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RKKY interactions between nanomagnets of arbitrary shape

R. Skomski

Department of Physics and Astronomy and Center for Materials Research and Analysis
University of Nebraska, Lincoln, NE 68588, USA

(received 25 May 1999; accepted in final form 21 September 1999)

PACS. 75.50Lk – Spin glasses and other random magnets.
PACS. 75.10Nr – Spin-glass and other random models.
PACS. 75.70Pa – Giant magnetoresistance.

Abstract. – The RKKY interaction between well-separated magnetic particles in a nonmag-
netic metallic matrix is calculated. It turns out that the net interaction can be mapped onto an
RKKY interaction between two point-like effective moments. The effective moments exhibit a
strongly oscillating dependence on the particle’s size, shape, and orientation, but their magni-
tudes are governed by scaling laws. As a rule, magnetostatic interactions tend to suppress the
RKKY effect in particles larger than about 1 nm. Surface roughness leaves the effective-moment
picture unaltered but tends to yield a moderate reduction of the effective moments. The results
are discussed in the context of magnetic recording, spin-glass magnetism, and cluster physics.

Introduction. – Interactions between small magnetic particles embedded in a nonmagnetic
metallic matrix have attracted much attention during the past few years. This refers in
particular to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which is important
for the understanding of the giant magnetoresistance of granular magnetic materials. This
refers, in particular, to the magnetoresistance of granular nanostructures such as Co/Ag and
Co/Cu [1-3], where there is a competition between interparticle and Zeeman interactions. A
related problem is the nature of spin-glass interactions between nanoclusters [4-7].

The RKKY mechanism describes the interaction of two local magnetic moments (spins) in
a sea of free electrons. Due to exchange, itinerant electrons are subject to a spin-dependent
local potential, and in second-order perturbation theory the energy of the electron gas depends
on whether the two localised spins are parallel or antiparallel. RKKY oscillations are akin
to electron-density or Friedel oscillations caused by nonmagnetic impurities in metals and
indicate that the spatial resolution of free-electron waves is of order 1/kF. (For typical
noble-metal hosts, such as Cu and Ag, 1/kF is about 0.8 Å.) Alternatively, the oscillations
may be interpreted as rudimentary electron shells formed around impurities.

In spite of its shortcomings [8], the RKKY theory is frequently used as a starting point
to describe interactions between 3d moments in spin glasses, granular media, and multilayers.
Advanced band structure calculations [9] are now able to extend the free-electron RKKY
picture to complicated intermetallics and supercells containing hundreds of transition metal
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atoms per unit cell. However, complex nanostructures and random macroscopic magnets
remain beyond the scope of realistic first-principle calculations.

The RKKY interaction between two localized spin moments m and m′ is given by the
well-known expression

J(ξ) = J0
2kFξ cos(2kFξ)− sin(2kFξ)

(2kFξ)4
mm′ . (1)

Here ξ is the distance between the interacting atomic moments, J0 is an interaction parameter
which depends on the effective mass of the conduction electrons, and kF is the Fermi wave
vector of the electron gas. In this work, the local moments are assumed to be known,
although in reality the local moments depend self-consistently on the nearest-neighbour and
RKKY exchange interactions, on the magnetocrystalline anisotropy, on the magnetostatic self-
interaction, and on the magnetostatic field. The solution of the corresponding micromagnetic
problem goes far beyond the scope of this work but requires the integral RKKY interaction as
an input.

To evaluate the net RKKY interaction between two interacting nanomagnets, eq. (1) must
be replaced by a sum over many atomic pairs or by an integral. It is convenient to rewrite
eq. (1) as J(ξ) = J0F (2kFξ)mm′, where F (η) = (η cos η − sin η)/η4. The integral interaction
is then

J(|R−R′|) = J0

∫
F (2kF|R−R′ + r− r′|)M(r)M ′(r′)drdr′ . (2)

Here M(r) and M ′(r′) are the local magnetizations of the two nanoclusters (fig. 1).
Genkin and Sapozhnikov [10] have evaluated eq. (2) for two interacting spheres. For a

homogeneously magnetized sphere M(r) interacting with a point dipole M ′(r′) = m′δ(0) they
obtained a comparatively simple expression containing the sine integral si(x). The integration
over r′, that is the transition from a point dipole interacting with a sphere to two interacting
spheres, turned out to be possible but led to quite cumbersome expressions. Furthermore,
Vargas and Altbir [11] found short-distance corrections due to the discrete nature of the
crystalline moment distribution in spheres.

In the limit of large distances R between the spheres, the net RKKY interaction reduces to
a physically transparent effect given by the remarkable equation [10]

J(R) = J0F (2kFR)meff m′
eff , (3)

where the effective spin moment

meff =
πM

2k3
F

(sin(2kFRc)− 2kFRc cos(2kFRc) . (4)

Here M and Rc are the magnetization and the radius of the sphere, respectively.
This letter deals with well-separated nanoparticles of arbitrary shape. First, the question is

answered whether and under which circumstances it is possible to define effective moments of
the type eq. (4) for aspherical particle shapes. Then a general equation for the effective spin
moments is derived, and, finally, a few explicit results are reported.

Calculation and results. – Even in the exactly solvable case of interacting spheres it is not
possible to derive effective moments for short distances between the spheres, and the validity
of eq. (4) is limited to the asymptotic case of large distances [10]. This means, for example,
that there is no point in considering dense arrays of Co clusters [12], and we have to analyze
the limit of well-separated magnetic particles. The distance between the clusters is given by
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Fig. 1 Fig. 2

Fig. 1. – Geometry of magnetic nanoparticles embedded in a nonmagnetic metallic matrix.

Fig. 2. – Some particle geometries for which effective moments are calculated: (a) aligned cube,
(b) inclined cube, (c) double cone, and (d) sphere with surface roughness.

R0 = R0e = R−R′, so that for R0 À r and R0 À r′ it is possible to rewrite the distance in
the argument of eq. (2) as

|R0 + r− r′| = R0 + (r− r′) ·R0/R0 + . . . . (5)

Next we have to substitute this expression into the RKKY kernel F (2kF(|R0 + r − r′|)).
The expansion with respect to r − r′ is reminiscent of but not equivalent to an ordinary
multipole expansion, because RKKY interactions oscillate on an atomic 1/kF length scale.
As a consequence, the conventional “smallness” multipole criterion R À |r − r′| known from
basic electrodynamics must be replaced by the stronger “quasi plane wave” multipole criterion
R À kF|r − r′|2. Pictorially, the perturbative quantum-mechanical oscillations of the free-
electron gas, which are responsible for the RKKY interaction, are conceived as planar waves
by the interacting clusters. Note that the plane-wave criterion puts the effective spin approach
by Genkin and Sapozhnikov [10] in a broader context and makes it possible to evaluate eq. (2)
for well-separated particles of arbitrary shapes.

The next step is to use the identities sin(a+b) = sin(a) cos(b)+cos(a) sin(b) and cos(a+b) =
cos(a) cos(b) − sin(a) sin(b) to evaluate the function F . Putting the result of this calculation
into eq. (2) reproduces eq. (3), but the effective spin moment is now given by

meff =
∫

M(r) cos(2kFx)dr , (6)

where x = r · e. Note that eq. (6) is based on a well-defined particle position R. In the
case of highly symmetric particles, such as cubes and spheres, R refers to the particle center,
but in general, R must be adjusted to yield a net RKKY interaction of the form F (x). This
is achieved by ensuring

∫
M(r) sin(2kFx)dr = 0. Note that eq. (6) remains valid for small

clusters of magnetic atoms and also for aspherical atomic moments, such as rare-earth ions (to
be published elsewhere).

It is straightforward to apply eq. (6) to a number of geometries. Of course, in the case of
homogeneously magnetized spheres, the present approach reproduces the effective spin moment
eq. (4), which was first derived [10] by explicit integration of eq. (2). For homogeneously
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Fig. 3. – Dependence of the net RKKY interaction on the particle orientation (interaction between a
cube and a sphere). The dashed parts of the lines indicate the breakdown of the present asymptotic
approach. The amplitude ratio is obtained from eqs. (8) and (9) and scales as kFL.

magnetized and aligned double cones of diameter 2Rc and length 2Rc (fig. 2c) the effective
spin moment is

meff =
πM

2k3
F

(2kFRc − sin(2kFRc)). (7)

It is interesting to note that the sign of the effective moment oscillates for spheres but not for
double cones. However, in both cases the magnitude of the effective moment scales as Rc.

For cubes of volume L3, and aligned so that e is perpendicular to a cube face (fig. 2a), the
result is

meff =
ML2

kF
sin(kFL) , (8)

whereas the RKKY interaction of inclined cubes (fig. 2b) is characterized by

meff =
ML

k2
F

(1− cos(
√

2kFL)) . (9)

This shows that the effective spin moments depend not only on the particle shape but also
on the particle orientation. Note, in particular, that not only the involved trigonometric
functions but also the scaling behaviour are different for the two orientations. In the case of
inclined cubes, the interaction scales as L, whereas for aligned cubes it exhibits a much stronger
L2 behavior (fig. 3). The latter behavior is related to the well-known fact that the RKKY
interaction is particularly strong for parallel magnetic planes, as for example in multilayers.
Figure 3 compares the amplitudes of the respective RKKY interactions.

Equation (6) can also be used to study magnetic particles with rough surfaces (interfaces).
For simplicity, let us consider interdiffusion so that the average moment decreases linearly over
a distance of ∆. For plates of thickness t and area L2 the effective moment is then

meff =
ML2

k2
F∆

sin(kFt) sin(kF∆) . (10)
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For spherical symmetry (fig. 2d), the influence of the roughness is calculated most conveniently
from the RKKY contribution dmeff of a thin magnetic shell of thickness dr and magnetization
M(r):

dmeff = −2πM(r)
kF

sin(2kFr)r dr . (11)

Integration of this equation yields

meff =
πM

2k4
F∆

(2 sin(2kFRc) sin(kF∆)− kF∆sin(2kFRc) cos(kF∆)−

−2kFRc cos(2kFRc) sin(kF∆)) . (12)

For ∆ = 0, this equation reduces to eq. (4). In the limit of strong roughness, ∆ À 1/kF,
both eq. (10) and eq. (12) yield a reduction of the effective moment by a factor of order
1/kF∆. However, when the roughness involves only a few atomic layers then the net RKKY
interaction is only moderately reduced. This is in agreement with numerical calculations by
Altbir et al. [4].

Discussion and conclusions. – The question arises to what extent other interactions, such as
magnetostatic interactions, are able to suppress RKKY interactions on a macroscopic scale [4-
6]. This refers, in particular, to the question of spin-glass ordering in nanocomposites exhibiting
giant magnetoresistance [7]. As a rule, the electrostatic nature of exchange interactions ensures
that the RKKY interactions dominate on an atomic scale, for example in spin glasses. Both
RKKY and magnetostatic interactions scale as 1/R3

0, so that the net interaction strengths
are given by the effective moments. In the magnetostatic case, the moments scale as R3

c ,
where Rc is the particle radius. Since the effective moments considered here scale as Rc (or at
most as R2

c), there is a transition radius Rt above which magnetostatic interactions dominate.
According to the present calculations, Rt is of order 1 nm, which is comparable with numerical
results according to which RKKY interactions and magnetostatic dipole interactions are of
equal strengths for clusters of about 100 Co atoms [4]. This transition is also important in
the context of future high-density recording media, where long-range interactions may have a
deteriorating effect on the storage density and must be analyzed properly.

In conclusion, the present calculations show that the RKKY interaction between well-
separated nanoclusters of arbitrary shapes can be mapped onto an RKKY interaction of
point-like moments characterized by an effective spin moment meff . An explicit expression for
the effective moments is derived, and it is shown that the effective moments exhibit a generally
oscillating dependence on the particle’s size, shape, and orientation. Surface roughness tends
to yield a moderate reduction of effective RKKY moments.
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