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One of the ongoing themes through the Math in the Middle coursework has been 
the idea of identifying patterns.  From our first course, Math as a Second Language, 
patterns have been useful to explain phenomena and determine future values.  Some 
patterns are numerical but can be described using algebra.  Some are visual or geometric 
and also can be described using numbers and symbols.  Many of these patterns have 
resurfaced in different forms and at different times in new and interesting ways.  It has 
been a humbling experience to see the interconnectedness of seemingly unconnected 
ideas.  Pick’s Theorem, Farey Sequences and Ford Circles are concepts quite different on 
the surface but linked in interesting ways. 

 
The Life of Georg Alexander Pick 

 
 Georg Alexander Pick was born to a Jewish family on August 10, 1859 in Vienna, 
Austria.  His parents, Josefa Schleisinger and Adolf Josef Pick educated him at home 
until the age of eleven.  He then entered the fourth class of the Leopoldstaedter 
Communal Gymnasium.  He qualified for university entrance in 1875, at age 16.   
 According to the St. Andrews website, Pick entered the University of Vienna in 
1875, and published his first mathematics paper the following year.  He studied both 
math and physics, and graduated with an endorsement to teach the two subjects.  An 
interesting side note is that Leo Konigsberger was his advisor during this period.  Pick 
received his doctorate in 1780.   
 Pick studied or worked with other notable mathematicians such as Emil Weyr, 
Felix Klein, Charles Loewner and Albert Einstein.  Terms such as the, “Schwarz-Pick 
lemma, ‘Pick matrices’ and the, ‘Pick-Nevanlinna Interpolation’ are still used today.  
Pick is best remembered for Pick’s Theorem.  This theorem first appeared in his 1899 
paper, Gepmetrisches zur Zahlenlehr. (Geometrical to the Teaching of Numbers) 
 Pick’s Theorem is on reticular geometry.  A polygon whose edges are reticular 
lines Pick calls a reticular polygon.  Pick’s theorem states that the area of a reticular 
polygon is L + B/2-1 where L is the number of reticular points bordering the polygon and 
B is the number of reticular points on the edges of the polygon.  This theorem can easily 
be seen on a geoboard.  This theorem was largely ignored until 1969 until Hugo 
Steinhaus included the theorem in his famous book, Mathematical Snapshots.  From that 
point on, Pick’s Theorem has been recognized for its simplicity and elegance.   
 Pick’s academic and professional career was quite successful.  At the German 
University of Prague he was the dean of the philosophy faculty from 1900-1901.  He 
supervised students for the doctorate program.  In 1910, he was on a committee set up by 
the university to consider appointing Einstein to the university.  Pick was the driving 
force behind Einstein’s appointment.  He and Einstein were close friends during 
Einstein’s appointment at the university.   
 After Pick retired in 1927, he was named professor Emeritus and returned to 
Vienna.  Unfortunately, he was unable to live out his life in peace.  In 1938, after the 
Anschluss, he returned to Prague.  However, the German government asked the Czech 
government to give Germany all districts of Bohemia and Moravia with populations that 
were 50% or more German.  Many Czech leaders resigned rather than agree to this, but 
the new leaders gave in to the request.  Hitler’s armies invaded in March of 1939 and 
Hitler installed his representatives to run the country.  The Nazis set up the 
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Theresienstadt concentration camp.  The camp was supposed to house the elderly, 
privileged and famous Jews.  The Nazis portrayed a façade that the camp was more of a 
community of Jewish artists and musicians.  In the end, the “Terezin” camp was in fact a 
transport to Auschwitz, and was extremely overpopulated.  Many prisoners died of 
disease or starvation.  Of the 144.000 Jews sent to Terezin, about a quarter died there, 
including Pick.  60% of other Jews sent there were eventually sent to Auschwitz.  Pick 
was sent to Terezin on July 13, 1942, and died there two weeks later, at age 82.  A vulgar 
death for a gentleman described as, “…a bachelor…uncommonly correct in clothes and 
attitude.”  
 

Pick’s Theorem 
 

 First published in 1899, Pick’s Theorem was brought to greater attention in 1969 
through the popular book Mathematical Snapshots by Hugo Steinhaus. The theorem 
gives an elegant formula for the area of simple lattice polygons, where "simple" only 
means the absence of self-intersection. Polygons covered by the theorem have their 
vertices located at lattice points of a square grid or lattice whose points are spaced at a  
distance of one unit from their immediate neighbors. The formula doesn’t require math 
proficiency beyond middle grade school and can be easily verified with the help of a 
geoboard. In fact, the use of a geoboard will make our proof of this theorem simple.   
Pick’s Theorem states: 
 Let P be a simple (i.e., nonintersecting) lattice polygon, containing B lattice 
 points on its boundary, and I lattice points in its interior.  Then the area,  
 A (P) of P is given by: 

    A(P)= 
1
2

B+ I −1 

 
 In the Euclidean plane, a lattice point is one whose coordinates are (x,y) where 
(x.y) are both integers.  A lattice polygon is one whose vertices are on lattice points. 
Below we will see a simple example of this theorem: 
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the square (in green) has 9 interior lattice points, and 16 exterior points.  Therefore, the 
area of the square using Pick’s Theorem is:  

9+ 16
2

−1

= 9+ 8−1

A =16
 

 
To illustrate Pick’s Theorem for triangles is slightly more complicated.  First, let us 
consider a primitive triangle.  A primitive triangle is one that has vertices on exterior 
lattice points, with no interior points in between.  For such a case, the area of the triangle 

will always be: A = 0+ (
3
2

) −1= 0.5 

For the purposes of this paper, any polygon with vertices lying on lattice points can be 
decomposed into primitive triangles.  The triangle below has been decomposed into a 
group of primitive triangles.  Using Pick’s Formula, its area can be shown: 

A = 6+ 10
2

−1=10  

This can be checked for accuracy using the standard area formula for triangles (A=bh)/2 

You can visually see the base of the triangle is 5, and the height is 4. A=
1
2

5( ) 4( )=10 

Pick’s Theorem holds true for lattice triangles.   
 
 

 
.  
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Let’s try a more complicated, irregular polygon: 
 

P3

P2

P1

 
 
 

Pick’s Theorem can be used to find the area of this shape.  This will also show that Pick’s 
Theorem has an additive character.  The irregular shape has been divided into six 
separate polygons, which we will call P1, P2, P3, The interiors of these polygons are 
separate; however, some edges are shared.  Because we have previously shown Pick’s 
Theorem to be true for triangles, you can check this polygon using Pick’s Theorem: 

A = 8+ 14
2

−1=14 

Because we want to prove that Pick’s Theorem is additive, we will decompose the 
polygon into triangles.   
 
The interior lattice points will then be: 

I= I1 + I2 + I3  
The boundary points will be:  
   B= B1 + B2 + B3-3 
The total area is therefore: 

A= P1  + P2 + P3  
 

 

1
p =1+ 6

2
−1= 3

2
p =1+ 6

2
−1= 3

3
p = 5+ 8

2
−1= 8

       

 

Hence, 1+ 6

2
−1

 
 
 

 
 
 + 1+ 6

2
−1

 
 
 

 
 
 + 5+ 8

2
−1

 
 
 

 
 
 =14 
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In conclusion, Pick’s Theorem is a simple way to find the area of a lattice 

polygon.  The theorem is easy for elementary-aged students to understand and apply.  
There are many classroom applications for Pick’s Theorem, especially with the use of a 
geoboard or Geometer’s Sketchpad.  This is an alternative way to solve for the area of 
simple lattice polygons. 
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The Farey Sequence 

  
 The Farey Sequence is a pattern that has its origin in quite common numbers.  

The Farey fractions can be found in all sorts of different applications.  The Farey 
sequence was so named for British born geologist, John Farey (1766-1826).  In 1816 
Farey wrote about the “curious nature of vulgar fractions” in the publication 
Philosophical Magazine.   Given a sequence Fn where b, d and b + d are all less than n, 

what Farey noticed is that if two fractions 
b

a
 and 

d

c
were combined in this way 

db

ca

+
+

, 

the resulting fraction was also in the series.  Farey was not able to prove this but prolific 
French mathematician Augustin Cauchy (1789-1857) was able to provide a proof in 1816 
published in Exercices de mathemátiques.  Despite Farey’s inability to prove the “curious 
nature” of these fractions, Cauchy still attributed the sequence to Farey.  Unbeknownst to 
either Cauchy or Farey, there was a paper with a description of the sequence and proof by 
Haros fourteen years before. 

The Farey Sequence of fractions (Fn) are made up of fractions in lowest terms 
where the denominator is less than or equal a number n.  When the fractions of F1 are 

added together, incorrectly, 
0+1
1+1

= 1
2

,a new fraction falls between the original two is 

generated.  This fraction is called the mediant.  The next series is found by adding the 

first two fractions of F2 to find the mediant
0
1

⊕ 1
2

= 1
3

.  One finds the mediant of the last 

two fractions in F2, 
1
2

⊕ 1
1

= 2
3

, and the next Farey sequence is found.  This procedure of 

finding the mediant between each pair of fraction in the previous Farey sequence is 
repeated to find the next sequence. 

    

1F = 0
1

,
1
1

 
 
 

 
 
 

F2 = 0
1

,
1
2

,
1
1

 
 
 

 
 
 

F3 = 0

1
,
1

3
,
1

2,
,
2

3
,
1

1

 
 
 

 
 
 

F4 = 0
1

,
1
4

,
1
3

,
1
2

,
2
3

,
3
4

,
1
1

 
 
 

 
 
 

F5 = 0
1

,
1
5

,
1
4

,
1
3

,
2
5

,
1
2

,
3
5

,
2
3

,
3
4

,
4
5

,
1
1

 
 
 

 
 
 
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It is interesting to note that the sequence F5 contains all the fractions from F4.  In 
fact, only new fractions in F5 have a denominator of 5.  For the purposes of this paper, for 
all Farey sequences Fn the only fractions that will appear for the first time in Fn will have 
a denominator of n 

One of the properties of the Farey sequence is that given two consecutive Farey 

fractions 
d

c

b

a
,  where then bc – ad = 1.  This can be proved by induction.   

Suppose in Fn+1 there are three consecutive Farey fractions, 
d

c

q

r

b

a
,,  where q = 

n+1, then 
b

a
and 

d

c
are consecutive fractions in Fn.  The middle fraction,

q

r
, is the mediant 

formed by 
b

a
and 

d

c
and so 

db

ca

q

r

+
+= .   

For F1 








1

1
,

1

0
,  11011 =•−• , so bc - ad = 1 is true. 

Let us assume that it is true for Fn.  Given two consecutive Farey fractions
d

c

b

a
, where, 

then bc - ad = 1.   

Let’s see what happens at Fn+1. 

Case 1:  Let’s randomly select two fractions from Fn+1.  If the two fractions are 
both elements of Fn, then we already know bc – ad = 1 by the above inductive 
assumption. 

Case 2:  If the two randomly selected fractions from Fn+1 contain one fraction,
q

r
 

where q = n+1, we know this is a new Farey fraction.  That is, it has not appeared 
in any previous sequence.  This fraction would have one fraction on either side, 

b

a
 and 

d

c
 where r = a + c and q= b + d.  It can be shown the above relationship 

holds in this situation. 

Let’s examine 
b

a
and

q

r
, remember 

q

r
=

db

ca

+
+

.  Then b(a+ c)  - a(b + d) which can 

be simplified to  ab + bc – ab – ad or  bc – ad which equals 1.  
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 The same argument can be made as we examine 
q

r
and

d

c
.  Using 

substitution we get
db

ca

+
+

 and 
d

c
 so we need show that c(b + d) – d(a + c)=1.   Using 

some algebra, bc + cd- ad – cd would simplify to bc – ad which is still equal to one.   

By the principal of mathematical induction, if given two consecutive fractions, 
b

a
and 

d

c
 

in the sequence Fn+1, then bc – ad = 1. 

Another interesting relationship of two consecutive Farey fractions, 
b

a
and 

d

c
is 

that the mediant, 
db

ca

+
+

determined by these two fractions will lie between
b

a
and

d

c
.  We 

already know that bc – ad = 1 because the value is a positive number, then 
b

a
 <

db

ca

+
+

.   

The same argument can be made for the last two fractions, 
db

ca

+
+

and 
d

c
so therefore, 

b

a
 <

db

ca

+
+

<
d

c
. 

  

 

 

 

 

 

 

 

 

 



Amen/Green/Schmidt – MAT Expository Paper - 9 
 
 

Through the course of my work with the Farey Sequence, I discovered other 
aspects I would like to explore more thoroughly at a later time.  Many sites referenced the 
idea that all rational numbers between 0 and 1 can be generated by the Farey tree. 

 

When I first started manipulating the fractions, I discovered Fibonacci numbers 
can be found in the Farey Fractions in the examples shown below. 

   

0

1
+ 1

1
= 1

2
1
2

+ 1
1

= 2
3

1
2

+ 2
3

= 3
5

2
3

+ 3
5

= 5
8

3

5
+ 5

8
= 8

13

 

 Farey fractions seem to be very evident in many different areas of mathematics.  
It is interesting that such a simple idea would generate so many discussion topics through 
a myriad of mathematical topics. 
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FORD CIRCLES 

Lester Randolph Ford, Sr. was an American mathematician born in 1886.  Ford 

received a PhD in mathematics from Harvard University in 1917.  Ford circles are named 

after Ford, who introduced the concept in a 1938 article called “Fractions”  (American 

Mathematical Monthly, volume 45, number 9, pages 586-601).   

Ford was the editor of the American Mathematical Monthly magazine from 1942 

to1946, and President of the Mathematical Association of America from1947 to 1948. In 

1964 the Mathematical Association of America recognized his contribution to 

mathematics by establishing the ‘Lester R. Ford Award’ for authors of published 

mathematics in The American Mathematical Monthly.  Ford’s son, Lester Randolph 

Ford, Jr.,  (who was born in 1927), is also a famous mathematician. 

Ford Circles are a geometric representation of fractions.  Ford wanted to illustrate 

fractions, like 
b

a
 and 

d

c
, as circles.  Ford showed that you could find a fraction in 

between the fractions 
b

a
 and 

d

c
 by finding their mediant, a new fraction 

)(

)(

db

ca

+
+

, as 

shown with the diagram below: 
 

 
 
To further this geometric representation of fractions, we will plot points on a line 

that is the x-axis on an ‘x, y’ coordinate plane.  Here x=
b

a
 where a and b are integers and 

the fraction is in its lowest terms. Given x=
b

a
, we construct a circle with a radius equal 
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to 
)2(

1
2b

. Now we have our circle at 
a

b

 
 
 
 
 
 , 

1
(2b2)

 
 
 

 
 
 , tangent to the x-axis and found in 

quadrant I on the coordinate plane.   
 
For example: 
 

 
x = a

b

 
 
 
 
 
  y=

)2(

1
2b

 

Circle L 

2

1
 

8

1
 

Circle M 

3

2
 

18

1
 

Circle N 

4

3
 

32

1
 

Circle O 

3

4
 

18

1
 

 

1

(3/4, 1/32)

M
N

O

L

(1/2, 1/8)

(2/3, 1/18)

I

(4/3, 1/18)

 
 
 
 
Plotting fractions as circles allowed Ford to state his first theorem related to these 
fractions: 
  

THEOREM 1.  The representative circles of two distinct fractions are either 
tangent or wholly external to one another (Ford, 1938). 
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To prove this theorem we will be looking at the distance between the centers of the two 

circles formed by the fractions 
b

a
 and 

d

c
 (both in lowest terms).    

 
 
 

-2 -1 1 2 3 4 5 6 7(c/d)

4

3

2

1

-1

-2

S
T

(a/b)

P

Q

R

 
 
 
 

The distance between these circles’ radii will create a line (PQ) from 
)2(

1
2b

 to 
)2(

1
2d

.  

The distance between the circles, |








d

c
- 









b

a
|, will create another line (PR) parallel to 

the x-axis.   The two lines PQand PR can be made into a right triangle with a vertical 

line (QR) that has a distance of | 







−

)2(

1

)2(

1
22 bd

|.    
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Using the Pythagorean Theorem (a2 +b2 = c 2 ), we can then state that: 
 
  

  PQ 2  = PR 2 +QR 2  
 

PQ 2 = 
2








 −
b

a

d

c
 + 

2

22 2

1

2

1







 −
bd

 

 

PQ 2 =
22

22

22

1)(

2

1

2

1

bd

adcb

bd

−−+






 +  

PQ 2 = PS+ TQ( )2
+ (cb− ad)2 −1

d2b2
 

With this equation, we can say that if |bc-ad| > 1, then PQ> TQPS+ , and the two 

circles are external to one another.  If |bc-ad| = 1, then PQ= TQPS+ , and the two circles 

are tangent.  If, however, |bc-ad| < 1, then the fractions are not different fractions; |bc-ad| 

< 1 is not possible.  

 When |bc-ad| = 1, then PQ= TQPS+ , and the two circles are tangent, we can 

then look at the relationship between the two tangent circles to construct a smaller circle, 

tangent to both original circles, that lies on the x axis.   
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SPECIFIC FORD CIRCLES 
 
 

Given the following picture of two tangent circles, we can now look for a 

relationship between the larger circle 
1

1
,
1

2

 
 
 

 
 
  and the small circle 

1

2
,
1

8

 
 
 

 
 
 in the diagram: 

 
 

1

1

c1

(1/1, 1/2)

(1/2, 1/8)

 
 
 
 

The radius of the larger circle 
1

2

 
 
 
 
 
  is four times the radius of the small circle 

1

8

 
 
 
 
 
 .   

Knowing that the smaller radius is 
4

1
that of the larger radius, we might wonder if the 

ratio of other tangent circles’ radii will also be 
4

1
.  To see, we’ll find another fraction 

circle tangent to the existing circles. 
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We can find a smaller circle, tangent to both original circles, looking at the x-axis 

values: 
2

1
 and 

1

1
.   By finding the mediant, a new fraction in between the existing radii, 

)12(

)11(

+
+

, we are given 
3

2
 as the x-axis point for our new circle.   To find the y value of our 

new circle, we use the formula 
)2(

1
2b

 and see that the new circle’s radius will be at 

)3(2

1
2

, or 
18

1 .   

c1

1

1

(1/1, 1/2)

(1/2, 1/8)
(2/3, 1/18)

 
 
 

With our three circles, we can look to see if the new circle’s radius is 
4

1
 the value 

either of the existing circles.  The new circle, at 








18

1
,

3

2
, has a radius that is 

9

1
 of the 

largest circle and is 
9

4
 the radius of the second circle.  Therefore, 

4

1
 is not a constant 

ratio.   
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By using finding the mediant fractions for the next few terms, we create new 

adjacent fractions, and we can try to find a pattern between the ratios of the circles.  This 

table shows the circles created by the adjacent fractions and compares the ratio of their 

radii: 

 
 
 

Term 
x, y 








22

1
,

bb

a
  

of New Circle 

Large Circle 
Radius 

New Circle 
Radius 

Ratio of Radii 

1 

1

1
, 

2

1
 

2

1
 

2

1
 

1

1
 

2 

2

1
, 

8

1
 

2

1
 

8

1
 

1

4
 

3 

3

2
, 

18

1
 

2

1
 

18

1
 

1

9
 

4 

4

3
, 

32

1
 

2

1
 

32

1
 

1

16
 

5 

5

4
, 

50

1
 

2

1
 

50

1
 

1

25
 

n 

n

n 1−
,

)(2

1
2n

 
2

1
 

)(2

1
2n

 
1

2n
 

 
 
 
 In fact, by looking at a table that shows the radii of mediant fractions staring with 

circles at 








2

1
,

1

1
 and 









8

1
,

2

1
, we do begin to see a pattern in the ratio of their radii:   

8

1

2

1 ÷ = 4, 
18

1

2

1 ÷ = 9, 
32

1

2

1 ÷ = 16, 
50

1

2

1 ÷ = 25.   

 
The ratio of the largest circle’s radius divided by the newest circle’s radius is 

always a perfect square.  In setting up a table that labels the circles as terms, we can see 

that the consecutive squares are related to the term (or number of the new circle).  Given 

the ‘nth ’ circle, the ratio of the original large circle that circle, compared to the ratio of 

the ‘nth ’ circle will be 
1

2n
.   
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We can even write a formula for plotting this ‘nth ’ circle, knowing that it will be 

located at ( )





 −
22

1
,

1

nn

n
. 

 

c1

1

1

(1/1, 1/2)

(1/2, 1/8)
(2/3, 1/18)

 
 
 There is a Ford circle associated with every rational number.  In addition, the line 
y=1 is considered a Ford circle (as it can be on the coordinate plane at 1, 0, or thought of 

as 
0

1
, associated with infinity).  

 L.R. Ford was able to take fractions, sometimes considered part of number sense 
or arithmetic, and create a geometric presentation of how fractions and their radii are 
related.  Ford Circles help to visually represent the concept of mediant and the patterns 
associated with Farey fractions.     
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Connections 
 

 Pick’s Theorem as Related to Euler’s Formula 
 

Pick’s Theorem also has other properties as well.  Pick’s formula is a two-dimensional 
equivalent to Euler’s formula. Recall Euler’s Formula as V-E+F=2. It is important to 
note that Pick’s Theorem as stated above is only valid for simple polygons. For example, 
polygons similar to the ones drawn above that consist of a single piece and do not contain 
"holes.”  According to W.W. Funkenbusch  (1974), the derivation of Pick’s formula is 
seen as the following: 
 

Let the polygon have lattice points for vertices, and let Euler’s Formula be 
applied to the related connected planar graph.  We then obtain: 

     
    V=I + B 
    E=3I +2B –3 

    
F −1

2
= areaof polygon 

 which when substituted into Euler’s Formula gives Pick’s Formula.   
 
The equation V= I + B is the sum of the interior points and all boundary points.   
The equation E= 3I +2B is generated by the fact that when moving from Pick to Euler, 
the interior points are three times (3I) the original number when you have any interior 
point and connect an edge to it.  This creates a triangulation effect.  Likewise, as you 
connect the interior lattice points to the exterior vertices, you create twice the number of 
edges.  Therefore, you now have (2B) edges.  See below for an example of this effect.   
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This simplified example shows why when you connect to interior lattice points from 
exterior vertices, the number of edges is doubled.  Similarly, the number of interior lattice 
points is now tripled.  For proof of this we will substitute the above components 
developed by Funkenbusch for Euler and Pick.   
 
 

Tosolve for F:
F −1

2
= areaof polygon

2
F −1

2

 
 
 

 
 
 = A(2)

F −1= 2A

−1 −1

*F = 2A+1

*V − E + F = 2

*By substitution,wenow generate anewequation:

I + B− (3I + 2B− 3)+ 2A+1= 2

I + B− 3I − 2B+ 3+ 2A+1= 2

−2I − B+ 4 + 2A = 2

−2I − B+ 2+ 2A = 0

−2I − B+ 2 = −2A

− 2

I + B

2
−1= A

 

This proof shows the relation of the faces, edges and vertices of Euler’s Formula, and the 
interior and boundary lattice points of Pick’s Theorem.  
 

Pick’s Theorem and the Farey Series 
 

There exists another relationship between Pick’s Theorem and a mathematical 
idea the Farey Series.  The Farey Series Fn of order n a is the ascending series of 

irreducible fractions 
m

n
 between 0 and 1 whose denominators do not exceed N.  A 

fraction 
m

n
 belongs to FN if and only if: 0 ≤ m≤ n ≤ N, gcd(m,n) =1 

The relationship between Pick’s Theorem and the Farey Sequence is simple: when you 
plot two consecutive pairs of fractions from a Farey Series on a grid, using the 
denominator and numerator as an ordered pair, (m,n) and connect to the origin point 

(0,0), the resulting area will always be 
1

2

 
 
 
 
 
 .  The area is always 

1

2

 
 
 
 
 
  because the points 
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plotted will never contain interior lattice points.  Therefore, the equation created will 
always be: 

0(I) + 3
2

(B) = .5 

This can be used as an alternative proof of the connection between Pick’s Theorem and 
the Farey Sequence.  Several examples are depicted below. 
 
 
 

4

3

2

1

1 2 3 4 5

(1,3)

(1,4)

0

   
 

4

3

2

1

1 2 3 4 5

5 (1,5)

(1,4)

0
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4

3

2

1

1 2 3 4 5

5 (2,5)

(1,3)

0

 
 

Farey Fractions and Ford Circles 

Given two Ford circles C1 and C2 with centers consecutive Farey fractions, the 
circles are tangent to each other.  In order for the two circles to be tangent, we need to 

show that the sum Since the centers are consecutive Farey fractions with 
b

a

d

c >  and bc – 

ad = 1  The center of C1 is at 
b

a
 with a radius of .

2

1
2b

 The center of C2 is 
d

c
 with a 

radius of 
22

1

d
.  It can be shown that C1 is tangent to C2. 

-2 -1 1 2 3 4 5 6
x

4

3

2

1

-1

-2

y

PQ

PR

QR
1/2d^2 - 1/2b^2

c/d-a/b

(a/b,
1/2b^2)

(c/d,
1/d^2)

c/da/b
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The Pythagorean Theorem can be used to show the length p is equal to the sum of 
the radius of C1 and C2. 

422442242

2

2

2

2

22

2

22

2

4

1

4

2

4

1

4

1

4

2

4

12

2

1

2

1

2

1

2

1

bdbdbdbdb

a

bd

ac

d

c

bdbdb

a

d

c

++=+−++−








 +=






 −+






 −

 

After some simplification, this translates to  

222

2

2

2

4

42

dbb

a

bd

ac

d

c =+−  

To work with a simpler problem, the fractions can be eliminated by multiplying by b2d2 

   a2d2 – 2abcd + b2c2 = 1 

The trinomial on the left hand side can be factored as a binomial square. 

   (ad - bc)2= 1 

Since 
d

c
and

b

a
are consecutive Farey fractions then ad - bc = 1.  So Ford circles with 

centers indicated by consecutive Farey fractions are tangent. 
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Summary 

Through our research we found references to Farey fractions, Pick’s theorem and 
Ford’s circles in all kinds of situations.  In fractal and chaos theory mathematics for 
example, Farey fractions are even used in designing stereo equipment. The impression 
made by this research question emphasized the interconnectedness of mathematical 
occurrences. The diagram below shows the position of Farey fractions in the Mandelbrot 
Set.  

 

 In our classrooms, we believe these topics can be used to connect the ideas from 
the visual nature of geometry to the abstract nature of algebra.  The use of Pick’s 
Theorem takes this idea at an elementary level, and moves towards higher-level 
mathematical reasoning through the use of Farey Sequences and Ford Circles.  In many 
curriculums, topics are explored in isolation.  Through our research, we have discovered 
the many connections between concepts.  These connections are important to the deep 
understand of mathematics we hope our students will achieve,   
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