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One of the ongoing themes through the Math in thedM coursework has been
the idea of identifying patterns. From our fireucse, Math as a Second Language,
patterns have been useful to explain phenomenaetedmine future values. Some
patterns are numerical but can be described usyedpia. Some are visual or geometric
and also can be described using numbers and symidlaisy of these patterns have
resurfaced in different forms and at different tame new and interesting ways. It has
been a humbling experience to see the intercontheess of seemingly unconnected
ideas. Pick’s Theorem, Farey Sequences and Focte€are concepts quite different on
the surface but linked in interesting ways.

The Life of Georg Alexander Pick

Georg Alexander Pick was born to a Jewish fanmyAoigust 10, 1859 in Vienna,
Austria. His parents, Josefa Schleisinger and Attidef Pick educated him at home
until the age of eleven. He then entered the focldss of the Leopoldstaedter
Communal Gymnasium. He qualified for universityrance in 1875, at age 16.

According to the St. Andrews website, Pick entdhedUniversity of Vienna in
1875, and published his first mathematics papefat@wing year. He studied both
math and physics, and graduated with an endorsetmégeich the two subjects. An
interesting side note is that Leo Konigsberger liasadvisor during this period. Pick
received his doctorate in 1780.

Pick studied or worked with other notable matheomts such as Emil Weyr,
Felix Klein, Charles Loewner and Albert Einsteifierms such as the, “Schwarz-Pick
lemma, ‘Pick matrices’ and the, ‘Pick-Nevanlinné&hpolation’ are still used today.
Pick is best remembered for Pick’'s Theorem. Tineotem first appeared in his 1899
paper,Gepmetrisches zur Zahlenlehr. (Geometrical to teaching of Numbers)

Pick’'s Theorem is on reticular geometry. A polygemose edges are reticular
lines Pick calls a reticular polygon. Pick’s thexor states that the area of a reticular
polygon is L + B/2-1 where L is the number of ratar points bordering the polygon and
B is the number of reticular points on the edgethefpolygon. This theorem can easily
be seen on a geoboard. This theorem was largaetyed until 1969 until Hugo
Steinhaus included the theorem in his famous bbt@thematical Snapshotsrom that
point on, Pick’s Theorem has been recognized $osihplicity and elegance.

Pick’s academic and professional career was guiteessful. At the German
University of Prague he was the dean of the phpgbgdaculty from 1900-1901. He
supervised students for the doctorate progranil9ii®, he was on a committee set up by
the university to consider appointing Einsteinhe tiniversity. Pick was the driving
force behind Einstein’s appointment. He and Einsteere close friends during
Einstein’s appointment at the university.

After Pick retired in 1927, he was named profeg&suoeritus and returned to
Vienna. Unfortunately, he was unable to live astlifie in peace. In 1938, after the
Anschluss, he returned to Prague. However, then@eigovernment asked the Czech
government to give Germany all districts of Boheania Moravia with populations that
were 50% or more German. Many Czech leaders regigather than agree to this, but
the new leaders gave in to the request. Hitlerisies invaded in March of 1939 and
Hitler installed his representatives to run therdtopy The Nazis set up the
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Theresienstadt concentration camp. The camp wasosed to house the elderly,
privileged and famous Jews. The Nazis portraylgtade that the camp was more of a
community of Jewish artists and musicians. Inghd, the “Terezin” camp was in fact a
transport to Auschwitz, and was extremely overpajaa. Many prisoners died of
disease or starvation. Of the 144.000 Jews sergrezin, about a quarter died there,
including Pick. 60% of other Jews sent there vestentually sent to Auschwitz. Pick
was sent to Terezin on July 13, 1942, and diecettveo weeks later, at age 82. A vulgar
death for a gentleman described as, “...a bachelocommonly correct in clothes and
attitude.”

Pick’s Theorem

First published in 1899, Pick’'s Theorem was brduglgreater attention in 1969
through the popular bodathematical Snapshotsy Hugo Steinhaus. The theorem
gives an elegant formula for the area of simpléckfpolygons, where "simple” only
means the absence of self-intersection. Polygownsred by the theorem have their
vertices located at lattice points of a square grithttice whose points are spaced at a
distance of one unit from their immediate neighbdtse formula doesn’t require math
proficiency beyond middle grade school and canasdyeverified with the help of a
geoboard. In fact, the use of a geoboard will makeproof of this theorem simple.
Pick’'s Theorem states:

Let P be a simple (i.e., nonintersecting) latticdygon, containing B lattice

points on its boundary, and | lattice points igiterior. Then the area,

A (P) of P is given by:

AP)=1B+1-1
2

In the Euclidean plane, a lattice point is one séhooordinates are (X,y) where
(x.y) are both integers. A lattice polygon is avigose vertices are on lattice points.
Below we will see a simple example of this theorem:
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the square (in green) has 9 interior lattice poiatsl 16 exterior points. Therefore, the
area of the square using Pick’'s Theorem is:
16

9+—-1
2
=9+8-1
A=16
To illustrate Pick’s Theorem for triangles is skigtmore complicated. First, let us

consider a primitive triangle. A primitive triarggis one that has vertices on exterior
lattice points, with no interior points in betweeRor such a case, the area of the triangle

will always be:A=0+ (g) -1=0.5

For the purposes of this paper, any polygon wittiees lying on lattice points can be
decomposed into primitive triangles. The triangddow has been decomposed into a
group of primitive triangles. Using Pick’s Formuits area can be shown:

1C

A=6+ > -1=10
This can be checked for accuracy using the starataalformula for triangles (A=bh)/2
You can visually see the base of the triangle &n8l, the height is 4. A;=(5)(4)=10

Pick’s Theorem holds true for lattice triangles.
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Let’s try a more complicated, irregular polygon:

[ ] [ ] g g
P1
[ ] [ ] [ ] [ ]
P2
[ ] [ ] [ ]
P3
[ ] [ ] [ ] [ ] [ ]
® ® ® \J [ ]

Pick’s Theorem can be used to find the area ofghépe. This will also show that Pick’s
Theorem has an additive character. The irregllaps has been divided into six
separate polygons, which we will call P1, P2, R# interiors of these polygons are
separate; however, some edges are shared. Betgalnse/e previously shown Pick’s
Theorem to be true for triangles, you can check plolygon using Pick’s Theorem:
A=8+ % -1=14

Because we want to prove that Pick’'s Theorem igtiaddwe will decompose the
polygon into triangles.

The interior lattice points will then be:
=11+ +13
The boundary points will be:
B=B,+ B, + Bs-3
The total area is therefore:
A=P,+ P+ P;

=1+8-1=3
P,=1+5

p2:1+g—1:3

=5+3_1=¢
P,=5*5

Hence,(1+§—1j +(1+§—1)+(5+§—1) =14
2 2 2
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In conclusion, Pick’s Theorem is a simple way talfthe area of a lattice
polygon. The theorem is easy for elementary-agatests to understand and apply.
There are many classroom applications for Pick'sofeam, especially with the use of a
geoboard or Geometer’s Sketchpad. This is amaltiee way to solve for the area of
simple lattice polygons.
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The Farey Sequence

The Farey Sequence is a pattern that has itsangjuite common numbers.
The Farey fractions can be found in all sorts &edent applications. The Farey
sequence was so named for British born geologsn Farey (1766-1826). In 1816
Farey wrote about the “curious nature of vulgacticms” in the publication
Philosophical Magazine Given a sequence twhere b, d and b + d are all less than n,

what Farey noticed is that if two fractloﬁs andgwere combined in this Wa)Z—C,
b d +d

the resulting fraction was also in the series.effavas not able to prove this but prolific
French mathematician Augustin Cauchy (1789-185%) alde to provide a proof in 1816
published inExercices de mathematiqueBespite Farey’s inability to prove the “curious
nature” of these fractions, Cauchy still attributed sequence to Farey. Unbeknownst to
either Cauchy or Farey, there was a paper withsargion of the sequence and proof by
Haros fourteen years before.

The Farey Sequence of fractiong)(&e made up of fractions in lowest terms
where the denominator is less than or equal a numb@/hen the fractions d¥; are

added together, incorrectly(i% :%,a new fraction falls between the original two is
generated. This fraction is called tnediant The next series is found by adding the
first two fractions of Eto find the median% l % :%. One finds the mediant of the last

two fractions infF, % O %:% and the next Farey sequence is found. This droeeof

finding the mediant between each pair of fractiothie previous Farey sequence is
repeated to find the next sequence.

{o 112 1}
F3= D
132 31

{0111231}

1'4’3'2'3'4"1
- _{ngz;;zﬁz}
> (1'5'4’3'5'2'5'3'4’5'1

4
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It is interesting to note that the sequengedntains all the fractions fromy.FIn
fact, only new fractions indhave a denominator of 5. For the purposes ofpiier, for
all Farey sequences the only fractions that will appear for the fitshe in F, will have
a denominator of n

One of the properties of the Farey sequence igiliah two consecutive Farey

fractions%,% where therbc — ad = 1 This can be proved by induction.

. . .ar c
Suppose in |31 there are three consecutive Farey fractleblfl,s,—,a where q =

n+1, then% and%are consecutive fractions in.FThe middle fraction;-, is the mediant

q
formed byE andEand soL —arc .
b d g b+d
01 .
For R {1,1}, 1¢1-01=1, sobc - ad =1 is true.

L : : .ac
Let us assume that it is true fo. FGiven two consecutive Farey fractlebnsd— where,

thenbc - ad =1.
Let’s see what happens at.&

Case 1: Let’s randomly select two fractions from.E If the two fractions are
both elements of f-then we already know bc — ad = 1 by the abovadtide
assumption.

. : I
Case 2: If the two randomly selected fractions from.fcontain one fractior;

where g = n+1, we know this is a new Farey fractidhat is, it has not appeared
in any previous sequence. This fraction would have fraction on either side,

% and% wherer=a+ cand q=b + d. It can be showratiwve relationship

holds in this situation.

Let's examineE andL, remembeIL: arc
b q g b+d
be simplified to ab + bc —ab —ad or bc — adchwhaquals 1.

. Then b(a+ c) - a(b + d) which can
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The same argument can be made as we exa%a’n&jg. Using
q

substitution we gel?:—dc and% so we need show that c(b + d) —d(a + ¢)=1. @Jsin

some algebra, bc + cd- ad — cd would simplify te-tadd which is still equal to one.

. . L : . a c
By the principal of mathematical induction, if givewo consecutive fractlonsg anda

in the sequenceyk, then bc —ad = 1.

. . : : . a C.
Another interesting relationship of two consecufiagey fractlonsE anda IS

b+d

already know that bc — ad = 1 because the valagasitive number, theEr <

: + . . -
that the medlantﬂ determined by these two fractions will lie betwés;mndg. We

a+c
b+d’

. atc c
The same argument can be made for the last twbdmx;m andaso therefore,

atc _C

a
- "<,
b b+d d
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Through the course of my work with the Farey Segaehdiscovered other
aspects | would like to explore more thoroughlwg dater time. Many sites referenced the
idea that all rational numbers between 0 and lbeagenerated by the Farey tree.

Farey Arithmetic

When | first started manipulating the fractiondjdcovered Fibonacci numbers
can be found in the Farey Fractions in the examgiiesvn below.

0.1 1
—_t—-=—
1 1 2
1 1 2
—_t—-—=—
2 1 3
1 2_3
—_t—=—
2 3 5
2 3.5
4+ =-==
3 5 8
3 5 8
—_t —=—
5 8 13

Farey fractions seem to be very evident in maffemdint areas of mathematics.

It is interesting that such a simple idea wouldegate so many discussion topics through
a myriad of mathematical topics.
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FORD CIRCLES

Lester Randolph Ford, Sr. was an American mathematborn in 1886. Ford
received a PhD in mathematics from Harvard Uniwgigi 1917. Ford circles are named
after Ford, who introduced the concept in a 193®larcalled “Fractions” (American

Mathematical Monthly, volume 45, number 9, pages-681).

Ford was the editor of the American Mathematicahliity magazine from 1942
t01946, and President of the Mathematical Assamadi America from1947 to 1948. In
1964 the Mathematical Association of America reépga his contribution to
mathematics by establishing the ‘Lester R. Ford Alwior authors of published
mathematics in The American Mathematical MontHhiard’s son, Lester Randolph

Ford, Jr., (who was born in 1927), is also a fasnmathematician.

Ford Circles are a geometric representation otifras. Ford wanted to illustrate

fractions, Iike% and%, as circles. Ford showed that you could findagtion in

(a+c)

between the fraction% and% by finding theirmediant,a new fractionm, as

shown with the diagram below:

gl 1T
o
+
o
in

To further this geometric representation of fraesiowe will plot points on a line

. . . a :
that is the x-axis on ax,' y’ coordinate plane. HeDe:E wherea andb are integers and

L . a . . .
the fraction is in its lowest terms. legnE, we construct a circle withradius equal
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to 12 . Now we have our circle %ﬁj (izj tangent to the x-axis and found in
(2b%) b/ \(2b%)
guadrant | on the coordinate plane.
For example:
X :(E‘J y= 1
b (20%)
Circle L 1 1
2 8
Circle M 2 1
3 18
Circle N 3 1
4 32
Circle O 4 1
3 18

(1/2, 1/8)

(413,110

-
-

b - - N

X

Plotting fractions as circles allowed Ford to stagefirst theorem related to these
fractions:

THEOREM 1. The representative circles of two distifractions are either
tangent or wholly external to one another (For®88)9
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To prove this theorem we will be looking at thetaiece between the centers of the two

circles formed by the fraction% andg (both in lowest terms).

1 1
to .
(20%)  (2d®)

The distance between these circles’ radii will teemline PQ) from

The distance between the circle{sgﬂ-(%j |, will create another Iineﬁ) parallel to
thex-axis The two linesPQand PR can be made into a right triangle with a vertical

. — . 1 1
line (QR) that has a distance -— .
(QR) { d?) (2b2)jI
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Using the Pythagorean Theorend f&°= c? ), we can then state that:
% 2 _ ﬁ 2 +@ 2

2 2
- 1 1
PO 2= E_Ej +( __j
Q (d b 2d?  2b?

—, (1 1) (ch-ad)’-1
- P

PQ2= (PS+TQ) + 4 (cb” ?Sz) -

With this equation, we can say that if |pc-ad| thén PQ>PS+TQ, and the two
circles are external to one another. If |bc-atl) thenPQ=PS+TQ, and the two circles
are tangent. If, however, |bc-ad| < 1, then taetions are not different fractions; |bc-ad|
< 1is not possible.

When |bc-ad| = 1, theRQ=PS+TQ, and the two circles are tangent, we can

then look at the relationship between the two tahgecles to construct a smaller circle,

tangent to both original circles, that lies on xhaxis.
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SPECIFIC FORD CIRCLES

Given the following picture of two tangent circlege can now look for a

relationship between the larger cir %% and the small circlé%%jin the diagram:

(1/1, 1/2)

X

The radius of the larger circ(ei—j is four times the radius of the small cingléj.
Knowing that the smaller radius Jisthat of the larger radius, we might wonder if the

ratio of other tangent circles’ radii will also Eze To see, we’'ll find another fraction

circle tangent to the existing circles.



Amen/Green/Schmidt — MAT Expository Paper - 15

We can find a smaller circle, tangent to both orgjicircles, looking at the x-axis

values:% and%. By finding themediant,a new fraction in between the existing radii,

+
—((; +?) , We are giveng as the x-axis point for our new circle. To fite y value of our

. 1 . . )
new circle, we use the formqu(aZb—z) and see that the new circle’s radius will be at

1 1

, OF —.
2(3*) 18

X

With our three circles, we can look to see if tleavrtircle’s radius isél—Ir the value
: . . . 2 1 . 1
either of the existing circles. The new circle %{1—8 , has a radius that rg of the

. .4 . . 1.
largest circle and |s§ the radius of the second circle. Therefejel,s not a constant

ratio.
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By using finding the mediant fractions for the nésw terms, we create new
adjacent fractions, and we can try to find a pattetween the ratios of the circles. This

table shows the circles created by the adjaceatidras and compares the ratio of their

radii:
Term a 1 Large Circle New Circle Ratio of Radii
X,y (BEJ Radius Radius
of New Circle

1 11 1 1 1
1" 2 2 2 1
2 11 1 1 4
2’8 2 8 1
3 2 1 1 1 9
318 2 18 1
4 3 1 1 1 16
4’ 32 2 32 1
5 4 1 1 1 25
5’ 50 2 50 1
n n-1 1 1 1 n2
n '2(n? 2 2(n?) 1

In fact, by looking at a table that shows theirafimediant fractions staring with

circles at(},lj and eéj , we do begin to see a pattern in the ratio of trealii:

Lilglilglilogglilogg
The ratio of the largest circle’s radius dividedthg newest circle’s radius is
always a perfect square. In setting up a tableléibels the circles as terms, we can see
that the consecutive squares are related to the(tarnumber of the new circle). Given
the ‘n™’ circle, the ratio of the original large circleathcircle, compared to the ratio of

2
. . n
the ‘n™’ circle will be T
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We can even write a formula for plotting this™ncircle, knowing that it will be

located a{n—_l, 12 j
n 2n

A

14+

(1/1, 1/2)

213,118}

; /&

»

AO.L‘

'

\J

4

There is a Ford circle associated with every natismumber. In addition, the line
y=1 is considered a Ford circle (as it can be enctiordinate plane at 1, 0, or thought of

as%, associated with infinity).

L.R. Ford was able to take fractions, sometimesictered part of number sense
or arithmetic, and create a geometric presentatidrow fractions and their radii are

related. Ford Circles help to visually represéetdoncept of mediant and the patterns
associated with Farey fractions.
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Connections
Pick’'s Theorem as Related to Euler's Formula

Pick’'s Theorem also has other properties as Wailtk's formula is a two-dimensional
equivalent to Euler's formula. Recall Euler’'s FotmasV-E+F=2. It is important to

note that Pick’s Theorem as stated above is odlgl @ simple polygons. For example,
polygons similar to the ones drawn above that abrdia single piece and do not contain
"holes.” According to W.W. Funkenbusch (1974§ tterivation of Pick’s formula is
seen as the following:

Let the polygon have lattice points for verticasg et Euler's Formula be
applied to the related connected planar graph. tihém obtain:

V=l +B

E=31 +2B -3

F-1

— =areaof polygon

which when substituted into Euler’s Formula gitsk’s Formula.

The equation V= 1| + B is the sum of the interioirgs and all boundary points.

The equation E= 31 +2B is generated by the fadtwhieen moving from Pick to Euler,
the interior points are three times (3I) the orajinumber when you have any interior
point and connect an edge to it. This createmagulation effect. Likewise, as you
connect the interior lattice points to the extexiertices, you create twice the number of
edges. Therefore, you now have (2B) edges. Sewlier an example of this effect.
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This simplified example shows why when you conriecnterior lattice points from
exterior vertices, the number of edges is doubuahilarly, the number of interior lattice
points is now tripled. For proof of this we willlsstitute the above components
developed by Funkenbusch for Euler and Pick.

Tosolve forE FT_l =areaof polygon

F-1)_
T]'A(Z)

F-1=2A
-1 -1
*F =2A+1
*V-E+F=2
*By substitutiopwe now generate anew equation
|+B-(31+2B-3)+2A+1=2
|+B-3-2B+3+2A+1=2
-2l -B+4+2A=2
-2 -B+2+2A=0
-2l -B+2=-2A
-2

1+8_1=n
2

This proof shows the relation of the faces, edgebvartices of Euler's Formula, and the
interior and boundary lattice points of Pick’s Them.

Pick’s Theorem and the Farey Series
There exists another relationship between Picksofém and a mathematical

idea the Farey Series. The Farey Serjesf Brdern a is the ascending series of

) ) ... m .
irreducible fractions— between 0 and 1 whose denominators do not exceed N
n

fraction % belongs to kif and only if: 0< m<n<N, gcdim,n) =1

The relationship between Pick’s Theorem and they8equence is simple: when you
plot two consecutive pairs of fractions from a ageries on a grid, using the
denominator and numerator as an ordered pair, @mghonnect to the origin point

(0,0), the resulting area will always Eé . The area is alwa s% because the points
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plotted will never contain interior lattice point$herefore, the equation created will
always be:

3 n
01)+(B)=5

This can be used as an alternative proof of theection between Pick’'s Theorem and
the Farey Sequence. Several examples are depeled.

i (1.4)
2
3 (1,3)
+—-
1
0 il 2 3 4 5
5 (1,5)

P
B
IS

P
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(2,5)

13

Farey Fractions and Ford Circles

Given two Ford circles Cand G with centers consecutive Farey fractions, the
circles are tangent to each other. In order fertito circles to be tangent, we need to

. . . ., C_a
show that the sum Since the centers are consedtdney fractions Wltha > b and bc —

ad =1 The center of,ds at% with a radius ofz—;z. The center of €is < with a

. It can be shown that;@s tangent to &

1/2d"2 - 1/2b";

(asb,
1/2b%2)
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The Pythagorean Theorem can be used to show ththlers equal to the sum of
the radius of €and G.

(c a)z (1 1)2_(1 1)2
B - = +
d b 2d2  2b2 2d2  2b?

c® _2ac a’ 1 2 1.1 2 1

—+— + = +
d> bd b® 4d* 4b’d* 4b* 4d* 4p2g? 4b*

After some simplification, this translates to

¢ _2ac a4
d®> bd b® 4b*d?
To work with a simpler problem, the fractions candliminated by multiplying bi*d®
a’d®— 2abed + Bc® = 1
The trinomial on the left hand side can be fact@e@ binomial square.
(ad - bcf=1
Since%andg are consecutive Farey fractions tlah- bc= 1. So Ford circles with

centers indicated by consecutive Farey fractioagargent.



Amen/Green/Schmidt — MAT Expository Paper - 23

Summary

Through our research we found references to Faaegidns, Pick’s theorem and
Ford’s circles in all kinds of situations. In ftatand chaos theory mathematics for
example, Farey fractions are even used in desigigrgo equipment. The impression
made by this research question emphasized theameectedness of mathematical
occurrences. The diagram below shows the positiéiarey fractions in the Mandelbrot

Set.

In our classrooms, we believe these topics camsbd to connect the ideas from
the visual nature of geometry to the abstract eadfialgebra. The use of Pick’s
Theorem takes this idea at an elementary levelnamees towards higher-level
mathematical reasoning through the use of Farey&Sugs and Ford Circles. In many
curriculums, topics are explored in isolation. digh our research, we have discovered
the many connections between concepts. These cimmeare important to the deep
understand of mathematics we hope our studentahieve,
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