), infested (n=55), sound air-dried (n=55), infested air-dried (n=55), and six different 

varieties of sound wheat kernels (n=60). 

 

Results and Discussion 

Classification Results from Calibration Models Based on PCA 

Table 1 shows the classification results using Mahalanobis distances based on PCA 

of the entire spectral region from 1,100 to 2,498 nm.  Correct classification refers to the 

percentage of spectra of sound kernels in a validation set matched with spectra in a 

calibration set, or the percentage of spectra of infested kernels in a validation set non-

matched with spectra in a calibration set.  The numbers of PCA factors used in constructing 

the models are given and the results of using only mean centering show that a discriminant 

model with seven factors gave the best correct classification rate for both sound and infested 

kernels, including sound kernels from six different wheat varieties.  The number of factors 

recommended by the software based only on calibration data (eight factors) gave poor 

classification rates for six different varieties of sound wheat kernels.  This may be due to the 

use of excessive factors to produce models that are overfitted to the calibration set, resulting 

in over discrimination.  Furthermore, sound air-dried kernels were not classified as sound 

kernels in the validation set.  
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Table 1: Percentage of correct classification of wheat samples based on principal 
component analysis of NIR spectra (log 1/R) from 1100 to 2498 nm using different 
pre-treatments 

 
 

 
Pre-treatment 

method 

 
No. of 

factors 

 
Sound 

 
Infested 

 
Sound 

(air-dried) 

 
Infested  

(air-dried) 

 
6 

variety 

 
Mean centering 

 
7 

 
100 

 
83 

 
32 

 
97 

 
82 

 
 

 
8 

 
96 

 
96 

 
0 

 
100 

 
47 

 
 

 
9 

 
96 

 
97 

 
0 

 
100 

 
42 

 
Variance Scaling 

 
4 

 
100 

 
45 

 
91 

 
84 

 
93 

 
 

 
5 

 
100 

 
55 

 
92 

 
92 

 
70 

 
 

 
6 

 
100 

 
79 

 
56 

 
97 

 
85 

 
 

 
7 

 
100 

 
88 

 
25 

 
99 

 
80 

 
 MSC a 

 
5 

 
100 

 
88 

 
39 

 
97 

 
75 

 
MSC  

 
6 

 
96 

 
95 

 
1 

 
100 

 
48 

 
MSC  

 
7 

 
96 

 
95 

 
0 

 
100 

 
55 

 
MSC  

 
  8  

 
92 

 
96 

 
0 

 
100 

 
43 

 
 SNV-detrend b 

 
6 

 
96 

 
84 

 
61 

 
99 

 
77 

 
SNV-alone c 

 
 7 

 
100 

 
95 

 
0 

 
100 

 
43 

 
SNV-detrend 

 
8 

 
96 

 
97 

 
0 

 
100 

 
32 

a Multiplicative scatter correction. 
b Standard normal variate transformation with detrending. 
c Standard normal variate transformation alone. 
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  Calibrations were subsequently developed using variance scaling, MSC, and SNV 

with and without detrending.  Different numbers of factors were also used in developing 

calibrations.  The classification results were similar to those from calibrations using only 

mean centering.  Variance scaling with fewer number of factors (i.e., four factor model and 

five factor model), however, improved the prediction rate of sound air-dried kernels.  

Unfortunately, it substantially lowered the prediction rate of infested kernels.  Models 

developed from MSC provided lower correct classification rates compared with those 

developed from variance scaling.  A fewer number of factors (six factor model vs eight 

factor model) could be used in the models when detrending was coupled with SNV.   

Calibrations were also developed by using first and second derivative spectra.  Both 

Savitsky-Golay (SG) and gap methods with two different gap sizes, i.e. five and nine, were 

used for calculation of the derivative points.  The prediction results are given in Table 2.  

The percentage of sound air-dried kernels correctly classified was increased when first and 

second derivative transformations were applied to the spectra.  Fewer factors were needed 

for use in developing calibrations.   The calibration model developed by Savitsky-Golay 

(SG) first derivative with the size of the spectral segment of nine and four factors gave the 

highest percentage correct classification over all validation sets. 
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Table 2: Percentage of correct classification of wheat samples based on principal 
component analysis of NIR spectra from 1100 to 2498 nm using derivative 
treatment 

 
 
 

Derivative 

treatment 

 
No. of  

factors  

 
Sound 

 
Infested 

 
Sound  

(air-dried) 

 
Infested  

(air-dried) 

 
6 

variety 

 
   SG 1st-der a (5)b 

 
3 

 
100 

 
24 

 
100 

 
39 

 
82 

 
SG 1st-der (9) 

 
4 

 
100 

 
79 

 
95 

 
92 

 
72 

 
 Gap 1st-der c (5)  

 
6 

 
96 

 
93 

 
7 

 
100 

 
58 

 
Gap 1st-der (9)  

 
7 

 
96 

 
95 

 
3 

 
100 

 
45 

 
 SG 2nd-der d (5) 

 
3 

 
100 

 
27 

 
100 

 
23 

 
93 

 
SG 2nd-der (9) 

 
3 

 
100 

 
27 

 
100 

 
23 

 
93 

 
  Gap 2nd-der e (5)  

 
3 

 
100 

 
47 

 
100 

 
40 

 
85 

 
Gap 2nd-der (9)  

 
5 

 
96 

 
89 

 
67 

 
95 

 
75 

 

a Savitsky-Golay first derivative. 
b ()- Number of data point used in the derivative function. 
c Gap first derivative. 
d Savitsky-Golay second derivative. 
e Gap second derivative. 

 

Ghaedian (1995) indicated that moisture content of wheat kernels had an effect on 

prediction rate, since the results showed very poor classification rates for sound kernels 

which had been air-dried when using mean centering and MSC to develop the calibration 

models.  In addition, Ridgway and Chambers (1996) stated that kernels with internal larvae 
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are typically higher in average moisture content than kernels without larvae, because of 

water present in the larvae itself and because insect respiration indirectly increases moisture 

content in those kernels.  However, kernel moisture does not always specify infestation 

because kernels with low moisture content that contain larvae could absorb radiation similar 

to kernels with no larvae that have a high moisture content.  To eliminate this problem, we 

excluded wavelengths between 1901-1979 nm when developing calibrations.  Most 

wavelengths at which water absorbs radiation were thus excluded (Murray and Williams 

1990).  Classification results after removing the interference of water bands are reported in 

Table 3.  As anticipated, the correct classification rate of air-dried sound kernels was 

improved by using either mean centering or variance scaling, except for the eight factor 

model which still gave poor performance.  A seven factor model seemed to provide 

satisfactory prediction results for all validation sets.  By using MSC and SNV, similar results 

were obtained with the use of fewer factors.  Models developed after removing the water 

bands from derivatized spectra of SG second derivative and Gap first derivative gave 

comparable results to the full spectrum models (data not shown).  Calibration models 

developed from SG first derivative spectra with segment size of nine and seven factors, and 

Gap second derivative models with gap size of nine and six factors provided high correct 

classification rates for all validation sets (Table 4).  Calibration models with higher numbers 

of segments were tested for both derivative methods, however, the percentage of correct 

classification was not increased (data not shown). 
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Table 3. Percentage of correct classification of wheat samples based on principal component 
analysis of partial NIR spectra (log 1/R, 1100-1900 nm and 1980-2498 nm) using different 
pre-treatments 
 

Pre-treatment 
method 

No. of 
factors 

Sound Infested Sound  
(air-dried) 

Infested  
(air-dried) 

6 
variety 

Mean centering  4 100 43 96 57 93 

 5 100 68 99 93 87 

 6 100 77 92 97 87 

 7 96 85 89 97 90 

 8 96 96 41 99 70 

Variance Scaling 4 100 43 96 53 93 

 5 100 67 99 92 87 

 6 100 79 92 97 87 

 7 100 88 91 97 92 

 8 96 96 40 99 70 

MSC a 5 100 91 76 97 80 

 6 92 96 24 99 47 

 7 96 96 7 99 48 

SNV-detrend b 6 96 84 87 96 82 

 7 100 95 16 100 70 

SNV-alone c 8 96 95 16 99 73 
a Multiplicative scatter correction. 
b Standard normal variate transformation with detrending. 
c Standard normal variate transformation alone. 
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Table 4: Percentage of correct classification of wheat samples based on principal component 
analysis of partial NIR spectra (1100-1900 nm and 1980-2498 nm) using derivative 
treatment  
 
 
 

Derivative 
treatment 

 
No. of   
factors   

 
Sound 

 
Infested 

 
Sound  

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variet
y 

 
SG 1st-der a (5)b 

 
4 

 
96 

 
55 

 
97 

 
36 

 
90 

 
 

 
5 

 
100 

 
52 

 
99 

 
33 

 
95 

 
 

 
6 

 
100 

 
45 

 
99 

 
24 

 
95 

 
 

 
7 

 
100 

 
53 

 
97 

 
35 

 
95 

 
 

 
8 

 
100 

 
61 

 
96 

 
41 

 
95 

 
SG 1st-der (9) 

 
5 

 
100 

 
85 

 
88 

 
91 

 
85 

 
 

 
6 

 
100 

 
84 

 
91 

 
91 

 
88 

 
 

 
7 

 
100 

 
84 

 
92 

 
91 

 
90 

 
 

 
8 

 
100 

 
88 

 
85 

 
93 

 
88 

 
Gap 2nd-der c (5) 

 
4 

 
100 

 
45 

 
100 

 
29 

 
98 

 
 

 
5 

 
100 

 
59 

 
99 

 
41 

 
97 

 
Gap 2nd-der (9)  

 
5 

 
96 

 
91 

 
77 

 
93 

 
78 

 
 

 
6 

 
100 

 
88 

 
91 

 
92 

 
82 

 
 

 
7 

 
100 

 
91 

 
83 

 
95 

 
75 

a Savitsky-Golay first derivative. 
b ()-Number of data point used in the derivative function. 
c Gap second derivative. 
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  Ghaedian and Wehling (1997) reported the use of truncated spectra from 1100 to 

1900 nm to build calibration models.  The best calibration model was found when using first 

derivative spectra with five factors, which correctly classified 100% of sound, 93% of 

infested, 95% of sound air-dried, 86% of infested air-dried, and 90% of sound kernels from 

six different wheat varieties.  In our current work, calibration models were, therefore, 

developed using spectra from 1100 to 1900 nm.  Higher numbers of factors were used to 

develop calibrations.  Models developed from pre-treatments provided good prediction rates 

for classifying infested and infested air-dried kernels (Table 5).  However, prediction rates 

were unsatisfactory for classifying sound air-dried kernels.   

Table 6 summarizes the prediction rates when using derivatization.  Savitsky-Golay 

first derivative transformation with five segment size in a five factor model yielded an 

optimum prediction rate for all validation sets, and the results were similar to those reported 

by Ghaedian (1995).  Five factor models using Savitsky-Golay first derivative with segment 

size of nine, and Gap first derivative with gap size of five, gave similar results and were 

comparable to that of Savitsky-Golay first derivative with segment size of five.  Gap second 

derivative with segment size of nine and a six factor model gave impressive results in 

classifying sound air-dried, infested, and infested-air dried, but lowered the prediction rate 

for six different varieties of sound wheat kernels.  
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Table 5: Percentage of correct classification of wheat samples based on principal component 
analysis of NIR spectra (log 1/R) from 1100 to 1900 nm using different pre-treatments 
 
 
 

Pre-treatment 

method 

 
No. of 

factors 

 
Sound 

 
Infested 

 
Sound  

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variety 
 

Mean centering  
 

8 
 

100 
 

97 
 

65 
 

100 
 

87 

 
 

 
9 

 
100 

 
99 

 
60 

 
100 

 
80 

 
 

 
10 

 
100 

 
99 

 
69 

 
100 

 
87 

 
Variance Scaling 

 
9 

 
100 

 
99 

 
51 

 
100 

 
80 

 
 

 
10 

 
100 

 
99 

 
69 

 
100 

 
87 

 
MSC a 

 
8 

 
100 

 
99 

 
49 

 
100 

 
80 

 
 

 
9 

 
96 

 
99 

 
53 

 
100 

 
73 

 
SNV-detrend b 

 
9 

 
100 

 
99 

 
17 

 
100 

 
83 

 
 

 
10 

 
100 

 
99 

 
32 

 
100 

 
78 

 
SNV-alone c 

 
9 

 
100 

 
99 

 
59 

 
100 

 
83 

 
 

 
10 

 
100 

 
99 

 
21 

 
100 

 
73 

a Multiplicative scatter correction. 
b Standard normal variate transformation with detrending. 
c Standard normal variate transformation alone. 
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Table 6: Percentage of correct classification of wheat samples based on principal component 
analysis of NIR spectra from 1100 to 1900 nm using derivative treatment 
 
 
 

Derivative 

treatment 

 
No. of   

factors   

 
Sound 

 
Infested  

 
Sound  

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variety 
 
  SG 1st-der a (5)b 

 
5 

 
96 

 
95 

 
91 

 
89 

 
90 

 
 

 
6 

 
96 

 
96 

 
79 

 
97 

 
82 

 
 

 
7 

 
92 

 
99 

 
40 

 
100 

 
55 

 
SG 1st-der (9) 

 
5 

 
96 

 
93 

 
93 

 
88 

 
92 

 
 

 
6 

 
96 

 
96 

 
84 

 
96 

 
85 

 
 

 
7 

 
96 

 
99 

 
47 

 
100 

 
63 

 
Gap 1st-der c (5) 

 
5 

 
96 

 
93 

 
93 

 
88 

 
92 

 
 

 
6 

 
100 

 
96 

 
83 

 
96 

 
85 

 
 

 
7 

 
96 

 
99 

 
53 

 
100 

 
75 

 
Gap 1st-der  (9) 

 
6 

 
100 

 
96 

 
76 

 
97 

 
85 

 
 

 
7 

 
100 

 
95 

 
68 

 
97 

 
83 

 
SG 2nd-der d (5) 

 
3 

 
100 

 
61 

 
97 

 
56 

 
88 

 
 

 
5 

 
100 

 
75 

 
89 

 
68 

 
90 

 
SG 2nd-der (9) 

 
3 

 
100 

 
61 

 
97 

 
56 

 
88 

 
 

 
5 

 
100 

 
75 

 
89 

 
68 

 
90 

 
Gap 2nd-der e (5) 

 
5 

 
96 

 
93 

 
84 

 
93 

 
83 

 
  

 
6 

 
96 

 
95 

 
89 

 
97 

 
80 

 
 

 
7 

 
100 

 
97 

 
65 

 
99 

 
67 

 
Gap 2nd-der (9)  

 
6 

 
96 

 
95 

 
92 

 
93 

 
82 

 
 

 
7 

 
100 

 
99 

 
72 

 
97 

 
70 

 

a Savitsky-Golay first derivative. 
b ()-Number of data point used in the derivative function. 
c Gap first derivative. 
d Savitsky-Golay second derivative. 
e Gap second derivative. 
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Calibration models were next developed using derivative spectra coupled with pre-

treatments.  Table 7 shows the classification results of the models that were created from SG 

first derivatives.  Applying MSC to SG first derivative spectra with segment size of five and 

using five factors gave lower classification rates for infested kernels, and similar results for 

other validation sets compared with the model developed by SG first derivative with segment 

size of five without MSC (Table 6).  When using MSC and SG first derivative with segment 

size of nine, an optimum prediction rate was obtained with five factors.  SNV with and 

without detrending gave slightly lower classification rates compared with MSC.  Poor 

prediction rates for infested and infested air-dried kernels were obtained when applying 

MSC to SG second derivative spectra (Table 8).  The results were improved when applying 

SNV with and without detrending in a five factor model, however, the results were still 

unsatisfactory.  It can be concluded that the use of SG second derivative either by itself or 

coupled with pathlength correction techniques did not provide good classification for 

infested and infested air-dried kernels.  Table 9 shows prediction results when applying pre-

treatments to Gap first derivative spectra.  Classification results of the models using MSC 

coupled with Gap first derivative were comparable to those using Gap first derivative alone 

(Table 6), except for higher classification rates of the six varieties of sound wheat kernels.  

Models developed by SNV with and without detrending gave a lower percentage of correct 

classification compared with those developed by MSC. 
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Table 7: Percentage of correct classification of wheat samples based on principal component 
analysis of NIR spectra from 1100 to 1900 nm using Savitsky-Golay (SG) first derivative 
with different pre-treatments 
 
 

Derivative treatment, 
pre-treatment method 

 
No. of 
 factors 

 
Sound 

 
Infested  

 
Sound  

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variety 
 
SG 1st-der a (5)b, MSCc 

 
4 

 
100 

 
85 

 
96 

 
71 

 
92 

 
 

 
5 

 
100 

 
88 

 
93 

 
89 

 
90 

 
 

 
6 

 
100 

 
93 

 
85 

 
92 

 
90 

 
 

 
7 

 
92 

 
96 

 
63 

 
99 

 
77 

 
SG 1st-der (5),SNV-detrendd 

 
6 

 
96 

 
93 

 
84 

 
95 

 
85 

 
 

 
7 

 
92 

 
96 

 
79 

 
95 

 
85 

 
SG 1st-der (5), SNV-alonee 

 
5 

 
100 

 
89 

 
96 

 
83 

 
90 

 
 

 
6 

 
92 

 
93 

 
83 

 
95 

 
87 

 
 

 
7 

 
96 

 
95 

 
65 

 
99 

 
80 

 
SG 1st-der (9), MSC 

 
5 

 
96 

 
93 

 
88 

 
95 

 
90 

 
 

 
6 

 
100 

 
95 

 
85 

 
95 

 
92 

 
 

 
7 

 
92 

 
97 

 
51 

 
99 

 
72 

 
 

 
8 

 
100 

 
99 

 
48 

 
99 

 
73 

 
SG 1st-der (9),SNV-detrend  

 
6 

 
92 

 
93 

 
84 

 
96 

 
83 

 
 

 
7 

 
96 

 
96 

 
75 

 
97 

 
83 

 
SG 1st-der (9), SNV-alone 

 
7 

 
96 

 
95 

 
60 

 
99 

 
80 

 
 

 
8 

 
96 

 
99 

 
21 

 
100 

 
60 

a Savitsky-Golay first derivative.  e Standard normal variate transformation alone. 
b ()-Number of data point used in the derivative function. 
c Multiplicative scatter correction. 
d Standard normal variate transformation with detrending. 
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Table 8: Percentage of correct classification of wheat samples based on principal component 
analysis of NIR spectra from 1100 to 1900 nm using Savitsky-Golay (SG) second derivative 
with different pre-treatments 
 
 
 

Derivative treatment, 

pre-treatment method 

 
No. of  

factors 

 
Sound 

 
Infested 

 
Sound 

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variety 

 
SG 2nd-dera (5)b, MSCc 

 
3 

 
100 

 
17 

 
88 

 
17 

 
80 

 
 

 
5 

 
100 

 
17 

 
92 

 
21 

 
88 

 
SG 2nd-der (5),SNV-detrendd 

 
2 

 
100 

 
56 

 
96 

 
33 

 
93 

 
 

 
3 

 
100 

 
61 

 
99 

 
44 

 
93 

 
 

 
5 

 
100 

 
76 

 
96 

 
72 

 
93 

 
SG 2nd-der (5), SNV-alonee 

 
2 

 
100 

 
56 

 
96 

 
33 

 
93 

 
 

 
3 

 
100 

 
61 

 
99 

 
43 

 
93 

 
 

 
5 

 
100 

 
76 

 
96 

 
72 

 
93 

 
SG 2nd-der (9), MSC 

 
2 

 
100 

 
19 

 
89 

 
15 

 
80 

 
 

 
3 

 
100 

 
17 

 
88 

 
17 

 
80 

 
 

 
4 

 
100 

 
20 

 
95 

 
20 

 
87 

 
SG 2nd-der (9),SNV-detrend 

 
3 

 
100 

 
61 

 
97 

 
56 

 
88 

 
 

 
4 

 
100 

 
75 

 
89 

 
68 

 
90 

 
SG 2nd-der (9), SNV-alone 

 
2 

 
100 

 
56 

 
96 

 
33 

 
93 

 
 

 
3 

 
100 

 
61 

 
99 

 
44 

 
93 

a Savitsky-Golay second derivative. 
b ()-Number of data point used in the derivative function. 
c Multiplicative scatter correction. 
d Standard normal variate transformation with detrending. 
e Standard normal variate transformation alone. 
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Table 9: Percentage of correct classification of wheat samples based on principal component 
analysis of NIR spectra from 1100 to 1900 nm using Gap first derivative with different pre-
treatments 
 
 
 

Derivative treatment,  

pre-treatment method 

 
No. of 

 factors 

 
Sound 

 
Infested 

 
Sound 

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variety 

 
Gap 1st-dera (5)b, MSCc 

 
6 

 
100 

 
95 

 
85 

 
93 

 
92 

 
 

 
7 

 
96 

 
99 

 
51 

 
100 

 
73 

 
 

 
8 

 
100 

 
99 

 
43 

 
99 

 
77 

 
Gap 1st-der (5),SNV-detrendd 

 
6 

 
96 

 
93 

 
84 

 
95 

 
83 

 
 

 
8 

 
96 

 
99 

 
39 

 
99 

 
63 

 
Gap 1st-der (5), SNV-alonee 

 
6 

 
92 

 
93 

 
77 

 
95 

 
83 

 
 

 
9 

 
100 

 
99 

 
11 

 
100 

 
55 

 
Gap 1st-der (9), MSC 

 
6 

 
96 

 
95 

 
84 

 
93 

 
90 

 
 

 
8 

 
100 

 
99 

 
49 

 
99 

 
73 

 
Gap 1st-der (9), SNV-detrend 

 
5 

 
100 

 
88 

 
96 

 
81 

 
90 

 
 

 
6 

 
96 

 
93 

 
80 

 
95 

 
82 

 
Gap 1st-der (9), SNV-alone 

 
5 

 
100 

 
89 

 
96 

 
81 

 
87 

 
 

 
6 

 
92 

 
93 

 
69 

 
97 

 
78 

 

a Gap first derivative. 
b ()-Number of data point used in the derivative function. 
c Multiplicative scatter correction. 
d Standard normal variate transformation with detrending. 
e Standard normal variate transformation alone. 
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The use of second derivative Gap spectra with gap size of five and coupled with SNV 

(with and without detrending) in a five factor model provided comparable results and yielded 

the best classification rates for all validation sets (Table 10).  Classification rates were 100% 

for sound, 93% for infested, 95% for sound air-dried, 91% for infested air-dried, and 92% for 

sound kernels from six different wheat varieties, which were better results for classifying 

infested air-dried and six wheat varieties compared with those reported by Ghaedian (1995).  

This can be explained in that SNV transformation removes the effect of particle size and 

scatter, so effects due to changes in the physical properties of the samples are minimized.  

Therefore, spectral differences only arise from differences in chemical composition. 

Detrending did not improve classification rates.  As the number of factors increased to six, 

overdiscrimination occurred indicating that the models were overfitted to their calibration 

sets.  

Ghaedian (1995) explained that in a PCA model, factors one and two of both sound 

and infested wheat kernel spectra accounted for moisture, protein, carbohydrate and lipid 

which are the major constituents.  Factor three of those kernels accounted for wheat 

carbohydrates.  Factor four of sound kernels accounted for wheat protein, whereas water and 

Ar-OH structure were also represented in factor four of infested spectra.  Lipid and moisture 

bands showed intensity difference in factor five for both sound and infested wheat kernels.  

The lipid bands of infested wheat in factors six and seven were also higher than those of 

sound kernels.  He also reported that when the moisture band is eliminated (removing 

wavelengths above 1900 nm), protein, lipid, and Ar-OH structures play a major role in 

spectral differences between sound and infested wheat kernels.   
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Table 10: Percentage of correct classification of wheat samples based on principal 
component analysis of NIR spectra from 1100 to 1900 nm using Gap second derivative with 
different pre-treatments 
 
 
 

Derivative treatment,  

pre-treatment method 

 
No. of 

 factors 

 
Sound 

 
Infested  

 
Sound 

(air-dried) 

 
Infested 

(air-dried) 

 
6 

variety 

 
 Gap 2nd-dera (5)b, MSCc 

 
5 

 
100 

 
80 

 
95 

 
76 

 
92 

 
 

 
6 

 
96 

 
93 

 
79 

 
96 

 
80 

 
Gap 2nd-der(5),SNV-detrendd 

 
5 

 
100 

 
93 

 
95 

 
91 

 
92 

 
 

 
6 

 
100 

 
93 

 
79 

 
96 

 
87 

 
Gap 2nd-der (5), SNV-alonee 

 
5 

 
100 

 
93 

 
95 

 
91 

 
92 

 
 

 
6 

 
100 

 
93 

 
79 

 
96 

 
87 

 
Gap 2nd-der (9), MSC 

 
4 

 
96 

 
88 

 
93 

 
80 

 
92 

 
 

 
5 

 
96 

 
95 

 
93 

 
92 

 
90 

 
 

 
6 

 
100 

 
95 

 
85 

 
96 

 
85 

 
 

 
7 

 
92 

 
95 

 
75 

 
99 

 
80 

 
Gap 2nd-der (9),SNV-detrend 

 
5 

 
100 

 
93 

 
97 

 
85 

 
95 

 
 

 
6 

 
96 

 
93 

 
84 

 
95 

 
85 

 
Gap 2nd-der (9), SNV-alone 

 
5 

 
100 

 
93 

 
97 

 
85 

 
95 

 
 

 
6 

 
96 

 
93 

 
84 

 
95 

 
85 

a Gap second derivative. 
b ()-Number of data point used in the derivative function. 
c Multiplicative scatter correction. 
d Standard normal variate transformation with detrending. 
e Standard normal variate transformation alone. 
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Classification results from calibration models using selected wavelengths 

Several combinations of selected wavelengths were used to develop calibration 

models, which were then tested with the validation sets.  A four wavelength model gave the 

best results, correctly classifying 98% of sound, 98% of infested, 100% of sound air-dried, 

96% of infested air-dried, and 100% of six different varieties of sound wheat kernels (Table 

11).  This particular wavelength combination at 1120, 1130, 1280 and 1860 nm provided a 

greater percentage of correct classification than the results reported by Ghaedian (1995) from 

both techniques of PCA coupled with Mahalanobis distance, and selected wavelengths.  

Wavelengths at 1120 and 1130 nm are due to the second overtone of a C-H stretch found in 

aromatic structures (Osborne et al., 1993).  The wavelength at 1280 nm is also due to the 

second overtone of a C-H stretch.  The O-H stretch and C-O stretch at 1860 nm is probably 

associated with cellulose and starch in wheat.  The best classification results derived from 

using a five PCA model based on first derivative spectra from 1100 to 1900 nm reported by 

Ghaedian (1995) are previously described.  Also, in that study, the use of twelve discrete 

selected wavelengths based on underivatized, log (1/R) data from 1100 to 2498 nm gave 

classification results similar to the results from PCA, except correct classification of infested 

air-dried kernels was only 55% compared to 86% when using PCA. 
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Table 11: Percentage of correct classification of wheat samples based on Mahalanobis 
distances of selected wavelengths of NIR spectra from 1100 to 1900 nm 
 
 
 

No. of 

wavelengths 

 
Sound 

 
Infested 

 
Sound  

(air-dried) 

 
Infested  

(air-dried) 

 
6 

variety 
 

3a 
 

96 
 

91 
 

100 
 

96 
 

87 

 
4b 

 
98 

 
98 

 
100 

 
96 

 
100 

 
5c 

 
100 

 
91 

 
100 

 
96 

 
93 

 
6d 

 
100 

 
91 

 
100 

 
96 

 
100 

 
7e 

 
100 

 
84 

 
100 

 
96 

 
95 

 

a 3 selected wavelengths: 1150, 1260, 1360 nm. 
b 4 selected wavelengths: 1120, 1130, 1280, 1860 nm. 
c 5 selected wavelengths: 1140, 1270, 1360, 1380, 1650 nm 
d 6 selected wavelengths: 1130, 1220, 1240, 1350, 1390, 1500 nm. 
e 7 selected wavelengths: 1130, 1220, 1250, 1350, 1370, 1380, 1890 nm. 
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Chapter 2 

A Simplified Near-Infrared Method for Detecting Internal Insect 

Infestation in Wheat Kernels 

 

Abstract 

A simplified near infrared (NIR) reflectance spectroscopy method for detecting 

internal insect infestation in wheat kernels has been developed.  The method detects the 

presence of 3- and 4- week-old granary weevil or maize weevil larvae in individual wheat 

kernels.  Discriminant analysis, based on Mahalanobis distances calculated from log 1/R data 

at only four discrete wavelengths, was able to discriminate sound kernels from those 

internally infested with 4-week-old larvae.  When applied to a validation set, this model 

correctly classified 97% of sound, 100% of sound air-dried, 89% of infested kernels 

containing 4-week-old granary weevil larvae, 93% of kernels containing 4-week-old maize 

weevil larvae, 98% of air-dried kernels infested with granary weevil, and 94% of air-dried 

kernels infested with maize weevil.  However, the model correctly identified less than 50% 

of kernels containing 3-week-old larvae.  A model developed from a training set that 

contained kernels infested with 3-week-old larvae yielded a higher rate of correct 

classification for a validation set containing 3-week-old granary weevil larvae (77% correct), 

and maize weevil larvae (73% correct).  This model also improved classification rates of 

infested kernels containing 4-week-old larvae of granary and maize weevils to 95 and 98%, 

respectively.  The models were also tested with sound kernels from 10 varieties of wheat 

with varying kernel characteristics.  Correct classification rates were 100 and 99% when 
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using calibrations developed from 4- and 3-week-old larvae, respectively.  Results indicated 

that either live (infested kernels containing 3- or 4-week-old larvae) or dead insects (infested 

air-dried kernels) can be used to develop calibrations for detecting both live and dead insects 

in wheat. 
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Introduction 

As mentioned in the previous chapter, the presence of internal insects in wheat is a 

major problem for the wheat industry.  The presence of live or dead internal insects in wheat 

kernels can lower the quality of wheat.  In addition, emergence of live insects can cause 

further damage to kernels and contribute to fragments in flour.  NIR spectroscopy is an 

alternative to other methods since it is a rapid and accurate technique, and is widely used 

throughout the U.S. grain industry.  It can also be adapted for non-destructive and automated 

detection. 

Discriminant analysis based on Mahalanobis distances was explained by Mark and 

Tunnell (1985) and Mark (2001).  The Mahalanobis distance, from a statistical viewpoint, 

takes the sample variability into account, whereas the Euclidian distance method does not 

take into account the variability of the values in all dimensions.  In other words, 

Mahalanobis distances look at not only variation between the responses at the same 

wavelengths, but also at inter-wavelength variations.  Instead of treating all values equally 

when calculating the distance from the mean point, it weighs the differences by the range of 

variability in the direction of the sample point.  The location of each cluster in 

multidimensional space is described by the mean value of the absorbances (the group mean) 

at each wavelength. 

Qualitative NIR reflectance analysis using Mahalanobis distances based on selected 

discrete wavelengths is a simple technique and requires much less expensive instrumentation 

than full spectrum methods using Principal Component Analysis (PCA).  Studies on 

calibrations developed from reduced-spectrum models instead of full-spectrum models have 
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been reported (Ridgway et al, 1999; Dodds and Heath, 2005).  The previous chapter shows 

that the development of discrete wavelength models can provide improved classification 

results compared to techniques utilizing PCA.  The objectives of this study, therefore, were 

to determine if discriminant analysis functions could differentiate between sound and 

infested wheat kernels using Mahalanobis distances based on NIR reflectance spectral data at 

only a few discrete wavelengths, and to evaluate the ability of NIR spectroscopy to detect the 

earliest stages of granary weevil and maize weevil larvae in wheat kernels.  

 

Materials and Methods 

Preparation of Insect Infested and Sound Wheat Kernels 

Insect colonies of granary weevil [Sitophilus granarius (L.)] and maize weevil 

(Sitophilus zeamis) were obtained from the stored products research laboratory of the 

Department of Entomology at Kansas State University, Manhattan, KS.  Approximately 200 

g of clean Hard Red Winter (HRW) wheat from the Cereal Quality Laboratory of the 

Department of Agronomy at the University of Nebraska -Lincoln was  placed into a wide-

mouth quart canning jar, and cultured with unsexed parent insects of a single species (~ 100 

insects each).  In order to protect the wheat and insects from outside contamination while 

providing a source of oxygen during incubation, the jars were covered with 40 mesh window 

screen over a circle of Whatman No.4 filter paper.  A high-moisture incubator was not 

available to raise the insects, so in order to increase humidity in the incubator, a wide and 

shallow tray containing a cotton sheet made into a tent shape was placed on the bottom shelf 

of the incubator.   Two smaller trays were also used for the same purpose and placed on the 
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middle shelf.  In order to increase surface area of the water carrier, two triangle-shaped 

screens covered with cotton cloth were placed in those trays.  Water was then added into all 

trays and maintained through the period of raising the insects.  Relative humidity of the 

incubator could be raised only to 50 ∀ 5%, which is lower than the optimum environmental 

condition for hatching and development of stored-product insects (Wehling et al, 1984).  

Schwartz and Burkholder (1991), however, documented that immature granary weevil 

development in wheat can occur between 40 and 80% RH.  Khan (1949) reported the number 

of days to larval instars (1st, 2nd, 3rd, and 4th) and pupal stage of granary weevil at 50%RH 

and 25oC are 6, 6, 6, 11, and 12, respectively.  The cultures were, therefore, raised at 50 ∀ 5 

% RH and a temperature of 25 ∀ 3 0C.  The female insects were allowed to deposit eggs into 

the wheat kernels for a period of 4 days, and the parents were then removed by sieving.  

Cultures were returned to the incubator, with individual culture jars removed after 2, 3, and 4 

weeks as the desired level of larval development was achieved. 

Identification of Sound and Infested Kernels by Radiography 

A portion of each culture was collected to identify sound and infested kernels using a 

general Medical X-ray Unit at the conditions of 30 kV and 25mA, with a 3 sec exposure 

time.  Radiographs were obtained by placing wheat kernels into the wells of micro-plates, 

arranging one kernel in each well.  The radiographs were then viewed with a film 

illuminator.  Infested kernels were visually identified, and removed using forceps from their 

well position on the micro-plate.  In a preliminary study, the radiographs obtained by the 

Medical X-ray Unit did not provide sufficiently clear images to reliably identify 2-week-old 

insect larvae by visual inspection of  the radiographs.  Thus, only wheat kernels containing 
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3- and 4-week-old granary and maize weevil larvae were used in this study.  All infested 

kernels chosen contained one internal insect per kernel.  NIR spectra were then obtained 

from wheat kernels within 24 h after being X-rayed and sorted to minimize changes in the 

growth stage of the larvae.  To insure that sound wheat kernels were treated in the same 

manner as infested kernels, sound kernels were also picked from the radiographed kernels.   

NIR Analysis and Data Acquisition 

Spectral data from all wheat kernels, expressed in the form of the absorbance 

(logarithm of the inverse of the reflectance, log 1/R), were collected with an NIRSystems 

Model 6500 spectrometer (NIRSystems Division of Foss Electric, Silver Spring, MD).  

Diffuse reflectance spectra were obtained from intact wheat kernels over a spectral range 

from 1100 to 2498 nm.  Spectra were collected at 2-nm increments.  Individual wheat 

kernels were carefully placed in a CapcellTM parabolic reflector (Optical Prototypes, Mars, 

PA).  This device allows the collection of radiation reflected from the entire surface of the 

kernel.  The kernels were placed in a sample holder in crease down position, which was 

previously found to provide higher correct classification rates compared with the crease up 

position (Ghaedian and Wehling 1997).  In addition, the orientation and position of the 

kernels in the sample holder were carefully reproduced.  A remote reflectance probe attached 

to the monochromator of the instrument by a fiber optic cable was then positioned over the 

Capcell to measure light reflected from the kernel.  Thirty-two monochromator scans were 

accumulated in computer memory.  The scans were averaged, transformed to log (1/R), and 

then stored in a computer file, forming one spectrum per each kernel.  The NIR spectrum of 

the kernel was obtained by taking the ratio of the intensity of radiation reflected from the 
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sample to that reflected from a ceramic reference plate.  A black cloth was used to cover the 

remote probe and parabolic reflector during collection of each spectrum to minimize the 

effect of stray light.   

To minimize the effect of any variation due to instrument drift, scanning was 

alternated between sound and infested kernels after every 10 kernels.  After scanning, each 

kernel was numbered for further identification.  Infested kernels were then frozen at -18oC 

for 48 hr to kill the larvae, followed by air drying at room temperature on an open tray for 

about 14 days.  These kernels contained dead larvae and simulated fumigated kernels in 

storage.  After collection of these spectra, the kernels were sectioned with a razor blade to 

ensure the presence or absence of internal insect larvae. 

For data collection, the spectrometer was interfaced to a personal computer running 

the Near Infrared Spectral Analysis Software (NSAS) package (version 3.53, FOSS 

NIRSystems, Silver Spring, MD).  To enhance peaks and correct the baseline of the spectra, 

first and second derivatives of spectra were also calculated.  All raw spectra (log1/R) were 

pretreated with first or second derivative processing with segment interval = 10 or 20 nm, 

and gap = 10 or 20 nm, using NSAS software.  Spectra were then stored on the hard disk 

drive and then converted into ASCII (JCAMP-DX) format for analysis with MultiQual 

software (1998) from the Near Infrared Research Corp (Suffern, NY).  

Discriminant Analysis 

Previous results showed promise for correct classification by using discriminant 

analysis based on Mahalanobis distances applied to selected wavelengths.  Therefore, this 

study was focused only on this method of analysis.  The principle of this technique was 
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previously described in chapter 1. 

Calibration Sets 

Two calibration sample sets for model development were prepared.  The first 

calibration set (n=200) was randomly selected from NIR spectra of six different groups of 

sound (n=100) and infested (n=100) kernels.  They were: 

1) Sound wheat kernels (n=50), 

2) Sound air-dried what kernels (n=50),  

3) Infested kernels containing 4-week-old larvae of granary weevil (n=25),  

4) Infested kernels containing 4-week-old larvae of maize weevil (n=25),  

5) Infested air-dried kernels containing 4-week-old larvae of granary weevil (n=25),  

6) Infested air-dried kernels containing 4-week-old larvae of maize weevil (n=25).   

The kernels identified as Asound air-dried@ were the sound kernels that had been air-

dried at room temperature before collecting the spectra, and therefore had a different 

moisture content compared to the other sound kernels.  The first groups of sound and sound 

air-dried wheat kernels were identified as Asound@ in the JCAMP-DX format in order to be 

analyzed with the software.  The others were then identified as Ainfested@. 

The second calibration set (n=200) was developed from the same NIR spectra which 

had been used in the first calibration set, except for the third thru sixth groups.  In this 

second set, infested kernels containing 3-week-old larvae of granary and maize weevils were 

used instead of spectra from those kernels containing 4-week-old larvae of granary and 

maize weevils.   

The preliminary results in the previous chapter showed that a calibration model of 
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four wavelengths gave the best classification results.  Therefore, a number of four 

wavelength combinations in the spectral region from 1100 to 1900 nm were used to develop 

calibrations.  Once a model was developed, a leave-one-out algorithm, or cross-validation, 

was used to verify classification capability of the model. 

To minimize time needed for computation, skipping factors were used.  Several 

searching strategies were tried in order to achieve the best classification results.  Tables 1 

and 2 show several approaches of using log 1/R data from sound and infested kernels 

containing 4- or 3-week-old larvae, respectively, to build calibrations.  In model 1, every 

fifth data point was considered for building the trial model.  Because of the wavelength 

spacing of 2 nm, this meant that wavelengths on 10 nm intervals were considered.  To ensure 

that additional combinations were tried that may produce a better model, the third and fourth 

selected wavelengths were searched at every 2 nm in model 2.  For faster computation, every 

twenty-fourth data point was used in model 3.  Therefore, wavelengths on 48 nm intervals 

were used to build the trial model.  Interleaving wavelengths, as suggested by the program 

author, may keep the search small and still include all of the available wavelengths in one or 

another of the models.  In this searching approach, the number of the skip factor is equal to 

the number of wavelengths to be selected, and the beginning of each range starts one data 

point over from the previous one.  Therefore, the skip factor was set to 4 and the wavelength 

range was incremented at a 2 nm interval as shown in model 4.  An efficiency search for 4 

wavelengths in model 5 was generated by the program software using an efficient 

proprietary algorithm to search through the multidimensional space containing the data.  

Searching approaches of first and second derivatized spectra for both calibration models 
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followed those of raw spectra.  Some searching approaches were not used with derivative 

treatments to build calibration models, since they were not be able to be processed by the 

program software.  For example, an approach in model 2 was removed from all derivative 

treatments.   

Once the discriminant analysis models were developed, the models were used to 

predict samples from the validation sets.  Samples in the validation sets were classified as 

Asound@ or Ainfested@.  The wavelength combinations selected by the searches that 

provided the highest percentage of correctly classified samples were identified. 

Validation Sets 

Each calibration model was used to predict samples in separate validation sets.  

They were: 

1) Sound wheat kernels (n=90), 

2) Sound air-dried wheat kernels (n=85), 

3) Infested kernels containing 4-week-old larvae of granary weevil (n=87),  

4) Infested kernels containing 4-week-old larvae of maize weevil (n=86),  

5) Infested kernels containing 3-week-old larvae of granary weevil (n=87),  

6) Infested kernels containing 3-week-old larvae of maize weevil (n=75),  

7) Infested air-dried kernels containing 4-week-old larvae of granary weevil (n=52),  

8) Infested air-dried kernels containing 4-week-old larvae of maize weevil (n=51),  

9) Sound kernels of ten different wheat varieties (Scout 66, Siouxland, Vista, Jagger, 

Ogallala, Windstar, Centura, Yumar, Experimental White, Nuplains White) grown in 

Nebraska and obtained from the Cereal Quality Laboratory of the Department of Agronomy 
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at the University of Nebraska -Lincoln.  Ten kernels of each variety were used to construct a 

validation set (n=100). 

Table 1: Searching approaches for constructing calibrations using raw data (log1/R) sound 
and infested kernels with 4-week-old larvae performed with MultiQual software. 
 
 

 
Searching Approaches 

 
Model 

 
 
Wavelength 

No. 

 
Wavelength 

Range 

 
Skip 

Factor 

 
Selected 

Wavelengths  

 
Mahalanobis 

distances 

 
1 

 
1 
2 
3 
4 

 
1100-1900 
1100-1900 
1100-1900 
1100-1900 

 
5 
5 
5 
5 
 

 
1140, 1120, 
1150, 1400 

 
4.13151 

 
2 

 
1 
2 
3 
4 

 
 1100-1900 
1100-1900 
1100-1900 
1100-1900 

 
 5 

5 
1 
1 
 

 
1152, 1128, 
1400, 1140 

 
4.24386 

 
3 

 
1 
2 
3 
4 

 
1100-1900 
1112-1900 
1124-1900 
1136-1900 

 
 24 
 24 
 24 
 24 

 
1136, 1124, 
1160, 1676 

 
4.08155 

 
4 

 
1 
2 
3 
4 

 
1100-1900 
1102-1900 
1104-1900 
1106-1900 

 
4 
4 
4 
4 

 
1154, 1136, 
1406, 1124 

 
 

 
4.25396 

 
5 

 
Efficiency search 4 wavelengths 

 
1116, 1136, 
1158, 1550  

 
3.85744 
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Table 2: Several searching approaches for constructing calibration models using raw data 
(log1/R) of sound and infested kernels with 3-week-old larvae performed with MultiQual 
software. 
 
 

 
Searching Approaches 

 
Model 

 
Wavelength 

No. 

 
Wavelength 

Range 

 
Skip 

Factor 

 
Selected 

Wavelengths  

 
Mahalanobis 

distances 

 
1 

 
1 
2 
3 
4 

 
1100-1900 
1100-1900 
1100-1900 

 1100-1900 

 
5 
5 
5 
5 
 

 
1130, 1140, 
1160, 1390 

 
2.33174 

 
2 

 
1 
2 
3 
4 

 
 1100-1900 
1100-1900 
1100-1900 
1100-1900 

 

 
 5 

5 
1 
1 

 
1128, 1138, 
1390, 1160 

 
2.48997 

 
3 

 
 1 

2 
3 
4 

 
1100-1900 
1112-1900 
1124-1900 
1136-1900 

 
 24 
 24 
 24 
 24 
 

 
1136, 1124, 
1160, 1388 

 
2.40566 

 
4 
 
 
 

 
1 
2 
3 
4 

 
1100-1900 
1102-1900 
1104-1900 
1106-1900 

 
 4 

4 
4 
4 
 

 
1138, 1128, 
1390, 1156 

 
2.47427 

 

 
5 

 
Efficiency search 4 wavelengths 

 

 
1106, 1138, 
1160, 1566 

 
2.07903 
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Results and Discussion 

Figure 1 displays the average absorbance of 50 kernels each of sound (uninfested) or 

internally infested wheat kernels (3-and 4-week-old granary and maize weevils).  Spectra of 

infested air-dried wheat kernels (spectra not shown) had the same trends as those for infested 

wheat kernels.  Absorbance (log 1/R) was generally highest for sound wheat kernels and 

decreased with infestation.  These results agreed with results reported by Ridgway and 

Chambers (1996), Dowell et al (1998), and Maghirang et al (2003).  This was probably due 

to a significant proportion of the radiation penetrating through the outer kernel to interact 

with the insect and surrounding cavity (Ridgway and Chambers, 1996).  Interaction with 

both the internal insect and the surface of the insect cavity will lead to greater back reflection 

and thus lower log 1/R values.  Therefore, changes in physical properties of wheat samples 

due to the presence of the internal insects probably caused spectral changes with infestation. 

 Additionally spectral differences were most likely due to the presence of insect cuticle 

which contains both chitin and lipid.  Several researchers have previously reported the effect 

of these components on the C!H absorption region around 1100-1700 nm. (Ghaedian and 

Wehling 1997, Dowell et al 1998 and 1999, Maghirang et al 2003, Perez-Mendoza et al 

2003).  
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Fig. 1.  Average absorbance of sound wheat kernels, 3- and 4-week-old granary and maize 

weevils infested kernels. 

 

Classification Results using Calibrations Developed from 4-Week-Old Larvae 

A summary of classification results when infested kernels from 4-week-old larvae 

were used to develop calibrations from raw spectra is given in Table 3.  Overall, the 

misclassification rate of the calibration set was 4.2% and the correct classification rate was 

95.8%.  The calibration models were then used to test samples in the validation (prediction) 

3-wk 

sound 

4-wk 
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set, which had not been used in the training (calibration) set.  By looking at overall correct 

classification, the best results were obtained using the searching approach in model 5.  The 

results revealed that 97% of sound, 100% of sound air-dried, 89% of infested kernels 

containing 4-week-old larvae of granary weevil, 93% of kernels containing 4-week-old 

maize weevil larvae, 98% of air-dried kernels infested with granary weevil, 94% of air-dried 

kernels with maize weevil, and 100% of sound kernels from ten different wheat varieties 

were correctly classified into their respective classes.  Table 4 shows the distribution of 

sound and infested wheat kernels in both misclassification and correct classification.  With 

model 5, for example, three of two hundred seventy five sound wheat kernels, and one 

hundred fourteen of four hundred thirty eight infested kernels, were actually misclassified in 

the validation set.  These impressive results demonstrate that NIR spectroscopy and 

discriminant analysis techniques can be used for identifying sound and infested wheat 

kernels, regardless of differences in moisture content and wheat varieties.  However, infested 

kernels containing 3-week-old larvae of maize and granary weevils were poorly classified 

with correct percentages of 37 and 46, respectively.   

 

 

 

 

 

 
 
 
 



Table 3: Correct classification of wheat samples using a calibration developed from raw spectra of sound and 4-week-old larvae with  
different searching approaches.  
       

 
 

Percentage of correct classification 
 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

  
Model  

Sound 
 

Sound  
(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 

 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
10 

variety 
 

 
Calibration  

 
1 

 
100 

 
100 

 
100 

 
100 

 
92 

 
- 

 
 

 
92 

 
- 

 
- 

 
samples 

 
2 

 
100 

 
100 

 
100 

 
100 

 
92 

 
- 

 
 

 
92 

 
- 

 
- 

 
 

 
3 

 
100 

 
100 

 
100 

 
100 

 
88 

 
- 

 
 

 
96 

 
- 

 
- 

 
 

 
4 

 
100 

 
100 

 
100 

 
100 

 
88 

 
- 

 
 

 
96 

 
- 

 
- 

 
 

 
5 

 
100 

 
100 

 
100 

 
96 

 
92 

 
- 

 
 

 
96 

 
- 

 
- 

            
 
Validation  

 
1 

 
100 

 
100 

 
98 

 
96 

 
86 

 
35 

 
 

 
91 

 
32 

 
99 

 
samples 

 
2 

 
100 

 
100 

 
98 

 
96 

 
86 

 
32 

 
 

 
91 

 
29 

 
100 

 
 

 
3 

 
98 

 
100 

 
98 

 
94 

 
87 

 
40 

 
 

 
92 

 
31 

 
100 

 
 

 
4 

 
99 

 
100 

 
98 

 
96 

 
86 

 
36 

 
 

 
91 

 
33 

 
100 

 
 

 
5 

 
97 

 
100 

 
98 

 
94 

 
89 

 
46 

 
 

 
93 

 
37 

 
100 

 
 

86 



 
 

87

Table 4: Classification matrices from several searching approaches for constructing 
calibration models using raw spectra of sound and infested kernels with 4-week-old larvae. 
 
  

 Calibration  Validation 

  Actual class 
 

     Actual class 
 

 
Model 

 

 
Class found 

 
 

Sound 
(N=100) 

Infested 
(N=100) 

  Sound 
(N=275) 

Infested 
(N=438) 

1 Sound 99 2   274 131 

 Infested 1 98   1 307 

        

2 Sound 100 3   275 135 

 Infested 0 97   0 303 

        

3 Sound 100 4   273 126 

 Infested 0 96   2 312 

        

4 Sound 100 4   274 129 

 Infested 0 96   1 309 

        

5 Sound 100 4   272 114 

 Infested 0 96   3 324 
 
 

 The chosen wavelengths were 1116, 1136, 1158 and 1550 nm.  The first three 

wavelengths are associated primarily with the second overtone of a C-H stretch found in 

aromatic structures, CH3, and CH2 .  These absorbance regions agreed with those reported by 

Dowell et al (1998) and Maghirang et al (2003).  The wavelength at 1550 nm is due to an N-

H first overtone (Osborne et al, 1993), indicating that the ability to detect infested wheat 
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kernels may partly be due to the change in protein content of the wheat kernels.  CH3 and 

CH2 groups are common chemical moieties in components that make up the cuticular lipids 

in insects.  Generally, insect cuticular lipids are composed of fatty acids, alcohols, esters, 

glycerides, sterols, aldehydes, ketones and hydrocarbons (Jackson et al, 1974; Blomquist and 

Dillwith, 1985).  Chitin and protein are also predominant constituents in insect larvae (Singh 

and Sinha, 1977).  

 Table 5 provides calibration results for models developed by applying a first 

derivative treatment to spectra of sound and infested wheat kernels and using a leave-one-out 

algorithm to classify samples in the calibration set.  When applied to validation samples 

(Table 6), the calibration using a segment interval= 5 and gap= 5 in model 4 improved 

classification results for sound and infested wheat kernels containing 4-week-old granary 

and maize weevils to 99, 92, and 94%, respectively.  The wavelengths chosen were 1304, 

1330, 1358, and 1500 nm.  The first three wavelengths correspond to C-H first and second 

overtones, and C-H combination vibrations, i.e., stretching modes and various deformation 

modes, which are found in CH2 and CH3 (Osborne et al, 1993).  The band at 1500 nm is also 

associated with protein.  A segment interval= 10 and gap= 10 gave lower percentages of 

correct classification for wheat kernels infested with live larvae.  Calibrations developed 

from second derivative processing gave lower correct classification rates for infested kernels 

containing both 3- and 4-week-old larvae compared to those built from raw spectra (Table 7 

for calibration samples and Table 8 for prediction samples). 

 

 



Table 5: Correct classification of wheat samples (calibration samples) by models using first derivative spectra of sound and 4-week-old 
larvae developed with different searching approaches.  
 

 
Percent correct classification 

 
Granary weevil (live) 

 
Maize weevil (live) 

 
 
Derivative treatment 

 
 

Model 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
4-wk-old 

 
3-wk-old 

 
1 

 
98 

 
100 

 
100 

 
100 

 
96 

 
- 

 
96 

 
- 

 
segment =5, gap =5  

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
3 

 
98 

 
100 

 
100 

 
96 

 
96 

 
- 

  
92 

 
- 

 
 

 
4 

 
98 

 
100 

 
100 

 
100 

 
96 

 
- 

  
96 

 
- 

 
 

 
5 

 
96 

 
98 

 
100 

 
100 

 
92 

 
- 

  
88 

 
- 

          
 
segment=10, gap=10 

 
1 

 
96 

 
100 

 
100 

 
100 

 
96 

 
- 

  
96 

 
- 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

  
- 

 
- 

 
 

 
3 

 
98 

 
100 

 
100 

 
96 

 
96 

 
- 

  
88 

 
- 

 
 

 
4 

 
96 

 
100 

 
100 

 
96 

 
96 

 
- 

  
96 

 
- 

 
 

 
5 

 
98 

 
100 

 
100 

 
96 

 
92 

 
- 

  
88 

 
- 

 

89 



Table 6: Correct classification of wheat samples (validation samples) by models using first derivative spectra of sound and 4-week-old 
larvae developed with different searching approaches.  
 

 
Percent correct classification for validation samples 

Granary weevil (live) Maize weevil (live) 

 
 
Derivative treatment 

 
 

Model Sound Sound 
(air-dried) 

Granary 
weevil 

(air-dried) 

Maize 
weevil 

(air-dried)  
4-wk-old 

 
3-wk-old 

 
4-wk-old 

 
3-wk-old 

 
1 

 
99 

 
100 

 
96 

 
92 

 
91 

 
20 

 
93 

 
31 

 
segment =5, gap =5  

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
3 

 
99 

 
100 

 
94 

 
92 

 
89 

 
31 

  
92 

 
41 

 
 

 
4 

 
99 

 
100 

 
96 

 
92 

 
92 

 
24 

  
94 

 
31 

 
 

 
5 

 
100 

 
100 

 
98 

 
92 

 
82 

 
22 

  
90 

 
43 

          
 
segment=10, gap=10 

 
1 

 
100 

 
100 

 
98 

 
96 

 
85 

 
31 

  
88 

 
27 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

  
- 

 
- 

 
 

 
3 

 
100 

 
100 

 
98 

 
90 

 
82 

 
23 

  
87 

 
25 

 
 

 
4 

 
100 

 
100 

 
100 

 
96 

 
85 

 
30 

  
86 

 
25 

 
 

 
5 

 
99 

 
99 

 
98 

 
94 

 
85 

 
29 

  
89 

 
40 

90 



Table 7: Correct classification of wheat samples (calibration samples) by models using second derivative spectra of sound and 4-
week-old larvae developed with different searching approaches.  
 

 
Percent correct classification 

 
 

 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

 
 

Derivative treatment 

 
 

Model 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
segment =5, gap =5  

 
1 

 
98 

 
100 

 
100 

 
100 

 
100 

 
- 

 
 

 
92 

 
- 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
96 

 
98 

 
100 

 
96 

 
80 

 
- 

 
 

 
84 

 
- 

 
 

 
4 

 
98 

 
100 

 
100 

 
96 

 
96 

 
- 

 
 

 
92 

 
- 

 
 

 
5 

 
96 

 
98 

 
100 

 
96 

 
88 

 
- 

 
 

 
84 

 
- 

           
 
segment=10, gap=10 

 
1 

 
98 

 
100 

 
100 

 
100 

 
92 

 
- 

 
 

 
88 

 
- 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
94 

 
96 

 
100 

 
96 

 
88 

 
- 

 
 

 
100 

 
- 

 
 

 
4 

 
98 

 
100 

 
100 

 
100 

 
96 

 
- 

 
 

 
88 

 
- 

 
 

 
5 

 
96 

 
100 

 
100 

 
100 

 
88 

 
- 

 
 

 
92 

 
- 

 

91 



Table 8: Correct classification of wheat samples (validation samples) by models using second derivative spectra of sound and 4-week-
old larvae developed with different searching approaches.  
 
 

 
Percent correct classification for validation samples 

 
Granary weevil (live) 

 
Maize weevil (live) 

 
 

Derivative treatment 

 
 

Model 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
4-wk-old 

 
3-wk-old 

 
segment =5, gap =5  

 
1 

 
98 

 
99 

 
98 

 
96 

 
87 

 
30 

  
91 

 
27 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

  
- 

 
- 

 
 

 
3 

 
98 

 
99 

 
100 

 
94 

 
78 

 
26 

  
86 

 
27 

 
 

 
4 

 
99 

 
100 

 
98 

 
94 

 
86 

 
33 

  
90 

 
25 

 
 

 
5 

 
97 

 
98 

 
98 

 
92 

 
86 

 
28 

  
87 

 
33 

          
 

segment=10, gap=10 
 

1 
 

100 
 

100 
 

98 
 

92 
 

84 
 

34 
  

93 
 

31 
 

 
 

2 
 

- 
 

- 
 

- 
 

- 
 

- 
 

- 
  

- 
 

- 
 

 
 

3 
 

99 
 

98 
 

100 
 

94 
 

77 
 

31 
  

85 
 

31 
 

 
 

4 
 

99 
 

100 
 

98 
 

94 
 

86 
 

34 
  

92 
 

28 
 

 
 

5 
 

98 
 

100 
 

98 
 

96 
 

86 
 

30 
  

90 
 

32 
 

92 



 
 

93

Classification Results using Calibration Models Developed from 3-Week-Old Larvae 

 Models developed from raw spectra of 3-week-old larvae gave improved prediction 

results for infested kernels containing 3-week-old maize and granary weevil larvae (Table 9). 

 Overall, the searching approach in model 2 provided the best results as shown in Table 10.  

Nine sound wheat kernels, and fifty-one infested kernels were misclassified.  Table 9 reveals 

that infested kernels containing 3-week-old larvae of granary weevil and maize weevil were 

correctly classified with percentages of 77, and 73, respectively.  Moreover, classification 

rates of infested kernels containing 4-week-old larvae of maize and granary weevils were 

also increased to 98 and 95%, respectively.  Nevertheless, classification results of sound and 

granary weevil air-dried kernels were slightly decreased compared to the results from the 

model developed from 4-week-old larvae.  It may be that when 3-week-old larvae are used to 

develop calibrations, the Mahalanobis distances becomes smaller, resulting in increased 

difficulty of classification between sound and infested kernels.  Wavelengths used for the 

best classification were 1128, 1138, 1160, and 1390 nm.  The first three wavelengths are 

associated with a second overtone of a C-H stretch found in aromatic structures and CH3.  

The wavelength at 1390 nm is associated with C-H combination vibrations (Shenk et al, 

1992).   Table 11 and 12 show that correct classification rates for calibration and 

validation samples were decreased when a first derivative treatment was applied to raw 

spectra.  When spectra were treated with a second derivative (Table 13 and 14), results 

comparable to raw spectra for the validation set were found when using segment=10 and 

gap=10 in model 3.  However, the correct classification rate of sound wheat kernels was 

slightly lower compared to the result from raw spectra.  Using the same treatment, 98% of  



Table 9: Correct classification of wheat samples using calibrations developed from raw spectra of sound and 3-week-old larvae developed 
with different searching approaches.  
 
 

 
Percentage of correct classification 

 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

 
 

 
 
Model 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
10 

variety 
 

 
Calibration  

 
1 

 
82 

 
96 

 
100 

 
100 

 
- 

 
72 

 
 

 
- 

 
72 

 
- 

 
samples 

 
2 

 
90 

 
98 

 
100 

 
100 

 
- 

 
68 

 
 

 
- 

 
72 

 
- 

 
 

 
3 

 
88 

 
98 

 
100 

 
100 

 
- 

 
72 

 
 

 
- 

 
72 

 
- 

 
 

 
4 

 
90 

 
98 

 
100 

 
100 

 
- 

 
64 

 
 

 
- 

 
68 

 
- 

 
 

 
5 

 
84 

 
90 

 
96 

 
92 

 
- 

 
76 

 
 

 
- 

 
72 

 
- 

            
 
Validation  

 
1 

 
89 

 
96 

 
96 

 
94 

 
95 

 
79 

 
 

 
97 

 
72 

 
99 

 
samples 

 
2 

 
92 

 
98 

 
96 

 
94 

 
95 

 
77 

 
 

 
98 

 
73 

 
99 

 
 

 
3 

 
87 

 
99 

 
98 

 
94 

 
94 

 
79 

 
 

 
97 

 
69 

 
96 

 
 

 
4 

 
92 

 
98 

 
98 

 
94 

 
97 

 
75 

 
 

 
98 

 
69 

 
95 

 
 

 
5 

 
79 

 
93 

 
96 

 
96 

 
95 

 
82 

 
 

 
95 

 
73 

 
98 

 

94 



 
 

95

sound wheat kernels were correctly classified in model 1 and 5.  However, the percentage of 

correct classification of infested wheat kernels containing 3-week-old larvae was decreased. 

 

Table 10: Classification matrices from several searching approaches for constructing 
calibration models using raw spectra of sound and infested kernels with 3-week-old larvae. 
 

 Calibration   Validation 

Actual class 
 

  Actual class 
 

 
Model 

 

   
Class found 
 

Sound 
(N=100) 

Infested 
(N=100) 

 Sound 
(N=275) 

Infested 
(N=438) 

1 Sound 89 14  261 51 

 Infested 11 86  14 387 

       

2 Sound 94 15  266 51 

 Infested 6 85  9 387 

       

3 Sound 93 14  258 53 

 Infested 7 86  17 385 

       

4 Sound 94 17  261 54 

 Infested 6 83  14 384 

       

5 Sound 87 16  248 48 

 Infested 13 84  27 390 
  

 

 



Table 11: Correct classification of wheat samples (calibration samples) by models using derivative spectra of sound and 3-week-old larvae 
developed with different searching approaches.  
 
 

 
Percent correct classification 

 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

 
 

Derivative treatment 

 
 

Model 
 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
segment =5, gap =5 

 
1 

 
90 

 
96 

 
96 

 
96 

 
- 

 
68 

 
 

 
- 

 
80 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
90 

 
94 

 
100 

 
96 

 
- 

 
68 

 
 

 
- 

 
72 

 
 

 
4 

 
90 

 
96 

 
96 

 
96 

 
- 

 
72 

 
 

 
- 

 
76 

 
 

 
5 

 
84 

 
90 

 
96 

 
96 

 
- 

 
60 

 
 

 
- 

 
68 

           
 
segment =10, gap =10 

 
1 

 
92 

 
98 

 
100 

 
100 

 
- 

 
68 

 
 

 
- 

 
68 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
88 

 
92 

 
100 

 
96 

 
- 

 
76 

 
 

 
- 

 
64 

 
 

 
4 

 
88 

 
94 

 
100 

 
100 

 
- 

 
72 

 
 

 
- 

 
72 

 
 

 
5 

 
90 

 
94 

 
100 

 
96 

 
- 

 
68 

 
 

 
- 

 
64 

 
 
 

96 



Table 12: Correct classification of wheat samples (validation samples) by models using first derivative spectra of sound and 3-week-old 
larvae developed with different searching approaches.  
 
 

 
Percent correct classification for validation samples 

 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

 
 

Derivative treatment 

 
 

Model 
 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
segment =5, gap =5 

 
1 

 
89 

 
93 

 
90 

 
94 

 
95 

 
56 

 
 

 
99 

 
68 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
83 

 
95 

 
94 

 
94 

 
95 

 
60 

 
 

 
97 

 
77 

 
 

 
4 

 
86 

 
94 

 
90 

 
94 

 
95 

 
56 

 
 

 
99 

 
69 

 
 

 
5 

 
83 

 
88 

 
87 

 
94 

 
92 

 
49 

 
 

 
95 

 
68 

           
 
segment =10, gap =10 

 
1 

 
98 

 
99 

 
98 

 
92 

 
95 

 
63 

 
 

 
98 

 
73 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
89 

 
96 

 
92 

 
92 

 
95 

 
77 

 
 

 
95 

 
65 

 
 

 
4 

 
89 

 
96 

 
98 

 
92 

 
95 

 
64 

 
 

 
97 

 
64 

 
 

 
5 

 
89 

 
95 

 
92 

 
88 

 
97 

 
75 

 
 

 
95 

 
65 

 

 

 

97 



Table 13: Correct classification of wheat samples (calibration samples) by models using second derivative spectra of sound and 3-week-old 
larvae developed with different searching approaches.  
 

 
Percent correct classification 

 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

 
Derivative treatment 

 
Model 
 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
segment = 5, gap = 5 

 
1 

 
90 

 
90 

 
100 

 
92 

 
- 

 
64 

 
 

 
- 

 
68 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
84 

 
92 

 
92 

 
96 

 
- 

 
68 

 
 

 
- 

 
68 

 
 

 
4 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
5 

 
84 

 
94 

 
92 

 
100 

 
- 

 
68 

 
 

 
- 

 
84 

           
 
segment=10, gap=10 

 
1 

 
96 

 
98 

 
100 

 
100 

 
- 

 
56 

 
 

 
- 

 
60 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
88 

 
94 

 
100 

 
100 

 
- 

 
72 

 
 

 
- 

 
80 

 
 

 
4 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
5 

 
92 

 
100 

 
100 

 
96 

 
- 

 
60 

 
 

 
- 

 
72 

98 



Table 14: Correct classification of wheat samples (validation samples) by models using second derivative spectra of sound and 3-week-old 
larvae developed with different searching approaches.  
 
 

 
Percent correct classification for validation samples 

 
Granary weevil (live) 

 
 

 
Maize weevil (live) 

 
Derivative treatment 

 
Model 
 
 
 

 
Sound 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 
weevil  

(air-dried) 
 
4-wk-old 

 
3-wk-old 

 
 

 
4-wk-old 

 
3-wk-old 

 
segment = 5, gap = 5 

 
1 

 
87 

 
92 

 
94 

 
90 

 
92 

 
69 

 
 

 
95 

 
69 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
77 

 
92 

 
94 

 
90 

 
97 

 
63 

 
 

 
97 

 
77 

 
 

 
4 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
5 

 
80 

 
95 

 
86 

 
86 

 
95 

 
69 

 
 

 
97 

 
75 

           
 
segment=10, gap=10 

 
1 

 
98 

 
100 

 
98 

 
94 

 
94 

 
68 

 
 

 
97 

 
60 

 
 

 
2 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
3 

 
89 

 
95 

 
98 

 
92 

 
99 

 
77 

 
 

 
97 

 
72 

 
 

 
4 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
 

 
- 

 
- 

 
 

 
5 

 
98 

 
98 

 
94 

 
94 

 
94 

 
68 

 
 

 
97 

 
76 

 
 
 

99 



 
 

100

 An attempt to improve classification results for infested kernels containing 3-

week-old larvae was later tried by developing another calibration set.  The trial 

calibration set, therefore, contains raw spectra from samples used previously to build 

calibrations, including sound wheat kernels (n=50), sound air-dried wheat kernels 

(n=50), infested wheat kernels containing 3-week-old larvae of granary weevil (n=25), 

and maize weevil (n=25).  In addition, another 25 each of infested kernels containing 3-

week-old larvae of granary and maize weevils were randomly selected from the 

validation set, and added into the calibration set.  Therefore, this calibration set 

(n=200) contained wheat samples of sound (n=100) and infested (n=100) kernels 

containing 3-week-old larvae of both insect species.  Infested air-dried kernels were not 

included in this trial.  The calibration developed was then applied to wheat samples in 

the validation set used previously, except the numbers of infested kernels containing 3-

week-old larvae of granary and maize weevils were decreased to 62 and 50, 

respectively.  Overall, the searching approach in model 4 provided the best results. 

 Table 15 shows the classification results achieved, with 85% of sound, 98% of 

sound air-dried, 92% of infested air-dried kernels containing granary weevil, 90% of 

infested air-dried kernels containing maize weevil, 99% of kernels infested with 4-

week-old larvae of granary weevil, 99% of kernels containing 4-week-old larvae of 

maize weevil, 87% of kernels infested with 3-week-old larvae of granary weevil, 84% 

of kernels infested with 3-week-old larvae of maize weevil, and 96% of sound kernels 

from ten different wheat varieties correctly classified.  The selected wavelengths were 

1128, 1146, 1156, and 1390 nm, which are similar to those selected in previous 
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calibrations.  This model, however, yielded lower correct classification rate for sound 

kernels than the previous model that includes infested air-dried for developing 

calibration (85% compared to 92%).  

   



Table 15: Correct classification of wheat samples using models developed with a modified calibration set.  Models were developed from 
raw spectra of sound and 3-week-old larvae using different searching approaches.  
 
 

 
Percentage of correct classification 

 
 

 
Granary weevil (live) 

 
Maize weevil (live) 

 
 

 
 
Model 
 

 
 Sound 
 

 
Sound  

(air-dried) 

 
Granary 
weevil  

(air-dried) 

 
Maize 

weevil (air-
dried) 

 

 
4-wk-old 

 
3-wk-old 

 
4-wk-old 

 
3-wk-old 

 
10 

Variety 

 
Calibration  

 
1 

 
89 

 
90 

 
- 

 
- 

 
- 

 
88 

  
- 

 
83 

 
- 

 
samples 

 
2 

 
85 

 
98 

 
- 

 
- 

 
- 

 
77 

  
- 

 
83 

 
- 

 
 

 
3 

 
83 

 
98 

 
- 

 
- 

 
- 

 
79 

  
- 

 
79 

 
- 

 
 

 
4 

 
87 

 
98 

 
- 

 
- 

 
- 

 
81 

  
- 

 
83 

 
- 

 
 

 
5 

 
78 

 
96 

 
- 

 
- 

 
- 

 
79 

  
- 

 
77 

 
- 

           
 
Validation  

 
1 

 
79 

 
94 

 
73 

 
82 

 
98 

 
87 

  
100 

 
80 

 
95 

 
samples 

 
2 

 
83 

 
98 

 
81 

 
80 

 
98 

 
85 

  
98 

 
84 

 
96 

 
 

 
3 

 
76 

 
95 

 
96 

 
94 

 
95 

 
81 

  
96 

 
78 

 
92 

 
 

 
4 

 
85 

 
98 

 
92 

 
90 

 
99 

 
87 

  
99 

 
84 

 
96 

 
 

 
5 

 
73 

 
90 

 
77 

 
86 

 
96 

 
81 

  
96 

 
84 

 
90 
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CHAPTER 3 

Prediction Degree of Extrusion-Cooking of Corn Meal by  

Near-Infrared Reflectance Spectroscopy 

 

 

Abstract 

Near-Infrared (NIR) spectroscopy has been used to predict degree of cook in 

products produced by HTST extrusion of corn meal.  Corn meal was cooked with a Wenger 

TX-57 twin screw extruder using screw speeds ranging from 250 to 350 rpm, and moisture 

contents ranging from 13-20%, providing a wide range of pressures and shear conditions in 

the extruder barrel.  Extruded samples were analyzed for various physical properties that 

relate to degree of cooking, including water absorption index (WAI), water solubility index 

(WSI), viscosity properties as measured with a Rapid ViscoAnalyzer (RVA), hardness and 

fracturability as measured by Texture Profile Analysis (TPA).  Samples were ground and 

their NIR reflectance spectra obtained with a Foss/NIRSystems 6500 spectrometer over a 

range of 1100-2500 nm.  After separating samples into calibration and validation sets, 

multiple linear regression (MLR) and partial least squares (PLS) regression were used to 

develop NIR calibrations for measuring the various indicators of degree of cook.  

Calibrations developed were then applied to samples in the validation set.  In general, 

correlations with r-value> 0.95 were achieved between the NIR and laboratory values.  RPD 

values, which compare the standard error of prediction to the standard deviation of the 

reference data, ranged from 5.3 to 6.3 for the various parameters (except for hardness, and 
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trough viscosity), indicating that the NIR measurement should be useful in quality control 

applications. 
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Introduction 

Extrusion is widely used in manufacturing many cereal-based products ranging from 

snacks to pet food.  Corn is widely used to produce extruded snack foods (e.g., corn curls).  

The physical and chemical properties of the extrudate change when the material leaves the 

extruder, caused by the difference in temperature and pressure between the extruder and its 

ambient surroundings (Stauffer, 1993).  Thermal and mechanical energy from extrusion 

process causes cleavage of hydrogen bonds between starch molecules and between starch 

and bound water, which can be measured by NIR (Osborne, 2007; Lee, 2007).  The extent of 

physical changes to the native starch is a major factor influencing the rheology of the 

developing fluids and is also related to structure creation in the products.  It is, therefore, an 

important variable to control during extrusion in order to obtain the desired physical 

characteristics in the products.  There is no practical method for directly measuring degree of 

cook.  Indirect methods of measuring functional properties related to degree of cook have 

been studied as previously indicated in the literature review.   

Only a limited number of studies have been reported on rapid methods which can 

measure the dependent variables related to starch structure that result from extrusion 

cooking.  NIR was found to be the most practical technique for the development of an on-

line system to monitor starch-based extrusion processes (Scotter and Millar, 2004).  The 

energy input to the material in the extruder as a result of high pressure and temperature 

indicates the degree of transformation in the starch fraction.  Researchers have reported some 

applications of NIR for rapid quality control and process monitoring during extrusion 

processing in food (Ben-Hdech et al, 1993; Guy et al, 1996; Evans et al, 1999; Apruzzese et 
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al, 2000; Sahni et al, 2004; Dodds and Health, 2005) and other industries (Rohe et al, 1998; 

Tumuluri et al, 2004; Swarbrick et al, 2005).   

  In this study, the application of NIR spectroscopy for predicting starch changes 

during extrusion cooking was investigated.  Objectives of this research project included (1) 

studying the feasibility of using NIR spectroscopy to predict the degree of cook of corn meal 

extruded under different extrusion conditions, (2) investigating the relationships between 

NIR spectra and physical properties of extrudates, and (3) developing NIR calibrations for 

predicting physicochemical parameters using MLR and PLS regression algorithms. 

 

Materials and Methods 

Raw Material 

Fine corn meal was obtained from Trujillo & Sons Inc. (Miami, FL) and used for 

sample preparation. 

Extrusion Process 

High-temperature short-time extrusion cooking was conducted with a corotating 

twin-screw extruder (model TX-57, Wenger Manufacturing, Sabetha, KS).  The length-to-

diameter ratio was 8:1, and die opening was 3.96 mm.  Extrusion feed rate was 90 kg/hr.  A 

preconditioner was used at a speed of 150 rpm to convey samples to the extruder barrel.  

Temperature was set to be constant at 35oC at the first head and 120oC at the second head.  

The head pressure was approximately 500 PSI.  The operating conditions were varied for 

moisture content and screw speed.  Extruder water flow rates were 0.06, 0.09, 0.11, 0.15, and 

0.19 kg/min as determined by a flow meter, resulting in feed moisture content at levels of 13, 
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15, 16, 18, and 20% (wb), respectively.  Screw speeds were adjusted to 250, 275, 300, 325, 

and 350 rpm for each moisture level.  The extrusion process was started from low to high 

screw speed with each moisture level, i.e., 250 rpm from high moisture (20%) to low 

moisture (18, 16, 15, and 13%, respectively).  The screw speed was then changed to 275 rpm 

and from low moisture (13%) to high moisture (15, 16, 18, and 20%), and vice versa.  All 

other extrusion parameters were held constant throughout the experiment.  The experiment 

was run in three replicates (total= 5Η5Η3= 75 samples).  Extrusion was allowed to reach a 

steady state.  Extrudates were then collected and cooled on trays at ambient temperature 

(25oC) for 1 hr.  The extruder was allowed at least 5 min to achieve equilibrium between 

each run.  Seventy five extrusion runs were completed in one day.  Extrudates from each run 

were held in plastic bags and coded as shown in Table 1, and then air-dried overnight.  

Extrudates were ground in a laboratory impact grinder (A-10 analytical mill, Tekmar Co., 

Cincinnati, OH) to pass a U.S. No. 60 screen and stored in Ziploc7 bags at -18oC for further 

analyses.  The moisture contents of the ground extrudates were determined in duplicate using 

an AOAC air-oven procedure (1984). 
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Table 1: Coded samples of extrudates. 
 

 
Run 
No. 

 
Sample 

ID 

 
Screw 
speed 
(rpm) 

 
Moisture 
(%wb) 

 
Rep 

 
 

 
Run 
No. 

 
Sample 

ID 

 
Screw 
speed 
(rpm) 

 
Moisture 
(%wb) 

 
Rep 

 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

 

 
AE1 
AD1 
AC1 
AB1 
AA1 
BA1 
BB1 
BC1 
BD1 
BE1 
CE1 
CD1 
CC1 
CB1 
CA1 
DA1 
DB1 
DC1 
DD1 
DE1 
EE1 
ED1 
EC1 
EB1 
EA1 
AE2 
AD2 
AC2 
AB2 
AA2 
BA2 
BB2 
BC2 
BD2 
BE2 
CE2 
CD2 
CC2 

 
250 
250 
250 
250 
250 
275 
275 
275 
275 
275 
300 
300 
300 
300 
300 
325 
325 
325 
325 
325 
350 
350 
350 
350 
350 
250 
250 
250 
250 
250 
275 
275 
275 
275 
275 
300 
300 
300 

 
20 
18 
16 
15 
13 
13 
15 
16 
18 
20 
20 
18 
16 
15 
13 
13 
15 
16 
18 
20 
20 
18 
16 
15 
13 
20 
18 
16 
15 
13 
13 
15 
16 
18 
20 
20 
18 
16 

 

 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
 

  
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

 
CB2 
CA2 
DA2 
DB2 
DC2 
DD2 
DE2 
EE2 
ED2 
EC2 
EB2 
EA2 
AE3 
AD3 
AC3 
AB3 
AA3 
BA3 
BB3 
BC3 
BD3 
BE3 
CE3 
CD3 
CC3 
CB3 
CA3 
DA3 
DB3 
DC3 
DD3 
DE3 
EE3 
ED3 
EC3 
EB3 
EA3 

 
300 
300 
325 
325 
325 
325 
325 
350 
350 
350 
350 
350 
250 
250 
250 
250 
250 
275 
275 
275 
275 
275 
300 
300 
300 
300 
300 
325 
325 
325 
325 
325 
350 
350 
350 
350 
350 

 
15 
13 
13 
15 
16 
18 
20 
20 
18 
16 
15 
13 
20 
18 
16 
15 
13 
13 
15 
16 
18 
20 
20 
18 
16 
15 
13 
13 
15 
16 
18 
20 
20 
18 
16 
15 
13 

 

 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
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Reference Analyses 

Water Absorption (WAI) and Water Solubility (WSI) Indices 

Water absorption index is the weight of the gel (g) obtained per gram of dry sample.  

It was determined by following the procedure of Anderson et al. (1969).  A 2.5 g ground 

sample was placed into a 50 ml round centrifuge tube.  Water was added (30 ml), a stopper 

was placed in the tube, and then shaken vigorously for 30 sec to suspend the sample before 

incubating in a water bath (30oC) for 30 min.  The suspension was stirred intermittently over 

a 30-min period, and then centrifuged at 3000 g for 10 min.  The supernatant was carefully 

poured into a tared evaporating dish, and the remaining gel was weighed.   

WAI= (Weight of gel + tube)-(Weight of tube) 
Sample dry weight 

 
Water solubility index is the amount of solids recovered by evaporating the 

supernatant from the water absorption test, expressed as percentage of dry solids in the 

sample.  The supernatant was dried in a air oven at 105oC for 8 hr and then weighed.  WSI 

was calculated as follows: 

WSI= (Weight of container + dried supernatant)-(Weight of container) 
Sample dry weight 

 
For WAI and WSI, each extruded sample was analyzed in triplicate. 

Viscosity Properties  

RVA measurements were performed using a Rapid ViscoAnalyzer (RVA-Series 4, 

Newport Scientific Pty. Ltd., Warriewood, Australia) along with the accompanying software 

Thermocline for Windows.   A suspension was prepared by weighing approximately 4 g 

(14% moisture basis) of ground extrudate into an RVA canister, and adding water 
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approximately 25 g to yield 14% dry basis.  The mixture was then manually mixed by 

capping with a No.12 stopper, and shaking vigorously for 15 sec to ensure homogeneity of 

the sample mixture.  The sample was then inserted into the RVA tower and analyzed using 

the following heating profile; 25oC for 2 min, heated to 95oC at 14oC/min, held at 95oC for 3 

min, cooled to 25oC at 14oC/min, and held at 25oC for 5 min.  Each experiment was initiated 

by a 10 sec, 960 rpm mixing period, followed by a 160 rpm paddle speed for the remainder 

of data collection.  Each extruded sample was run in duplicate.  Values for viscosity were 

reported in units termed Arapid visco units@ (RVU).  RVA parameters were recorded as 

follows; cold viscosity (peak viscosity in 0.2-2 min), peak (maximum viscosity recorded 

during ramp to 95oC), trough (lowest viscosity at 95oC), final viscosity (viscosity at the 

finish of the test or cool paste viscosity at 25oC), breakdown (peak-trough; an indication of 

the breakdown in viscosity of the paste during the 95oC holding period), and setback (final 

viscosity-trough; a gauge of the texture of the starch paste).  Generally, product that is less 

cooked or less sheared has a higher final viscosity value, and this can be a straightforward 

measure of the cook (Whalen, 1999).  

Texture Profile Analysis (TPA) 

Hardness and fracturability of extrudates were measured on a Texture Analyzer 

(TA-XT2i, Texture Technologies Corp., Scarsdale, N.Y.) with a cylinder probe (TA-42), and 

equipped with a Texture Expert software program (Version 5.16).  The parameters used for 

operation were set as follows: Pretest = 2 mm/s, test speed = 1 mm/s, post test = 2 mm/s, 

distance = 70% strain, force = 0.98 N.  The higher the value of the maximum peak force 

required, meaning that a higher force was required to breakdown the extrudates, the higher 
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the hardness of the extrudates.  The fracturability of the extrudates was the first peak force 

measured, and is associated with the crispness of those extrudates (Charles et al, 2001 and Li 

et al, 2005).  The lower the force measured at first crackdown, the higher the fracturability or 

crispness of the extrudates.  Extrudates from each run were measured ten times. 

Thermal Properties of Extrudates 

DSC thermograms were performed with a Pyris 1 Scanning Calorimeter (Perkin-

Elmer Corp., Norwalk, CT) equipped with an Intracooler II System and Pyris thermal 

analysis software (Perkin-Elmer).  Starch and water mixtures (1:3, w/w) were sealed in 

aluminum pans and equilibrated at room temperature for 2 hr before analysis.  An empty pan 

was used as a reference.  The samples were heated at 5oC/min over a temperature range of 

15-125oC to obtain the endotherms.  The specific heat of gelatinization (ΔH, J/g) was 

indicated from the area under the curve.  Onset temperature (To), peak temperature (Tp), and 

conclusion temperature (Tc) were provided from the software. 

NIR Analysis 

Ground extrudates were scanned using a Foss/NIRSystems Model 6500 

spectrometer (Silver Spring, MD) equipped with a rotating drawer attachment.  For 

instrument control and calibration development, the spectrometer was interfaced to a 

personal computer running the Near Infrared Spectral Analysis Software (NSAS) package 

(version 3.53) provided by NIRSystems.  About 4 g of samples were placed in a small ring 

cup.  Diffuse reflectance readings were referenced to those from a ceramic disk.  The spectra 

were collected over a wavelength range of 400 to 2500 nm.  Each spectrum represented the 

average of 32 scans, and was recorded as log (1/R) at 2 nm increments.  Samples were 
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randomly selected by the NSAS software program for a calibration set (n= 45) for the 

purpose of developing quantitative models, and the rest (n=30) were used as an independent 

data set for validating the performance of the models.  Log 1/R spectra were transformed 

using first and second derivatives with different combinations of wavelength segments and 

gaps (10, 20, 30, and 40 nm) to enhance absorption peaks and remove baseline difference.

  

Multiple linear regression (MLR)equations were developed to relate log 1/R, first, 

and second derivative spectra to laboratory reference values using forward stepwise and best 

possible regression algorithms. To avoid the interference of water bands with the spectral 

bands of other constituents, wavelengths of 1901 to 1979 nm were removed from the spectra 

(Ghadian and Wehling, 1997).  Therefore, in the present study, spectral regions from 1100 to 

1900 and 1980 to 2500 nm were used in developing calibration models.  The optimum 

number of wavelengths to include in the calibration equations was determined by comparing 

regression results for multiple correlation coefficient (r), which should approach 1, and 

standard error of calibration (SEC), which should be low.  Each model was tested for its 

ability to predict degree of cook expressed by each reference property using separate 

validation samples.  Performance of models was compared by evaluating 1) correlation 

coefficient (r), which indicates the closeness of fit between the NIR and reference data over 

the range of composition, (which should be close to 1), 2) root mean square of the 

differences (RMSD) between NIR and reference values (Delwiche and Reeves, 2004) which 

should be low, 3) slope of the relationship between the values of the reference data and the 

values predicted by the NIR model (Liu and Han, 2006) which should be close to 1, and 4) 
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relative predictive determinant (RPD) or standardized performance, which is defined as the 

ratio of the standard deviation of the constituent=s reference values to the standard error of 

prediction (SEP) of the validation samples (Williams, 2001).  In this study, RMSD was used 

instead of SEP.  RMSD is not corrected for bias and is an appropriate estimator for the 

random error assuming that there is no systematic error of the measurement (Hruschka, 

2001).  The higher the RPD value, the better is the performance of the model.  A value of 1.0 

represents a lack of modeling power since the variability attributable to the NIR model has 

the same level as the variance of the naturally occurring constituent.  Values ∃2.5 indicate 

that the NIR model may be suitable for screening and breeding programs.  Values above 5.0 

are potentially useful in quality control. 

The second algorithm used to develop calibration equations was partial least squares 

(PLS) regression, which is a data compression technique that provides good relationships in 

cases of collinearity (Sahni et al, 2004).  The number of PLS factors reported was the 

minimum required to give the best classification results.  The use of PLS algorithms allows 

information from all wavelengths in the entire spectrum to be included in the calibration, 

rather than information from only a few wavelengths (Wehling, 1998).  The optimum 

number of PLS terms (factors) was selected based on the lowest standard errors of cross 

validation (SECV) with the fewest terms, along with the R value obtained from the 

regressions.  Each model was verified for its ability to predict degree of starch cooking using 

independent validation samples.  The predictive abilities of the models were compared as 

previously described for MLR. 

Calibrations were developed from raw and derivatized spectral data over the regions 
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1100 to 1900 and 1980 to 2500 nm.  Calibrations were also built with truncated wavelength 

ranges of 1100-1800 nm and 1100-1900 nm, corresponding to the lower half of the near-

infrared region, where the reflected energy signal is relatively strong (Delwiche et al, 1996). 

 

Results and Discussion 

Properties of Extrudates Determined by Reference Methods 

The minimum, maximum, and mean values and standard deviation (SD) of each 

constituent are listed in Table 2.  These statistics were calculated separately for the 

calibration and validation sets.  For all constituents except WSI and set back, the range of 

values for the validation set fell within the calibration set range.  In addition, the wide ranges 

in each set for each constituent, and the small differences in means, ranges, and SD between 

the calibration set and the validation set, revealed that both sets could be considered 

representative of the same overall diversity. 

Differential Scanning Calorimetry (DSC) Analysis 

Upon extrusion cooking, the typical native starch gelatinization endotherm 

disappeared (results not shown).  This indicates no ungelatinized starch or crystalline forms 

were present after extrusion. 
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Table 2: Summary of reference values for constituents of extruded samples in calibration and 
validation sets. 
 
 
 
Constituent, Unitsa 

 
Minimum 

 
Maximum 

 
Mean 

 
Standard Deviation 

 
WAI, g/g 
  Calibration 
  Validation 
WSI, % 
  Calibration 
  Validation 
Viscosity, RVU 
 Cold 
    Calibration 
    Validation 
  Peak 
    Calibration 
    Validation 
  Trough 
    Calibration 
    Validation 
  Final 
    Calibration 
    Validation 
  Breakdown             
      Calibration 
    Validation 
  Setback 
    Calibration 
    Validation 
Hardness, N 
  Calibration 
  Validation 
Fracturability, N 
  Calibration 
  Validation 

 
 

2.32 
2.32 

 
20.81 
21.24 

 
 

13.29 
18.71 

 
8.88 
13.21 

 
1.80 
2.80 

 
 7.54 
 10.92 
 
 5.71 
 8.81 
 
 4.37 
 7.00 
 
 34.56 
 34.63 
 
 18.41 
 20.54 

 
 
 7.47 
 7.45 
 
 72.64 
 72.97 
 
  

123.46 
 120.53 
 

124.09 
 122.00 
 
 21.58 
 20.89 
 
 62.97 
 60.83 
 
 102.34 
 101.12 
 
 41.50 
 41.58 
 
 115.68 
 115.01 
 
 114.99 
 113.33 

 
 
 5.27 
 5.11 
 
 43.91 
 45.82 
  
 
 55.83 
 52.09 
 

50.51 
 46.92 
 
 9.60 
 9.27 
 
 32.56 
 30.50 
 
 40.97 
 37.71 
 
 23.00 

21.23 
 
 59.74 
 55.63 
 
 48.74 
 46.14 

 
 
 1.64 
 1.57 
 
 15.87 
 14.89 
  
 
 31.02 
 29.89 
 

32.73 
 31.54 
 
 4.80 
 4.43 
 
 15.96 
 14.61 
 
 28.28 
 27.52 
 
 11.55 
 10.59 
 
 25.09 
 25.60 
 
 24.92 
 25.91 

 
a n = 45 samples in the calibration set, 30 samples in the validation set.  RVU = Rapid Visco 
Units. 
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Spectral Characteristics of Extrudates 

Figure 1 illustrates some examples of log 1/R spectra of ground extrudates from 

different extrusion parameters. The upper spectrum is the average from the parameters of 

lowest screw speed and highest feed moisture content (lowest degree of processing), the 

intermediate spectra are the averages from lower feed moisture contents at the lowest screw 

speed, and the lowest spectrum is the average from the highest screw speed at the highest 

feed moisture content.  When derivative transformations were applied, the absorption bands 

were sharpened and distinct.  Fig. 2 and 3 show some differences in absorption band 

intensities of first and second derivative spectra, respectively.  Wavelengths at 1152 and 

1414 nm are due to second overtones of C-H stretch and deformations, which are associated 

with CH3 and CH2 .  Wavelengths at 1432 and 1922 nm, are most likely associated with 

moisture content variation; however, other differences in spectral intensity can be observed 

at 1902, 2012, 2238, 2256, 2284 and 2430 nm.  These wavelengths are attributable to an O-H 

stretch first overtone, C-O stretch, and C-H stretch deformation, which are associated with 

starch (Osborne et al, 1993).  Osborne (1996) also reported absorptions at 1410 and 1430 nm 

are changed in wheat extrusion due to an O-H stretch first overtone in starch or from water 

bound to starch.  The branched molecules of amylopectin at wavelength around 2280 nm 

were reported to break down through shearing forces (Lee, 2007).   

Calibration and Prediction Results 

Calibration models were developed from log 1/R, 1st derivative and 2nd derivative 

spectra using both MLR and PLS regression.  Statistical results of calibration and validation 
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samples for WAI, WSI, textural properties (hardness and fracturability), and RVA pasting 

properties using MLR are summarized in Tables 3 and 4, respectively.  In MLR equations, a 

maximum of four wavelengths was used, to prevent overfitting. Table 5 and 6 show the 

results of PLS modeling of those ten constituents of extrudates.  For both algorithms, 

calibrations with low SEC values did not always provide low RMSD=s  for the validation 

set.   

 

 
 
 
 
 
 
 

Fig. 1.  Average spectra (log 1/R) of extrudates at low, medium and high degree of 
processing. 

Log 
(1/R) 

Wavelength (nm) 

low   

med

high 



 
 

121

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. 2.  Average spectra of extrudates at low, medium, and high degree of processing after 
treatment with first derivative. 
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Fig. 3.  Average spectra of extrudates at low, medium, and high degree of processing after 
treatment with second derivative. 
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Table 3: Calibration and validation statistics for prediction by each constituent=s (WAI, 
WSI, texture analysis) best model using multiple linear regression. 
 
 

 
Calibration 

 
Validation 

 
Constituents 

 
Spectral treatment 

 
r 

 
SEC 

  
r 

 
RMSD 

 
Slope 

 
RPD 

 
WAI (g/g) 

 

 

 
 log 1/R 

(1388, 1468, 2040, 2168)a 
 

1st derivativeb 
(1122, 2106, 2222, 2300) 
 

2nd derivativec 
(1752, 1788, 2140, 2436) 

 
0.979 

 
 

0.984 
 
 

0.985 

 
0.35 

 
 

0.31 
 
 

0.30 

  
0.963 

 
 

0.981 
 
 

0.984 

 
0.44 

 
 
 0.32 
 
 

0.28 

 
0.972 

 
 

1.045 
 
 

1.031 

 
3.57 

 
 

4.91 
 
 

5.61 

 
WSI (%) 

 
log 1/R 

(1218, 1470, 2038, 2416) 
 

1st derivatived 
(1118, 1480, 2220, 2300) 
 

2nd derivativec 
(1124, 1570, 2406, 2482) 

 
0.981 

 
 

0.977 
 
 

0.980  

 
3.20 

 
 

3.54 
 
 
3.35 

 
 

 
0.972 

 
 

0.983 
 
 

0.979 

 
3.88 

 
 

2.80 
 
 

3.43 

 
0.947 

 
 

0.998 
 
 

0.918 

 
3.84 

 
 

5.32 
 
 

4.34 

 
Hardness (N) 

 
log 1/R 

(1218, 1408, 2000, 2220) 
 

1st derivatived 
(1110, 1204, 1852, 2330) 
 

2nd derivativee 
(1268, 1366, 2310, 2424) 

 
0.927 

 
 
0.950 

 
 
0.949 

 
9.86 

 
 

8.19 
 
 

8.27 

 
 

 
0.928 

 
 
0.963 

 
 
0.965 

 
9.75 

 
 

7.24 
 
 

6.97 

 
1.056 
 
 
1.010 
 
 
1.025 

 
2.63 

 
 

3.54 
 
 

3.67 

 
Fracturability 

(N) 

 
 log 1/R 
(1218, 1408, 2222, 2398) 
 

1st derivativef 
(1520, 1580, 2138, 2300) 
 

2nd derivatived 
(1236, 1566, 1814, 2190) 

 
0.955 

 
 
0.976 

 
 
0.967 

 
7.75 

 
 

5.68 
 
 

6.65 

 
 

 
0.974 

 
 
0.987 

 
 
0.986 

 
6.84 

 
 

4.34 
 
 

4.68 

 
1.145 

 
 
1.043 

 
 
1.029 

 
3.79 

 
 

5.97 
 
 

5.54 

 

a Wavelengths (nm).     d Segment = 30 nm, gap = 40 nm. 
b Segment = 40 nm, gap = 20 nm.   e Segment = 20 nm, gap = 10 nm. 
c Segment = 10 nm, gap = 20 nm.   f Segment = 10 nm, gap = 10 nm. 
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Table 4: Calibration and validation statistics for prediction of RVA parameters=s best model 
using multiple linear regression (MLR). 
 

 
Calibration 

 
Validation 

 
Constituents 

(RVU) 

 
Spectral treatment 

 
r 

 
SEC 

  
r 

 
RMSD 

 
Slope 

 
RPD 

 
Cold viscosity 
 

 

 
 log 1/R 

(1138, 1332, 2298, 2348)a 
1st derivativeb 

(1210, 1550, 2000, 2104) 
2nd derivativec 

(1234, 1692, 2032, 2428) 

 
0.965 

 
0.970 

 
0.969 

 
8.59 

 
7.86 

 
8.05 

 
 

 
0.976 

 
0.963 

 
0.977 

 
 6.64 
 
 9.16 
 

6.80 

 
0.987 

 
0.899 

 
0.941 

 
4.50 

 
3.26 

 
4.40 

 
Peak viscosity 

 
log 1/R 

(1144, 1332, 2298, 2370) 
1st derivativec 

(1210, 1666, 2226, 2310) 
2nd derivatived 

(1232, 1692, 2034, 2360) 

 
0.969 

 
0.975 

 
0.977 

 
8.51 

 
7.57 

 
7.27 

 
 

 
0.982 

 
0.982 

 
0.988 

 
6.09 

 
6.74 

 
5.55 

 
0.976 

 
0.926 

 
0.922 

 
5.18 

 
4.68 

 
5.68 

 
Trough 

 
log 1/R 

(1110, 1894, 2054, 2494) 
1st derivatived 

(1110, 1666, 2098, 2226) 
2nd derivativee 

(1236, 1696, 2178, 2356) 

 
0.900 

0.933 

0.920 

 
2.19 

1.81 

1.97 

 
 

 
0.950 

0.921 

0.917 

 
1.39 

1.88 

1.82 

 
0.987 

0.853 

0.900 

 
3.19 

 
2.36 

 
2.43 

 
Final 
viscosity 

 
log 1/R 

(1138, 1408, 2244, 2324) 
1st derivativef 

(1112, 1664, 2400, 2478) 
2nd derivatived 

(1234, 1482, 2258, 2426) 

 
0.975 

 
0.985 

 
0.987 

 
3.71 

 
2.93 

 
2.68 

 
 

 
0.983 

 
0.978 

 
0.976 

 
2.76 

 
3.18 

 
3.38 

 
0.985 

 
0.940 

 
0.946 

 
5.29 

 
4.59 

 
4.32 

 
Breakdown 

 
log 1/R 

(1138, 1332, 2298, 2390) 
1st derivatived 

(1210, 1668, 2228, 2314) 
2nd derivativec 

(1234, 1692, 2032, 2166) 

 
0.968 

0.976 

0.975 

 
7.47 

6.46 

6.59 

  
0.979 

0.975 

0.975 

 
5.66 

6.81 

 6.49 

 
0.986 

0.928 

0.938 

 
4.86 

4.04 

4.24 

 
Setback 

 
log 1/R 

(1118, 1410, 2242, 2300) 
1st derivativef 

(1562, 1880, 2104, 2226) 
2nd derivatived 

(1166, 1268, 2194, 2430) 

 
0.985 

0.990 

0.992 

 
2.11 

1.69 

1.54 

 
 

 
0.980 

0.978 

0.981 

 
2.19 

2.38 

2.13 

 
0.978 

0.945 

0.951 

 
4.84 

4.45 

4.97 

a Selected wavelengths (nm).     d Segment = 30 nm, gap = 10 nm. 
b Segment = 20 nm, gap = 20 nm.     e Segment = 30 nm, gap = 40 nm. 
c Segment = 40 nm, gap = 10 nm.     f Segment = 20 nm, gap = 40 nm. 
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Table 5: Calibration and validation statistics for prediction by each constituent=s (WAI, 
WSI, texture analysis) best model using partial least squares (PLS) regression.  
 

 
Calibration 

 
Validation 

 
Constituents 

 
Spectral treatment 

 
r 

 
SECV 

  
r 

 
RMSD 

 
Slope 

 
RPD 

 
WAI (g/g) 

 

 

 
 log 1/R 

(WL=1100-1900, 1980-
2500, F=5)a 
 

1st derivativeb 
(WL=1100-1800, F=4) 
 

2nd derivativec 
(WL=1100-1900, F=4) 

 
0.984 

 
 
 

0.984 
 

 
0.987 

 
0.31 

 
 
 

0.31 
 
 

0.28 

 
 

 
0.976 

 
 
 

0.982 
 
 
0.982 

 
0.35 

 
 
 

0.30 
 
 

0.29 

 
 1.012 
 
 
 
1.020 

 
 
1.017 

 
4.49 

 
 
 

5.23 
 
 

5.41 

 
WSI (%) 

 
log 1/R 

(WL=1100-1900, F=5) 
 

1st derivatived 
(WL=1100-1900, F=5) 
 

2nd derivativec 
(WL=1100-1900, F=5) 

 
0.978 

 
 

0.979 
 
 
0.985 

 
3.48 

 
 

3.45 
 
 

2.87 

 
 

 
0.979 

 
 

0.983 
 
 
0.985 

 
3.12 

 
 

2.82 
 
 

2.74 

 
0.992 

 
 

1.024 
 
 
0.941 

 
4.77 

 
 

5.28 
 
 

5.43 

 
Hardness (N) 

 
log 1/R 

(WL=1100-1900, F=5) 
 

1st derivativee 
(WL=1100-1900, 1980-
2500, F=9) 
 

2nd derivativee 
(WL=1100-1900, 1980-
2500, F=7) 

 
0.939 

 
 
0.989 

 
 
 

0.987 

 
9.18 

 
 

3.99 
 
 
 

4.45 

 
 

 
0.957 

 
 
0.979 

 
 
 

0.973 

 
7.86 

 
 

6.66 
 
 
 

6.85 

 
1.095 

 
 

1.031 
 
 
 

1.048 

 
3.26 

 
 

3.84 
 
 
 

3.74 

 
Fracturability 

(N) 

 
 log 1/R 
(WL=1100-1900, F=6) 
 

1st derivativef 
(WL=1100-1900, 1980-
2500, F=3) 
 

2nd derivativeg 
(WL=1100-1900, 1980-
2500, F=4) 

 
0.958 

 
 
0.960 

 
 
 

0.961 

 
7.66 

 
 

7.27 
 
 
 

7.20 

 
 

 
0.987 

 
 
0.988 

 
 
 

0.987 

 
4.86 

 
 

4.74 
 
 
 
 4.67 

 
1.103 

 
 
1.099 

 
 
 

1.079 

 
5.33 

 
 

5.47 
 
 
 

5.55 

a Spectral range (nm) and number of factors used. e Segment = 10 nm, gap = 10 nm. 
b Segment = 40 nm, gap = 20 nm.   f Segment = 10 nm, gap = 40 nm. 
c Segment = 10 nm, gap = 20 nm.   g Segment = 20 nm, gap = 20 nm. 
d Segment = 20 nm, gap = 10 nm. 
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Table 6: Calibration and validation statistics for prediction of RVA parameters (RVU)=s 
best model using partial least squares regression (PLSR). 

 
Calibration 

 
Validation 

 
Constituents 

 
Spectral treatment 

 
r 

 
SEC 

 
 

 
r 

 
RMSD 

 
Slope 

 
RPD 

 
Cold 
viscosity 
 
 

 
 log 1/R 

(WL=1100-1800, F=3)a 
1st derivativeb 

(WL=1100-1900, F=6) 
2nd derivativec 

(WL=1100-1800, F=4) 

 
0.963 

 
0.968 

 
0.976 

 
8.66 

 
8.38 

 
7.11 

 
 

 
0.979 

 
0.981 

 
0.985 

 
6.20 

 
6.20 

 
5.65 

 
0.983 

 
0.959 

 
0.939 

 
4.82 

 
4.82 

 
5.29 

 
Peak 
viscosity 

 
log 1/R 

(WL=1100-1800, F=3) 
1st derivatived 

(WL=1100-1900, F=6) 
2nd derivativec 

(WL=1100-1800, F=4) 

 
0.966 

 
0.976 

 
0.981 

 
8.76 

 
7.68 

 
6.67 

 
 

 
0.983 

 
0.984 

 
0.989 

 
5.97 

 
6.37 
 
5.35 

 
0.988 

 
0.927 

 
0.925 

 
5.28 

 
4.95 

 
5.90 

 
Trough 

 
log 1/R 

(WL=1100-1900, 1980-
2500, F=4) 

1st derivativee 
(WL=1100-1900, 1980-
2500, F=3) 

2nd derivativef 
(WL=1100-1900, F=4) 

 
0.901 

 
 

0.907 
 
 

0.924 

 
2.18 

 
 

2.09 
 
 

1.93 

 
 

 
0.950 

 
 
0.935 

 
 

0.943 

 
1.39 

 
 

1.62 
 
 

1.53 

 
0.963 

 
 

0.910 
 
 

0.908 

 
3.19 

 
 

2.73 
 
 

2.90 
 
Final 
viscosity 

 
log 1/R 

(WL=1100-1900, F=3) 
1st derivativeg 

(WL=1100-1800, F=3) 
2nd derivatived 

(WL=1100-1900, 1980-
2500, F=3) 

 
0.976 

 
0.976 

 
0.979 

 
3.58 

 
3.53 

 
3.32 

 
 

 
0.985 

 
0.993 

 
0.987 

 
2.57 

 
2.38 

 
2.34 

 
0.974 

 
0.987 

 
0.983 

 
5.68 

 
6.14 

 
6.24 

 
Breakdown 

 
log 1/R 

(WL=1100-1900, F=3) 
1st derivativef 

(WL=1100-1900, 1980-
2500, F=3) 

2nd derivativeh 
(WL=1100-1900, F=3) 

 
0.968 

 
0.972 

 
 
0.970 

 
7.36 

 
6.93 

 
 

7.15 

 
 

 
0.983 

 
0.984 

 
 

0.981 

 
5.21 

 
5.02 

 
 

5.48 

 
0.980 

 
1.026 

 
 

0.971 

 
5.28 

 
5.48 

 
 

5.02 

 
Setback 

 
log 1/R 

(WL=1100-1900, F=6) 
1st derivativee 

(WL=1100-1800, F=6) 
2nd derivativeg 

(WL=1100-1900, F=6) 

 
0.989 

 
0.991 

 
0.993 

 
1.82 

 
1.69 

 
1.50 

 
 

 
0.986 

 
0.987 

 
0.987 

 
1.87 

 
1.76 

 
1.78 

 
0.966 

 
0.977 

 
0.972 

 
5.66 

 
6.02 

 
5.95 

 

a Spectral range (nm) and number of factors used.   e Segment = 20 nm, gap = 20 nm. 
b Segment = 40 nm, gap = 30 nm.     f Segment = 10 nm, gap = 20 nm. 
c Segment = 10 nm, gap = 10 nm.     g Segment = 40 nm, gap = 40 nm. 
d Segment = 40 nm, gap = 10 nm.     h Segment = 30 nm, gap = 20 nm.
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Water Absorption and Water Solubility Indices 

For WAI, optimal model conditions occurred when using a linear combination of 

second-derivative terms (segment= 10 nm and gap= 20 nm), which produced a prediction 

error of 0.28 g/g, correlation coefficient of 0.98, and RPD= 5.61.  Prediction results were not 

improved when PLS regression was used.  From observation of the MLR equations, the 

significant wavelengths were 1752, 1788, 2140, and 2436 nm.  Wavelengths at 1752 and 

1788 nm are due to the first overtone C-H stretch associated with CH2.  The wavelength at 

2140 nm lies on the side of the starch combination band, and also responds to a combination 

of C-H stretch and C-C stretch corresponding to HC=CH structure associated with lipid.  

The wavelength at 2436 nm is associated with starch.  A scatter plot of the modeled and 

reference values for WAI is shown in Fig. 4. 

A second derivative coupled with the PLS algorithm provided the best prediction 

result for WSI.  Surprisingly, the truncated wavelengths of 1100-1900 nm yielded better 

results than using wavelengths of 1100-1900 and 1980-2500 nm, with 5 PLS factors 

(RMSD= 2.74%, r-value = 0.99, and RPD= 5.43).  Fig. 5 illustrates a linear relationship 

between predicted and reference WSI values.  Weights, which indicate the degree that the 

variance has been used in the computation of the factors across the wavelength range, are 

more useful than loadings to interpret the process used to develop the calibration (Williams, 

2001).  Fig. 6 presents PLS weights from second derivative spectra at wavelengths from 

1100 to 1900 nm.  The absorption bands at 1342 and 1360 nm are due to C-H stretch and 

deformation combinations which are associated with CH3 groups.  The strong absorption 

bands at around 1620, 1742, 1806 and 1820 nm are assigned to C-H stretch, O-H stretch and 

C-O stretch which are associated with carbohydrates, including starch and cellulose 
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(Osborne et al, 1993 and Williams, 2001).  
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Fig. 4.  Reference vs. NIR modeled values for water absorption index (WAI) of validation 
samples. 
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Fig.5.  Reference vs. NIR modeled values for water solubility index (WSI) of validation 
samples. 
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Fig. 6.  PLS weights from second derivative spectra of extrudates from calibration model 
used to predict WSI. 
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Textural Properties 

PLS regression of first derivative with the wavelength range of 1100-1900 nm and 

1980-2500 nm with 9 PLS factors (segment= 10 nm and gap= 10 nm) yielded the best result 

for hardness between predicted values and measured values (r-value= 0.98 and RMSD= 6.66 

N).  When the reliability of the NIR determination was assessed with RPD, the value was 

relatively low (RPD= 3.84).   However, it is still acceptable.  Williams (2007) indicated that 

minimum acceptable values for the RPD is 3.0.  Fig. 7 shows a scatter plot between 

predicted and NIR values for hardness.  PLS weights from first derivative spectra showed 

peaks at around 1360, 1400 and 2280 nm (figure not shown) which are due to C-H stretch 

and deformation which correspond with CH3 groups and CH2 of starch and cellulose, and O-

H stretch first overtone of starch (Osborne et al, 1993 and Williams, 2001).  When using  

MLR regression of first derivative, NIR prediction for fracturability showed better results 

than  for hardness (r-value= 0.99, RMSD= 4.34 N, and RPD= 5.97).  The wavelengths 

chosen were 1520, 1580, 2138, and 2300 nm, which are attributed to O-H stretch first 

overtone, C-H and C-C stretches corresponding to CH2 groups, respectively, which are 

associated with starch.  A linear relationship between modeled and reference values for 

fracturability is illustrated in Fig. 8. 
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Fig. 7.  Reference vs. NIR modeled values for hardness of validation samples. 
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Fig. 8.  Reference vs. NIR modeled values for fracturability of validation samples. 
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Viscosity Properties 

For RVA constituents, decreasing moisture content resulted in a lowering of the 

pasting and a shift to cold viscosity with a decrease in the trough and setback (data not 

shown).  These results are similar to those reported by Whalen et al (1999).  NIR analysis 

gave better prediction, as expressed by low RMSD and high r-value, for cold, peak and final 

viscosities, compared to trough.  For cold viscosity, the best prediction result was derived 

from PLS regression of second derivative using wavelengths of 1100-1800 nm with 4 factors 

(r-value= 0.99, RMSD= 5.65 RVU, and RPD= 5.29).  Using the same treatment also 

provided the best prediction result for peak viscosity (r-value= 0.99, RMSD= 5.35 RVU, and 

RPD= 5.90).  Scatter plots between NIR modeled and reference values of cold and peak 

viscosities are shown in Figs. 9 and 10, respectively.  PLS weights for prediction of cold and 

peak viscosities are similar and are shown in Fig. 11.  Strong absorption bands can be seen at 

wavelengths around 1128, 1200, 1390, 1426, and 1700 nm, which are assigned to C-H 

overtone, O-H overtone, C-H stretch and deformation (Osborne et al, 1993).  These are 

associated with starch and cellulose (Williams, 2001).  Unlike the results for cold and peak 

viscosities, a 3-factor PLS model developed from second derivative using the entire 

wavelength range of 1100-2500, excluding  wavelengths from 1901-1979 nm, gave the best 

results for predicting final viscosity of extruded samples (r-value= 0.99, RMSD= 2.34 RVU, 

and RPD= 6.24).  PLS and MLR analyses yielded similar results  for predicting trough with 

values of r= 0.95, RMSD= 1.39 RVU, and RPD = 3.19.  Figs. 12 and 13 present 

relationships between predicted and lab values of final and trough viscosities, respectively.  

Fig. 14 shows strong absorption bands (1624, 1696, 2188, 2260, and 2430 nm) by plotting 

PLS weights for final viscosity prediction.  These are also due to C-H first overtone, 
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associated with O-H stretch, and C-H stretch, which correspond to starch (Williams, 2001). 
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Fig. 9.    Reference vs. NIR modeled values for RVA cold viscosity of validation samples. 
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Fig. 10.    Reference vs. NIR modeled values for RVA peak viscosity of validation samples. 
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Fig. 11.  PLS weights from second derivative spectra of extrudates used to develop 
calibration models for predicting cold and peak viscosities. 
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Fig. 12.    Reference vs. NIR modeled values for RVA final viscosity of validation samples. 
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Fig. 13.    Reference vs. NIR modeled values for RVA trough viscosity of validation 

samples. 
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Fig. 14.  PLS weights from second derivative spectra of extrudates from calibration modeled 
used to predict final viscosities (excluding wavelengths of 1901-1979 nm). 
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For RVA parameters of breakdown and setback, first derivative with PLS calibration 

yielded the best model.  The best prediction result for breakdown, as shown by r-value= 

0.98, RMSD= 5.02 RVU, and RPD= 5.48, were derived from the model with the wavelength 

ranged from 1100 to 2500 nm, leaving the wavelength from 1901 to 1979 nm, with 3 factors. 

 For setback, the r, RMSD, and RPD values obtained (0.99, 1.76 RVU, and 6.02, 

respectively) indicate the best calibration model using the wavelengths ranging from 1100 to 

1800 nm with 6 factors.  Comparisons between modeled and reference values for breakdown 

and setback of validation samples are plotted in Fig. 15 and 16, respectively.  Fig. 17 

presents PLS weights from first derivative spectra of the breakdown.  The absorption band at 

1216 nm is due to a C-H second overtone associated with CH2 group. Wavelengths at 1396, 

2038, 2284, and 2440 nm are assigned to C-H stretch and deformation, and C-C stretch, 

which are related to CH3 group, starch, and cellulose (Osborne et al, 1993 and Williams, 

2001).  PLS weights for setback are also associated with CH2, CH3, starch, and cellulose.  
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Fig. 15.    Reference vs. NIR modeled values for RVA breakdown of validation samples. 
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Fig. 16.    Reference vs. NIR modeled values for RVA setback of validation samples. 
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Fig. 17.  PLS weights from first derivative spectra of extrudates from calibration modeled 
used to predict breakdown (excluding wavelengths of 1901-1979 nm). 
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CONCLUSION 

 

Chapter 1 

 These preliminary results show the comparison between discriminant 

analysis models based on principal component analysis, and Mahalanobis 

distances of discrete wavelengths, and found slightly greater correct 

classification rates when using four selected discrete wavelengths than when 

using PCA models.  Classification results based on PCA showed that a five 

factor calibration model constructed by mean centering and Gap second 

derivative transformation with the gap size of five coupled with the use of SNV, 

provided the highest overall correct classification rate when partial spectra from 

1100 to 1900 nm were used.  This calibration model correctly classified 100% of 

sound, 93% of infested, 95% of sound air-dried, 91% of infested air-dried, and 

92% of sound kernels from six different wheat varieties.  Results of calibrations 

based on discrete wavelengths showed that the highest overall correct 

classification was achieved when using 4 wavelengths.  This combination of 

wavelengths gave a model that correctly classified 98% of sound, 98% of 

infested, 100% of sound air-dried, 96% of infested air-dried, and 100% of sound 

kernels from six different wheat varieties.  Therefore, detection of internal insect 
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infestation based on selected discrete wavelengths was promising, and was used 

to analyze data from sound and infested kernels containing  3- and 4-week old 

granary and maize weevil larvae. 

 

Chapter 2 

 NIR spectroscopy using discriminant analysis with Mahalanobis distances 

based on selected discrete wavelengths can yield reliable results to classify 

infested kernels containing either live or dead  larvae of both granary and maize 

weevils.  The calibration developed from sound and infested kernels containing 

3-week-old larvae of granary and maize weevils provided correct classification 

of sound, sound air-dried, and infested kernels containing 3-week-old larvae of 

granary and maize weevils, 4-week-old larvae of granary and maize weevils, and 

infested air-dried kernels containing dead larvae of granary and maize weevils of 

92, 98, 77, 73, 95, 98, 96, and 94% respectively.  Additionally, 99% of sound 

kernels from ten different wheat varieties were correctly classified into their 

respective classes.  When applying first derivative treatment to the calibration 

developed from 4-week-old larvae using a segment interval= 5 and gap= 5, 

improved classification results were achieved for sound and infested wheat 

kernels containing 4-week-old granary and maize weevils to 99, 92, and 94%, 
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respectively.  Second derivative treatment did not improve classification results 

for calibration developed from either 4-week-old or 3-week-old larvae. 

 The need for only four wavelengths allows the use of simpler and less 

expensive instrumentation than is required for the full spectrum methods 

previously used for this purpose.  Additionally, automated single-kernel 

presentation systems need to be developed to make this technique practical for 

routine use of large numbers of samples.  A high humidity incubator to raise 

insects and high resolution X-ray equipment are needed for further studies in 

order to achieve improved classification of smaller size larvae.  Kernels infested 

by larvae of other internal infesters should also be included.  Calibration models 

using fewer discrete wavelengths should also be  evaluated for their 

effectiveness.  

 

Chapter 3 

 The use of NIR spectroscopy for predicting degree of starch cooking 

seems to be feasible.  The changes in the spectra at wavelengths associated with 

C-H first and second overtones, C-H stretch and deformation, O-H first 

overtone, etc. caused by changing of starch molecules can be measured. The 

data obtained from this study are the only information currently available.  
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Online NIR spectroscopy, which will be able to scan the extrudates 

automatically through fiber optics, needs to be further studied by examining the 

absorbance spectrum of the extruder melt as it approaches or passes through the 

die of the extruder.  Monitoring of the melt fluid can provide information for a 

feedback control system.  Additionally, the next phase of research can be 

investigated the technique with more complex formulations containing added 

salt, sugar, and multiple sources of starch.   
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