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Microarray is an important technology which enables people to investigate the expression

levels of thousands of genes at the same time. One common goal of microarray data analysis

is to detect differentially expressed genes while controlling the false discovery rate. This dis-

sertation consists with four papers written to address this goal. The dissertation is organized as

follows: In Chapter 1, a brief introduction of the Affymetrix GeneChip microarray technology

is provided. The concept of differentially expressed genes and the definition of the false discov-

ery rate are also introduced. In Chapter 2, a literature review of the related works on this matter

is provided. In Chapter 3, a t-mixture model based method is proposed to detect differentially

expressed genes. In Chapter 4, a t-mixture model based false discovery rate estimator is pro-

posed to overcome several problems of the current empirical false discovery rate estimators. In

Chapter 5, a two-step false discovery rate estimation procedure is proposed to correct the over-

estimation of the false discovery rate caused by differentially expressed genes. In Chapter 6, a

novel estimator is developed to estimate the proportion of equivalently expressed genes, which

is an important component of the false discovery rate estimators. In Chapter 7, a summary of

the dissertation will be given along with some possible directions for the future work.
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CHAPTER 1

INTRODUCTION

1.1. Background

Gene expression is an important process in molecular biology. When the DNA sequences

in a gene are transcribed into mRNA, this gene is said to be ”expressed”, and the concentration

of mRNA is called the ”expression level” of this gene. Gene expression profiling has proved to

be helpful in many areas, such as understanding the global cellular function and the molecular

mechanisms underlying certain biological processes. For example, we know that the growth,

division, and death of a cell are all controlled by the genes in the cell. When some genes

do not function properly, the cell growth may get out of control, which may lead to cancer.

Interestingly, those cancer-related genes often have different expression levels in cancer cells

compared to healthy cells. Hence, if we can detect differentially expressed (DE) genes between

cancer and healthy cells, those detected genes are associated with the cancer.

Before microarray technology was invented, scientists can only study one or maybe a few

genes at a time. Since the number of genes in a living organism is usually huge, it would take

a very long time to investigate all of them. Microarray technology makes it possible to monitor

the expression levels of thousands of genes simultaneously. Currently, the most commonly used

microarray technology is Affymetrix GeneChip System, which usually consists of a microar-

ray chip, a hybridization oven, a fluidics station, a scanner, and a computer workstation. An

Affymetrix microarray chip is a microscope slide on which every gene is represented by a probe



set of 10 - 25 oligonucleotide pairs (probe pairs). For every probe pair, there is one oligonu-

cleotide perfectly matching (PM) to the gene sequence and the other oligonucleotide mismatch-

ing (MM; same as PM but with a single homomericbase change for the middle base) to the gene

sequence. The purpose of including a mismatching probe is to determine the impact of back-

ground and nonspecific hybridization. Once the microarray chips have been obtained, the next

step is to prepare biotin-labeled RNA samples from the tissue. Then the biotin-labeled RNA is

hybridized to the microarray chip in a hybridization oven. After that the hybridized microarray

chip will be washed and stained with one kind of fluorescence called phycoerythrin-conjugated

streptavidin in the fluidics station. At last, the stained microarray chip will be scanned in the

GeneChip scanner.

From the output image of the scanner, the color intensities for both probes (PM and MM) in

each probe pair can be obtained. A weighted average of all the probe pair differences (PM-MM)

in a probe set will be computed as the signal for that probe set, which is also the signal for the

corresponding gene of that probe set. After the signals of all the genes have be obtained, the

data will be saved as a *.CEL data file.

The procedure described above is for a single microarray experiment. In practice, we al-

ways need to repeat a microarray experiment several times to get valid statistical inferences.

For multiple microarray experiments, normalization is necessary to correct the technical or bi-

ological variations among different experiments such as cross-hybridization. One widely used

normalization method is called Robust Multichip Average (RMA; Irizarry et al. (2003)), which

consists of three steps: background correction, quantile normalization and expression calcula-

tion. After the normalization process, the final microarray data from multiple experiments can



be summarized as an expression level matrix. Every row represents a gene, every column rep-

resents an microarray experiment (replicate), and every entry is the corresponding expression

level. Due to the expense of a microarray experiment, the number of replicates is typically

small.

1.2. Problem Statement

A common goal of analyzing microarray data is to detect genes with differential expression

under two conditions. In other words,

Definition 1.1. Yij is the expression of gene i in experiment j (i = 1, 2, ..., n; j = 1, ..., j1,

j1+1,..., j1+j2=J), and the first j1 and last j2 experiments are obtained under the two different

conditions. E(Yij) = µi1 if j ≤ j1; E(Yij) = µi2 if j > j1.

For every gene i, the null hypothesis is H0 : µi1 = µi2 and the alternative hypothesis is

H1 : µi1 6= µi2 given Definition 1.1. As we can see, microarray data analysis is basically a

multiple hypothesis testing problem with a large number of hypotheses and a small number of

replicates. Hence, regular method such as two sample t-test is not appropriate here because of

the lack of statistical power.

Controlling family-wise error rate (FWER) with Bonferroni adjustment is a common prac-

tice in regular multiple hypothesis testing problems. For example, if the number of genes is n

and the genome wide FWER is controlled at significance level α, then the Type I error rate for

an individual gene is controlled at α/n.

However, due to the large number of genes in microarray data, the false discovery rate

(FDR) introduced by Benjamini and Hochberg (1995) is now commonly used as the choice of

control criterion in microarray studies. Suppose Table 1.1 is the outcome of a microarray data



Table 1.1. Outcome of a microarray data analysis with n genes.

Accept Reject Total
Equivalently expressed (EE) genes TN FP n0

Differentially expressed (DE) genes FN TP n− n0

N P n

analysis, the FDR is defined as

FDR = E[
FP

P
],

where FP is the number of rejected EE genes, or false positive genes; and P is the total number

of significant genes.

It was shown in Storey and Tibshirani (2003) that the FDR can be approximated by

FDR ≈ E[FP ]

E[P ]
.(1.1)

Notice that the number of false positive genes (FP ) is the number of EE genes which are

falsely called positive. By definition,

(1.2) FP = n0 ∗ Type I error rate,

where n0 is the number of EE genes. In practice, both type I error rate and n0 need to be

estimated. As a result, (1.1) can be re-written as:

FDR ≈E[n0 ∗ Type I error rate]

E[P ]
(1.3)

=
(n0/n)E[n ∗ Type I error rate]

E[P ]

=
π0E[FP ∗]

E[P ]
,



where FP ∗ is the number of false positive genes when all genes are EE genes and π0 is the

proportion of EE genes. In (1.3), E[P ], E[FP ∗] and π0 all need to be estimated in practice.

It has been proved that in many cases controlling FDR is more appropriate compared to

controlling FWER. Because researchers usually need a big pool of candidate DE genes from

which they can choose the real DE genes based on biological justification, controlling FWER is

too strict for this purpose. In contrast, the FDR approaches typically rejects more null hypothe-

ses than the FWER approaches (Yekutieli and Benjamini (1999) and Benjamini and Yekutieli

(2001)).

To sum up, the major problem in microarray data analysis is how to detect DE genes and

control FDR. Numerous methods have been proposed on this subject. In Chapter 2, I will do a

literature review of the related works.

1.3. Research Objectives

In this dissertation, the following research objectives will be addressed:

(1) To develop a t-mixture model approach to detect DE genes (Chapter 3).

(2) To develop a t-mixture model based FDR estimator (Chapter 4).

(3) To develop a two-step procedure to improve the current permutation based FDR esti-

mator (Chapter 5).

(4) To develop a novel estimator of the proportion of EE genes (π0; (1.3)), an important

component in the FDR estimators. (Chapter 6).
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CHAPTER 2

LITERATURE REVIEW

2.1. Detecting DE genes

Microarray was first used for gene expression profiling in Schena et al. (1995). The sim-

plest method for detecting DE genes is the fold change method, which identifies a gene as DE

if the expression level difference between two conditions is greater than some cut-off. The

fold change method does not perform well because it ignores the different signal to noise ratio

among different genes. Hence, more advanced microarray analysis techniques have been de-

veloped. They can be organized into two categories: parametric methods and nonparametric

methods.

2.1.1. Parametric methods

One of the traditional parametric methods for detecting DE genes is the two sample t-test and its

variations. Thomas et al. (2001) proposed to calculate the Z-score of each gene, which is the

mean difference between two conditions divided by the pooled standard error of a gene, after

correcting the sample heterogeneity using a regression approach. After that, the corresponding

p-values are computed under asymptotic normality. Since the number of replicates is usually

small for microarray data, the asymptotic normality can be strongly violated.

Other parametric methods have also been proposed. Newton et al. (2001) derived a hier-

archical model for the gene expression levels. This model is based on the assumption that the



distribution of the mRNA intensity levels is Gamma. To identify the DE genes, the posterior

odds of change is calculated. A gene will be considered as DE if the odds is too big or too small.

Kerr et al. (2000) proposed to use an ANOVA (analysis of variance) model which includes

gene effect, array effect, their interaction effect. However, by using ANOVA, it implicitly as-

sumes equal variance among genes, which is not appropriate. In contrast, Smyth (2004)

constructed a linear model for the expression levels for every gene i. Suppose that Yij’s are

defined as in Definition 1.1, then The proposed model is

Yij = ai + bixj + eij,

where xj=0 when j ≤ j1; xj=1 when j > j1; var(eij) = σ2
i . The hypothesis now is to

test whether bi is significantly different from 0. The regular t statistic was used to test this

hypothesis:

ti =
b̂i

s̃i
√
vi
,

where b̂i is the least square estimate for bi; vi is some constant. s̃2
i is the estimator for σ2

i . In

regular linear models, the estimator for σ2
i is usually the mean square error s2

i . For microarray

data, the number of genes is so large that the information contained in other genes can be helpful

to get a better estimate of σ2
i . Hence, Smyth (2004) assumed a prior distribution on σ2

i

1

σ2
i

∼ 1

d0s2
0

χ2
d0
,

where d0 and s0 are constants. Then s̃2
i is calculated as the posterior mean for σ2

i . The imple-

mentation of this method can be found in Bioconductor package limma (Smyth (2005)).



Despite the simplicity, the above parametric methods all require strong model assumptions,

which are often violated in practice. To overcome the model dependence problem, numerous

nonparametric approaches of detecting significant DE genes have been proposed in the litera-

ture.

2.1.2. Nonparametric methods

The fundamental idea of the nonparametric methods is that, instead of obtaining the null dis-

tribution of the test statistic (denote by Z) from a known parametric distribution family, one

constructs a null statistic (denote by z) which has the null distribution of the test statistic.

Dudoit et al. (2002) used the Welch t statistic

Zi =
Yi(1) − Yi(2)√

s2
i(1)/j1 + s2

i(2)/j2
(2.1)

as the test statistic. Where the Yij’s are defined same as in Definition 1.1; Yi(1), Yi(2) and

s2
i(1), s

2
i(2) are the sample means and sample variances of the Yij’s under two conditions, re-

spectively. To get the null statistic z, Dudoit et al. (2002) permuted the J replicates and

computed the corresponding test statistic zbi for the bth permutation. Repeat this procedure for

B times, then B sets of null statistics z1
i , z

2
i , ..., z

B
i are obtained. With the null statistics, the

p-value for gene i can be calculated as:

pi =

∑B
b=1 I(|Zi| < |zbi |)

B
.(2.2)

Troyanskaya et al. (2002) compared three methods: a nonparametric t-test method with

test and null statistics same as in Dudoit et al. (2002), a Wilcoxon rank sum test method, and an



ideal discriminator method. It was shown in this paper that the Wilcoxon rank sum test method

is the most conservative among these three.

Tusher et al. (2001) proposed a method called Significance Analysis of Microarray (SAM),

which is one of the most popular methods in microarray analysis nowadays. In this paper, the

test statistic is define similarly as in (2.1):

Zi =
Yi(1) − Yi(2)√

(1/j1 + 1/j2)s2
i + s0

(2.3)

s2
i is the pooled variance, and s0 is a fudge factor used in SAM to minimize the coefficient

of variation. The corresponding null statistics zbi is computed in a similar way as in Dudoit

et al. (2002), but using within condition permutation. To detect DE genes, all genes are

ranked by the magnitude of their Zi so that Z(1) is the largest test statistic and Z(i) is the ith

largest test statistic. For bth set of null statistics, the same procedure is applied so that zb(i)

is the ith largest null statistic in bth set. The expected relative difference is then defined as

zE(i) =
∑B

b=1 z
b
(i)/B. After that, a scatter plot of Z(i) vs. zE(i) is plotted. In the scatter plot, some

points are displaced from the Z(i) = zE(i) line with a distance greater than pre-specified threshold

∆. The corresponding genes will be identified as DE genes.

Broberg (2003) used a similar test statistic Zi as SAM. However, unlike in SAM, here s0

was selected to minimize the number of false positive genes for a given significance level α.

Another well accepted method is the Empirical Bayesian (EB) method proposed in Efron

et al. (2001). The test statistic Zi and null statistic zi in this paper are computed similarly as in

Tusher et al. (2001). They then construct a mixture model for the test statistic:

f(z) = p0f0(z) + p1f1(z).



In the equation above, p0=Prob(A gene is EE) is to be estimated; p1=Prob(A gene is DE); f0(z)

is the density for the test statistics of EE genes, which is also the null density; f1(z) is the

density for the test statistics of DE genes. f0(z) and f1(z) cannot be estimated directly but their

ratio can be estimated. Using Bayes rule, we can get the posterior probability that a gene is DE

given test statistic Z:

p1(z) = 1− p0f0(z)/f(z).

The ratio f0(z)/f(z) can be estimated by logistic regression and p0 can be estimated by its

upper bound minzf0(z)/f(z). In this way, the posterior p-value Prob(gene is DE|Z) can be

computed for every gene.

McLachlan et al. (2005) also proposed a method based on mixture model. They first

transformed the test statistics into standardized z scores. Then they fitted a normal mixture

model on the transformed z scores. Using the fitted density, the posterior p-value’s can be

computed as in Efron et al. (2001).

Pan et al. (2003) suggested using the test statistic Zi as in (2.1) and null statistic same as in

SAM:

zi =
dYi(1)/j1 − dYi(2)/j2√
s2
i(1)/j1 + s2

i(2)/j2
,(2.4)

where dYi(1) =
∑j1/2

j=1 Yij −
∑j1

j=j1/2+1 Yij , dYi(2) =
∑j1+j2/2

j=j1+1 Yij −
∑j1+j2

j=j1+j2/2+1 Yij , and s2
i(1),

s2
i(2) are the sample variances of the Y ′ijs under the two conditions.

Under the normality assumption, the numerator and the denominator of Zi in in (2.1) are

independent. However, this independence does not hold for zi in (2.4). This shows that the



distribution of zi is not the same as the null distribution of Zi (Zhao and Pan (2003)). There-

fore, zi is not the null statistic of Zi. Zhao and Pan (2003) and Pan (2003) proposed several

modifications to fix this problem. They proposed to divide the replicates of each gene under the

same experimental condition into two parts. The following are their latest version of the test

statistic and its null statistic (Pan (2003)):

Z1 =
Y 11+Y 12

2
− Y 21+Y 22

2√
s211/j11+s212/j12

4
+

s221/j21+s222/j22
4

,(2.5)

z1 =
Y 11−Y 12

2
+ Y 21−Y 22

2√
s211/j11+s212/j12

4
+

s221/j21+s222/j22
4

,(2.6)

where j11 = j12 = j1/2 if j1 is even, and j11 = j12− 1 = (j1− 1)/2 if j1 is odd. j21 and j22 are

similarly defined. The statistics (Y 11, s
2
11),(Y 12, s

2
12), (Y 21, s

2
21),(Y 22, s

2
22) are the sample mean

and variances of the four partitions of the replicates of each gene under the two experimental

conditions. Those four partitions are (Yij, j = 1, ..., j11) and (Yij, j = j11 + 1, ..., j1) from

condition 1; (Yij, j = j1 + 1, ..., j1 + j21) and (Yij, j = j1 + j21 + 1, ..., j1 + j2) from condition

2. For simplicity, the gene index i has been dropped in (2.5) and (2.6).

Further improvements on the construction of the test and null statistics have been developed

in (Zhang , 2006). Realizing the need to pool the sample variances under the same experimental

condition, Zhang (2006) proposed the following test statistic and null statistic:

Z1 =
Y 11+Y 12

2
− Y 21+Y 22

2√
1

j11
+ 1

j12

4
s2
1 +

1
j21

+ 1
j22

4
s2
2

,(2.7)



z1 =
Y 11−Y 12

2
+ Y 21−Y 22

2√
1

j11
+ 1

j12

4
s2
1 +

1
j21

+ 1
j22

4
s2
2

,(2.8)

where jjk, Y jk (i, k= 1, 2) are defined the same as in Pan’s statistics, and

s2
1 =

∑j11
j=1(Yij − Y 11)

2 +
∑j1

j=j11+1(Yij − Y 12)
2

j1 − 2 + I(j1 = 2)
,

s2
2 =

∑j1+j21
j=j1+1(Yij − Y 21)

2 +
∑j1+j2

j=j1+j21+1(Yij − Y 22)
2

j2 − 2 + I(j2 = 2)

are the two pooled sample variances from the replicates under each condition. It was demon-

strated in Zhang (2006) that the test and null statistics (2.7) and (2.8) provide improvements

over (2.5) and (2.6).

Suppose the density functions of z1 and Z1 from (2.5) and (2.6) are respectively f0 and f .

Pan (2003) used a normal mixture model method (MMM) to estimate f0:

f0(z;ψg) =

g∑
i=1

πiφ(z;µi,Σi),(2.9)

where φ(.;µi, Vi) denotes the normal density function with mean µi and variance Σi, and π′is

are mixing proportions, g is the number of components, which can be selected adaptively. ψg

denotes all the unknown parameters (πi, µi,Σi)|i = 1, ...g. Similarly, f can also be fitted by a

normal mixture model. After f and f0 are fitted, for any given Z1, Pan et al. (2003) used a

likelihood ratio test statistic LR(Z1) = f0(Z
1)/f(Z1) to test for DE genes. When LR(Z1) is

less than a certain value c, the gene will be identified as DE. The cut-off point c is determined



such that:

α

n
=

∫
LR(z)<c

f0(z)dz,(2.10)

where α is the genome-wide significance level, and α/n is the gene-specific significance level

under Bonferroni adjustment to multiple comparison.

2.2. Estimating FDR

Like any hypothesis testing problem, a microarray data analysis method needs to control

the Type I error rate. As mentioned before, the FDR is now a common choice of the control

criterion. One type of FDR is called the “local false discovery rat”, which is just the posterior

probability of a gene being EE (Newton et al. (2001), Smyth (2004), Efron et al. (2001),

McLachlan et al. (2005)). Efron et al. (2001) proved that the local FDR will converge to the

regular FDR in (1.1) when the number of genes goes to infinity.

For the regular FDR, E(P ) in (1.3) is usually estimated by the number of significant genes.

Hence, the number of false positive genes when all genes are EE (FP ∗ in (1.3)) and the propor-

tion of EE genes (π0 in (1.3)) are two key components left to be estimated.

2.2.1. Estimating the number of false positive genes when all genes are EE

The most commonly used method of estimating FP ∗ is the permutation method. Suppose the

test statistic is Zi, i = 1, ..., n; the null statistic is zbi for the bth set of permutations, b = 1, ..., B;

and the rejection region is R, which means for gene i, Zi ∈ R ⇒ gene i is DE, then the



permutation method will estimate FP ∗ as

F̂P ∗ =
#(zbi : zbi ∈ R)

B
.(2.11)

Most of the methods estimate FP ∗ using this permutation method. In SAM (Tusher et al.

(2001)), the number of false positive genes in each permutation was computed by counting

the number of genes exceeding the cut-off distance ∆, and the final estimate of FP ∗ was the

average number of false positives genes in all B permutations. Broberg (2003) used the same

method to estimate FP ∗. In Pan (2003), after the cut-off c in (2.10) is determined, the number

of false positive gene is estimated as

F̂P ∗ =
#(zbi : LR(zbi ) < c)

B
,(2.12)

where LR(zbi ) is defined in the same way as in (2.10). As we can see, (2.12) follows exactly the

same idea in (2.11).

In Storey and Tibshirani (2003), a similar method as Pan (2003) is used to estimate FP ∗.

The only difference is that in Storey and Tibshirani (2003), instead of using the likelihood ratio,

the authors compared the absolute value of zbi with some cut-off.

Although the permutation method has been widely accepted, A number of papers has dis-

cussed the correction of the overestimation problem of the permutation method. Pan (2003),

Zhao and Pan (2003), Guo and Pan (2005) and Zhang (2006)) all proposed modified test and

null statistics to address this problem. Xie et al. (2005) used another way to solve the overesti-

mation problem. In their paper, they used one condition microarray data for illustration, which

can easily be extended to the two conditions situation. Similarly as in Definition 1.1 except

there is only one condition, suppose Yij is the expression level for gene i in array j, which has



mean µi and variance σ2
i . The null hypothesis is H0 : µi = 0. Define the Bernoulli variable Bij:

Bij = 1 with probability 0.5 and Bij = −1 with probability 0.5. Then Wij = BijYij is the gene

expression levels after permutation. Xie et al. (2005) derived the mean and variance of Wij as

E(Wij) =E(Bij)E(Yij) = 0

var(Wij) =E(var(BijYij | Bij)) + var(E(BijYij | Bij))

=σ2
i + µ2

i

Hence, for all genes, the permuted gene expression level always has mean 0. However, for

DE genes (µi 6= 0), the variance of the permuted expression levels is bigger than the original

variance. Subsequently, their paper showed that the over-estimation of FDR is caused by the fact

that the distribution of null statistics generated from the permutation method is more dispersed

than the true null distribution of the test statistics. To solve the problem, they proposed to

exclude the predicted DE genes from the estimation of FDR.

2.2.2. Estimating the proportion of EE genes (π0)

A number of methods have been proposed to estimate π0 and most of them are based on the

distribution of p-values under the null hypothesis. For gene i, the null hypothesis is that gene

i is EE, and a p-value (pi) is computed. Notice that the p-values of EE genes are uniformly

distributed and denote the distribution of p-values of DE genes by h1(p). It is reasonable to

model the overall p-values as a mixture distribution with two components (McLachlan and

Peel, 2000):

(2.13) h(p) = π0 ∗ 1 + (1− π0)h1(p).



In Pounds and Morris (2003), the authors proposed a method called BUM using a beta-

uniform mixture distribution to approximate h(p). Then they estimated π0 as π̂0 = ĥ(1), which

assumed h1(1) = 0 and is an upper bound of the true π0.

Langaas and Lindqvist (2005) adopted the same assumption but used nonparametric maxi-

mum likelihood method to estimate ĥ(p).

SPLOSH (Pounds and Cheng (2004)) uses a local regression technique (LOESS; Cleveland

and Devlin (1988)) to fit h(p) and gives π̂0 = minpĥ(p) as the estimator, which is still an upper

bound.

Storey and Tibshirani (2003) proposed the QVALUE method. Given a tuning parameter λ,

QVALUE estimates π0 by

π̂0(λ) =
#(pi > λ)

n(1− λ)
.

It can be proved that π̂0(λ) → ĥ(1) as λ → 1 (Dalmasso et al. (2005)), so QVALUE also

overestimates π0 like BUM and SPLOSH.

All these estimators work well if the following assumption holds: few p-values of DE genes

are close to 1. Otherwise, if this assumption is strongly violated which will happen when DE

and EE genes are not well separated, all of them will tend to overestimate. There are other

methods not requiring this assumption. Allison et al. (2002) proposed a parametric method

to estimate π0. Dalmasso et al. (2005) proposed the LBE method based on the moments of

p-values, which also only gives an upper bound of π0. More recently, Lai (2007) proposed a

moment based method which requires no distribution assumption. Unfortunately, his method

only works well when there are enough replicates (>8).



As we can see from above, the commonly used π0 estimators BUM, SPLOSH, QVALUE

and LBE are all actually upper bounds of π0.

Most of the current π0 estimators are based on p-values because a p-value is a unified mea-

surement of significance. However, as a result of using p-values, we may lose some nice proper-

ties, such as the symmetry and unimodality of the original test statistics from which the p-values

are computed. As we know, the commonly used test statistics are t-type statistics, which are

generally symmetrically distributed and the use of symmetry can be helpful in estimation of π0.

In an interesting paper, Bordes et al. (2006) proposed a nonparametric method to estimate

the parameters in a two component mixture model with an unknown component, assuming the

unknown distribution is symmetric. The authors also tried to apply this method to microarray

data by fitting a similar model as (2.13) to test statistics. Since the t-type test statistics (without

absolute value) for upregulated and downregulated DE genes obviously have different distribu-

tions, they cannot be modeled into one component. Hence, the authors constructed an F -type

test statistic and assumed that it has a symmetric density. However, assuming an F -type test

statistic to be symmetrically distributed is obviously not a reasonable assumption.
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CHAPTER 3

THE T -MIXTURE MODEL APPROACH FOR DETECTING

DIFFERENTIALLY EXPRESSED GENES IN MICROARRAYS

The finite mixture model approach has attracted much attention in analyzing microarray

data due to its robustness to the excessive variability which is common in the microarray data.

Pan et al. (2003) proposed to use the normal mixture model method (MMM) to estimate the

distribution of a test statistic and its null distribution. However, considering the fact that the

test statistic is often of t-type, our studies find that the rejection region from MMM is often

significantly larger than the correct rejection region, resulting an inflated type I error. This

motivates us to propose the t-mixture model (TMM) approach. In this chapter, we demonstrate

that TMM provides significantly more accurate control of the probability of making type I

errors (hence of the familywise error rate) than MMM. Finally, TMM is applied to the well-

known leukemia data of Golub et al. (1999). The results are compared with those obtained

from MMM.

3.1. Introduction

The use of microarray technology makes it possible to monitor the expression levels of

thousands of genes simultaneously. A common goal of analyzing the genomewide expression

data generated from this technology is to detect genes with differential expression under two

conditions. Now, as the cost of microarray experiments keeps decreasing, replicated microarray



experiments are feasible. The replicated measurements of expression levels form the basis of

the methods in this chapter.

In recent years, numerous nonparametric approaches for detecting significantly differen-

tially expressed (DE) genes have been proposed in the literature (Efron et al. (2001); Tusher

et al. (2001); Pan et al. (2003); Zhang (2006)), among others. In these nonparametric meth-

ods, the null distribution (the distribution of the test statistic for equivalently expressed (EE)

genes) is estimated directly from the repeated measurements of gene expression levels under

each condition.

In the mixture model method (MMM; Pan et al. (2003)), finite normal mixture models

are used to estimate the distribution of the test statistic and the null distribution. However,

noticing the fact that both the test and null statistics are usually heavy-tailed in practice, it is

more natural to view them as the observations from a mixture of the t distributions. As pointed

out in McLachlan and Peel (2000), the estimates of the component means and variances can be

affected by observations that are atypical of the components in a finite normal mixture model.

As a result, MMM may underfit the true underlying densities and produce critical values too

small in absolute values. If the significance level approach is used, this will produce inflated

type I error rates and lead to inflated familywise error rate (FWER).

To avoid the underfit problem of the MMM, some alternatives have been proposed in the

literature (Allison et al. (2002); McLachlan et al. (2005)). The t-mixture model (TMM) ap-

proach has been proposed as a heavy-tailed alternative to the normal mixture model by McLach-

lan et al. (2002) for clustering the microarray-expressed data. However, the use of the TMM

for the detection of DE genes was not discussed in their paper. In this chapter, we propose to

use the TMM approach to estimate the distributions of the test statistic and its corresponding



null distribution. Following the lines of Pan et al. (2003), the null distribution is estimated

from the permuted sets of null scores. We will show that the TMM can adapt to the atypical

observations better than the MMM and provide more accurate critical values. In addition, our

simulations show that no obvious improvement can be made by applying the TMM on more

than one permuted set of null scores. Finally, we further illustrate the difference between the

TMM and MMM by applying them to the leukemia data of Golub et al. (1999).

3.2. Methods

3.2.1. The test statistic and the null statistic

Suppose that Yij is the expression level of gene i in array j (i = 1, 2, ..., n; j = 1, ..., j1, j1+1,...,

j1+j2), and the first j1 and last j2 arrays are obtained under the two different conditions. A

general statistical model is

(3.1) Yij = ai + bixj + εij

where xj = 1 for j ≤ j1 and xj = 0 for j > j1. So, testing whether the mean expression levels

under the two conditions is equivalent to testing the following hypothesis: H0 : bi = 0 against

H1 : bi 6= 0.

The standard two sample t-statistic for testing this hypothesis is:

(3.2) Zi =
Y i(1) − Y i(2)√
s2
i(1)/j1 + s2

i(2)/j2
,



where Y i(1),Y i(2) and s2
i(1), s

2
i(2) are the sample means and sample variances of the Yij’s under

two conditions, respectively. Under the normality assumption of Yij , the null distribution of Zi

is approximately t-distributed.

However, when the normality assumption is violated, the use of the t distribution is not

appropriate. A class of nonparametric statistical methods has been proposed to overcome this

problem. The basic idea of the nonparametric methods is to estimate the null distribution of the

test statistic Z by treating the values of the test statistic, when being applied to the permuted

microarray data, as the true null scores one would expect from EE genes. However, recent

research reveals that such practice is problematic. Zhao and Pan (2003) showed that one needs

to modify the test statistic Z and construct its corresponding null statistic such that the null

statistic, when being applied to the permuted microarray data, provides the correct null scores.

Several methods for constructing the test statistic and the null statistic were proposed in Zhao

and Pan (2003). However, it was pointed out in Pan (2003) that the methods of Zhao and Pan

(2003) are quite restrictive. For example, it requires an even number of observations under each

experimental condition. Improvements over Zhao and Pan (2003) were made in Pan (2003) in

which he proposed the following test statistic and its corresponding null statistic:

(3.3) Z1 =
Y 11+Y 12

2
− Y 21+Y 22

2√
s211/j11+s212/j12

4
+

s221/j21+s222/j22
4

,

(3.4) z1 =
Y 11−Y 12

2
+ Y 21−Y 22

2√
s211/j11+s212/j12

4
+

s221/j21+s222/j22
4

,



where j11 = j12 = j1/2 if j1 is even, and j11 = j12− 1 = (j1− 1)/2 if j1 is odd. j21 and j22 are

similarly defined. The statistics (Y 11, s
2
11),(Y 12, s

2
12), (Y 21, s

2
21),(Y 22, s

2
22) are the sample mean

and variances of the four partitions of the replicates of each gene under the two experimental

conditions. Noticing the fact that the observations under the same condition are from the same

population, Zhang (2006) provided an improved version of the above test statistic and null

statistic:

(3.5) Z1 =
Y 11+Y 12

2
− Y 21+Y 22

2√
1

j11
+ 1

j12

4
s2
1 +

1
j21

+ 1
j22

4
s2
2

,

(3.6) z1 =
Y 11−Y 12

2
+ Y 21−Y 22

2√
1

j11
+ 1

j12

4
s2
1 +

1
j21

+ 1
j22

4
s2
2

,

where Y jk (i, k= 1, 2) are defined the same as in (3.3) and (3.4), and

(3.7) s2
1 =

∑j11
j=1(Yij − Y 11)

2 +
∑j1

j=j11+1(Yij − Y 12)
2

j1 − 2 + I(j1 = 2)

(3.8) s2
2 =

∑j1+j21
j=j1+1(Yij − Y 21)

2 +
∑j1+j2

j=j1+j21+1(Yij − Y 22)
2

j2 − 2 + I(j2 = 2)

are the two pooled sample variances from the replicates under each condition.

3.2.2. The t-mixture model

In the MMM, Pan et al. (2003) used a normal mixture model to estimate the density functions of

Z1 and z1 defined by (3.3) and (3.4) and denoted them by f and f0, respectively. As mentioned

in the Section 3.1, it is more reasonable to view the test and null statistics as the observations



from a t-mixture model. In the TMM, it is assumed that the data are from several components

with distinct t-distributions. That is, both f and f0 are considered to be a mixture of the t

distributions with probability density function:

(3.9) h(z;ψg) =

g∑
i=1

πiϕ(z;µi,Σi, νi),

where ϕ(z;µi,Σi, νi) denotes the t distribution density function with mean µi, variance Σi,

and degrees of freedom νi. The coefficients πi’s are the mixing proportions and g is the num-

ber of components, which can be selected adaptively. ψg denotes all the unknown parameters

(πi, µi,Σi, νi)|i = 1, ...g in (3.9).The TMM is fitted by maximum likelihood using an expec-

tation conditional maximization (ECM) algorithm (Liu and Rubin (1995)). In the ECM algo-

rithm, ψg is partitioned as (ψT1 , ψ
T
2 ), with ψT1 = (πi, µi,Σi|i = 1, ...g) and ψT2 = (νi|i = 1, ...g).

Given n p-dimension observations yj, j = 1, ...n, on the (k + 1)th iteration of the ECM algo-

rithm, the estimates of all the parameters are updated in two steps:

(1)

π
(k+1)
i =

n∑
j=1

τ
(k)
ij /n,

µ
(k+1)
i =

n∑
j=1

τ
(k)
ij u

(k)
ij yj/

n∑
j=1

τ
(k)
ij u

(k)
ij ,

Σ
(k+1)
i =

∑n
j=1 τ

(k)
ij u

(k)
ij (yj − µ(k+1)

i )(yj − µ(k+1)
i )T∑n

j=1 τ
(k)
ij

,

where

τ
(k)
ij =

π
(k)
i ϕ(yj;µ

(k)
i ,Σ

(k)
i , ν

(k)
i )∑g

i=1 π
(k)
i ϕ(yj;µ

(k)
i ,Σ

(k)
i , ν

(k)
i )

,



and

u
(k)
ij =

ν
(k)
i + p

ν
(k)
i + (yj − u(k)

i )TΣ
(k)
i

−1
(yj − u(k)

i )
.

(2) Find ν(k+1)
i as a solution of the equation:

−digamma(
νi
2

) + log(
νi
2

) + 1

+
1∑n

j=1 τ
(k+1/2)
ij

n∑
j=1

τ
(k+1/2)
ij (log(u

(k+1/2)
ij )− u(k+1/2)

ij )

+digamma(
νi(k) + p

2
)− log(

νi(k) + p

2
) = 0

where

τ
(k+1/2)
ij =

π
(k+1)
i ϕ(yj;µ

(k+1)
i ,Σ

(k+1)
i , ν

(k)
i )∑g

i=1 πi(k + 1)ϕ(yj;µ
(k+1)
i ,Σ

(k+1)
i , ν

(k)
i )

,

and

u
(k+1/2)
ij =

ν
(k)
i + p

ν
(k)
i + (yj − u(k+1)

i )TΣ
(k+1)
i

−1
(yj − u(k+1)

i )
.

At convergence, we obtain ψ∞g as the maximum likelihood estimate. Since the ECM may give

local maxima instead of global maxima, it is desirable to run this algorithm multiple times with

different initial values and choose the estimates corresponding to the largest likelihood.

Another issue with the TMM is the determination of the number of components g. Here, we

select the Bayesian Information Criterion (BIC) as the model selection criterion:

BIC = −2log(h(z; ψ̂g)) + tglog(n),

where h(z; ψ̂g) is defined in (3.9), and tg is the number of independent parameters in the prob-

ability density function.



Due to the fact that the values of the test and null statistics in microarray analysis are usually

heavy-tailed, we expect to see better performance of the TMM than the MMM when the given

significance level is very small. We will verify this in the next section.

3.3. Results

3.3.1. Simulated data

Simulation set-ups To study the control of the type I error by MMM and TMM, we first consider

the situation in which the null hypothesis holds. In this case, the expression levels of genes

under the two experimental conditions are drawn from the same distribution. Two types of

distributions are used: the standard normal and the t distribution with df = 3, representing

the most commonly used distribution and a heavy-tailed distribution, respectively. The sample

sizes are j1 = 4 and j2 = 4 for each gene, reflecting small sample sizes which are common in

many microarray experiments. Here are the steps of the simulations.

(1) For each distribution, 10,000 genes are generated.

(2) We estimate f0 with both the TMM and MMM. Only f0 is considered in this chapter

because the simulated data under the two conditions are from the same distribution.

(3) For each of the two estimates of f0, a rejection region z : |z| > z0 was established

such that P (|z| > z0) = α, where α is the given significance level. In our study, α=

0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001, 0.000005. Function uniroot( ) in R

(R Development Core Team (2008)) is used to find z0. In this way, we can get z0 = zT0

with f0 fitted by the TMM and z0 = zM0 with f0 fitted by the MMM. Finally, out of

all gene i (i = 1, ...10000), we counted the proportion of genes with a corresponding



|Zi| > zT0 and the proportion of genes with a corresponding |Zi| > zM0 , which are the

Type I error rates for the TMM and MMM, respectively.

We repeated Steps 1 - 3 using both z1 (Pan et al. (2003)) and z1 (Zhang (2006)) 100 times.

Table 3.1 summarizes the average type I error rates for the TMM and MMM. We find that the

MMM gives severely inflated type I error rates compared to the specified α when α is small and

the TMM gives more accurate estimates. However, for the set-up with the t distributed data,

we notice that when α is greater than 0.0001, the TMM is outperformed by the MMM, which

motivates us to see how well the TMM and MMM fit the null statistics by checking the QQ

plot between them. In Fig. 3.1, we can see that within a certain distance from 0, the TMM

has a greater departure from the reference line comparing to the MMM. This is why the TMM

gives higher false-positive rates and may even have larger variation for the false-positive rates

than the MMM. However, this problem of the TMM is limited to the case when the data are

from the t distribution and when the level of significance is relatively high. Hence, it is usually

not a problem for the analysis of microarray data. For example, if the genome-wide level of

significance is chosen as 0.01, the gene-specific level for a microarray data of 5,000 genes from

the Bonferroni correction is 0.01/5000(=0.000002), which is much smaller than 0.0001, below

which we found the TMM outperforms the MMM in our simulations. It can also be seen in

Figure 3.1 that, when it comes to the tail, the TMM tends to stay closer to the reference line, and

as the significance level decreases, its performance starts to improve and becomes significantly

better than the MMM.

Another important factor which may affect the performance of the TMM is the stability

of the estimates of the degree of freedoms. For the TMM, we found that the estimates of the

degrees of freedom for the t-distributed data are not very stable, from 2.83 to 13.00. This is part



Table 3.1. Comparison of the MMM and TMM in Type I error rates at given
gene specific levels of significance.

Gene- standard t
specific normal df=3

Model α Pan Zhang Pan Zhang
TMM 0.005 0.004988 0.004990 0.005962 0.006101
MMM 0.005105 0.005007 0.005049 0.005079

TMM 0.001 0.001049 0.001049 0.001589 0.00166
MMM 0.000990 0.000924 0.001135 0.001147

TMM 0.0005 0.000523 0.000523 0.000911 0.000946
MMM 0.000626 0.000569 0.000591 0.000589

TMM 0.0001 9.6e-05 9.6e-05 0.000246 0.000252
MMM 0.000264 0.00022 0.000221 0.000219

TMM 0.00005 4.2e-05 4.2e-05 0.00014 0.00014
MMM 0.000195 0.00016 0.000166 0.000165

TMM 0.00001 1e-05 1e-05 4.3e-05 4.1e-05
MMM 0.00012 9.4e-05 9.3e-05 9.2e-05

TMM 0.000005 6e-06 6e-06 2.7e-05 2.6e-05
MMM 9.8e-05 7.2e-05 7.6e-05 7.6e-05

of the reason why the TMM loses to the MMM when the levels of significance are relatively

high.

Table 3.2 is obtained under similar set-up as that of Table 3.1 except now only the standard

normal distribution is used. The purpose is to compare the performance of the TMM and MMM

with respect to using only one permuted set of null scores and using all possible permuted sets

of null scores (under the current setup, there are in total nine distinct permuted sets available).

As we can see from Table 3.2, the actual type I error rates from MMM are severely inflated

compared to the specified α values no matter how many permutations are there. In fact, there



are no significant differences between the results obtained from one set or nine sets of null

scores for both the TMM and MMM. However, using nine permutations will cost much more

computation time than just using one permutation.

We are also interested in the effect of the number of permutations in the presence of DE

genes. For this purpose, we generated a total of 5,000 genes among which 200 were DE genes.

The numbers of replicates under the two conditions are chosen as j1 = 4 and j2 = 6, respec-

tively. For the first 100 DE genes, the data under condition 1 are generated fromN(0, 1) and the

data under condition 2 are generated from N(3, 1). For the remaining 100 DE genes, the data

under condition 1 were generated from N(0, 1) and the data under condition 2 were generated

from N(−1, 1). The data for EE genes are generated from N(0, 1) under both conditions.

Same as Table 3.2, Table 3.3 shows the specified α levels and the observed Type I error

rates of the TMM and MMM. In this case, the results from the TMM also show little difference

between one set and thirty sets of null scores. However, there are significant changes in the

results of the MMM as the number of permutations changes. For example, when the specified

α is 0.00005, the observed type I error rate under one permutation is 0.00028 and is 0.00014

under thirty permutations. Although 0.00014 is still larger than 0.00005, it is much better than

0.00028; when the specified α is 0.00001, we have similar results. These results have two

important implications. One is that when there exist DE genes, permutations of the null scores

will help the MMM on fitting the heavy-tailed data. This is due to the over-dispersion of the

permuted null scores (Xie et al. (2005)). The results also show that the number of permutations

of null scores has little influence on the TMM, and the TMM performs consistently better than

the MMM. Hence, the TMM is resistent to the over-dispersion problem of the null scores. Due



to the above observations, we suggest using the TMM with just one permutation. In this way,

not only can we save a lot of computation time, but also we get better results.

Table 3.2. Comparison of the MMM and TMM in Type I error rates with respect
to different number of permuted sets of null scores when all the genes are EE.

Gene- One Nine
specific permutation permutations
α TMM MMM TMM MMM
0.005 0.00490 0.00521 0.00509 0.00511
0.001 0.00103 0.00077 0.00102 0.00086
0.0005 0.00048 0.00046 0.00049 0.00045
0.0001 0.00009 0.00015 0.00010 0.00017
0.00005 0.00005 0.00010 0.00006 0.00013
0.00001 0.00001 0.00009 0.00001 0.00008

Table 3.3. Comparison of the MMM and TMM in Type I error rates with respect
to different number of permuted sets of null scores and with the existence of DE
genes.

Gene- One Thirty
specific permutation permutations
α TMM MMM TMM MMM
0.005 0.00479 0.00489 0.00485 0.00515
0.001 0.00093 0.00110 0.00094 0.00094
0.0005 0.00053 0.00066 0.00050 0.00051
0.0001 0.00010 0.00035 0.00010 0.00021
0.00005 0.00003 0.00028 0.00003 0.00014
0.00001 0.00000 0.00016 0.00001 0.00005

3.3.2. Leukemia data

The leukemia data of Golub et al. (1999) is one of the most studied gene expression data set.

This data set includes 27 acute lymphoblastic leukemia (ALL) samples and 11 acute myeloid

leukemia (AML) samples for 7129 genes. The goal is to find genes with differential expression

between ALL and AML. Based on biological justification, Thomas et al. (2001) analyzed this



data set and identified 50 genes as the most expressed and related genes to the disease, including

25 most expressed genes for AML and 25 for ALL.

At each given genome-wide significance level α, we computed the cut-offs zT0 for the TMM

and zM0 for the MMM. The Bonferroni method was used to adjust for multiplicity of the tests.

Then, we calculated the test scores Zi of the leukemia data and found the genes with |Zi| > zT0

for the TMM and |Zi| > zM0 for the MMM. These genes are the predicted DE or significant

genes. Finally, we examined the predicted DE genes to see which method contains more genes

from the Thomas et al. (2001) list of DE genes.

The results from the comparison are summarized in Table 3.4. When the genome-wide level

α is 0.005, The TMM correctly identifies 35 out of 61 (53.38%) DE genes from the list while

the MMM correctly identifies 37 out of 85 (38.32%) DE genes. Table 3.4 shows that the TMM

consistently has a greater proportion of correctly identified genes than the MMM, which means

that the TMM always has a smaller false positive rate, regardless of the levels of significance.

Table 3.5 contains a list of the DE genes identified by both the TMM and MMM at α = 0.0005.

The p-values from Thomas et al. (2001) are given as the reference. As we expected, the MMM

always gives smaller p-values than the TMM does. In other words, the MMM tends to provide

smaller p-values due to its incapability to capture the true variability in the data and hence may

contain more false-positive rates than TMM at the same level of significance.

3.4. Discussion

We have proposed to use the TMM for detecting the DE genes in a microarray experiment.

Based on the simulation, the TMM can provide more accurate control of the probability of

type I error than the MMM. Because the main focus of this chapter is to introduce the TMM



Table 3.4. Comparison of the results from the TMM and TMM at given levels
of significance for the Leukaemia data.

Genome- Total Correctly Correctly
wide identified identified identified

Model α genes genes Proportion
TMM 0.05 130 42 0.3230
MMM 153 43 0.2810
TMM 0.01 77 37 0.4805
MMM 107 41 0.3832
TMM 0.005 61 35 0.5738
MMM 85 37 0.4353
TMM 0.001 37 27 0.7297
MMM 53 32 0.6038

Table 3.5. List of DE genes identified by both the TMM and MMM when
genome-wide significance level is 0.0005.

Gene description Probe p-value
Thomas et al. (2001) MMM TMM

Macmarcks HG1612–HT1612 <0.0001 2.57E-09 1.97E-07
Spectrin, alpha, nonerythrocytic 1 (alpha-fodrin) J05243 <0.0001 2.67E-05 1.93E-04
IEF SSP 9502 L07758 <0.0001 6.52E-07 1.11E-05
Crystallin zeta (quinone reductase) L13278 <0.0001 2.14E-05 1.63E-04
Inducible protein L47738 <0.0001 3.52E-07 6.99E-06
Oncoprotein 18 M31303 <0.0001 1.36E-05 1.14E-04
Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straight chain M91432 <0.0001 1.04E-07 2.84E-06
CyclinD3 M92287 <0.0001 6.49E-07 1.11E-05
MB-1 (CD79b) U05259 <0.0001 3.01E-06 3.55E-05
Cytoplasmic dynein light chain 1 U32944 <0.0001 3.17E-06 3.69E-05
Serine kinase SRPK2 U88666 <0.0001 2.94E-05 2.09E-04
Aldehyde reductase 1 X15414 <0.0001 1.23E-05 1.05E-04
Proteasome iota chain X59417 <0.0001 7.13E-08 2.15E-06
p48 X74262 <0.0001 1.40E-10 2.63E-08
Adenosine triphosphatase, calcium Z69881 <0.0001 9.46E-06 8.58E-05
Minichromosome maintenance deficient 3 D38073 <0.0001 5.54E-05 3.44E-04
Transcriptional activator hSNF2b D26156 <0.0001 3.32E-06 3.82E-05
C-myb U22376 <0.0001 4.01E-07 7.72E-06
Myosin light chain (alkali) M31211 <0.0001 4.26E-08 1.47E-06
Transcription factor 3 (E2A) M65214 <0.0001 1.20E-05 1.03E-04
Thymopoietin beta U09087 <0.0001 1.43E-05 1.19E-04
Transcription factor 3 (E2A) M31523 <0.0001 5.62E-06 5.73E-05
Fumarylacetoacetate M55150 <0.0001 2.37E-12 1.98E-09

approach, we only discussed the control of false-positive rates by controlling the FWER. FWER

can only provide control of the false-positive rates when no genes under consideration are DE.

Hence, such control only works fine when there are none or very few genes which are actually



DE among all the genes in consideration. In the situations that a relatively substantial amount

of genes are DE, more efficient control of the false positive rates can be achieved by controlling

the false discovery rate (Benjamini and Hochberg (1995); Storey and Tibshirani (2003)).

Another point we want to stress is our proposal to only use one set of the permuted null

scores when using the TMM. The current practice of the permutation-based methods often

suggests using all possible permutations (or a subset of it if the total number of available per-

mutations is too large). Such suggestions ignore the possible pitfalls which the correlated sets

of permuted null scores could cause when using a method such as the EM algorithm (Dempster

et al. (1977)) which requires i.i.d. observations. We believe that this proposal is important

because not only can it significantly save computation time, which is the major concern of the

finite mixture model approach, it can also avoid the problems caused by the use of the correlated

permuted sets of null scores.
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Figure 3.1. Plot of the comparison between TMM and MMM.
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CHAPTER 4

A MIXTURE MODEL BASED APPROACH FOR ESTIMATING THE

FDR IN REPLICATED MICROARRAY DATA

One of the most used methods for estimating the false discovery rate (FDR) is the permu-

tation based method. The permutation based method has the well-known granularity problem

due to the discrete nature of the permuted null scores. The granularity problem may produce

very unstable FDR estimates. Such instability may cause scientists to over- or under-estimate

the number of false positives among the genes declared as significant, and hence result in inac-

curate interpretation of biological data. In this chapter, we propose a new model based method

for estimating the FDR. The new method uses the t-mixture model which can model microar-

ray data better than the currently used normal mixture model. We will show that our proposed

method provides more accurate FDR estimates than the permutation based method and is free

of the problems of the permutation based FDR estimators. Finally, the proposed method is

evaluated using simulated and real microarray data.

4.1. Introduction

Genome-wide expression data generated from the microarray experiments are widely used

to uncover the functional roles of different genes, and how these genes interact with each other.

A key step to achieve this is to identify the differentially expressed (DE) genes under different

experimental conditions. Such information can be used to identify disease biomarkers that may

be important in the diagnoses of different types of diseases. Earlier statistical approaches for



detecting the DE genes focused mostly on parametric methods which are easily subject to model

misspecification problems. Some of the well-known parametric methods for detecting DE genes

include the two sample t-test (Long et al. (2001)), the analysis of variance approach (Kerr et al.

(2000)), a regression approach (Thomas et al. (2001)), the parametric EB methods (Newton

et al. (2001), Kendziorski et al. (2003)), and the linear model method ( Smyth (2004)). Re-

cently, the availability of replicated microarrays has made it possible to use the nonparametric

methods to detect the DE genes. The nonparametric methods require much less stringent dis-

tributional assumptions, and thus can provide more robust results than the parametric methods.

Some of the well-known nonparametric methods for analyzing microarrays include the Signif-

icance Analysis of Microarray (SAM) of Tusher et al. (2001), the nonparametric EB method

(Efron et al. (2001)), the non-parametric t-test with adjusted p-value (Dudoit et al. (2002)),

the Wilcoxon Rank Sum test (Troyanskaya et al. (2002)), samroc (Broberg (2003)) and the

normal mixture model method (MMM) of Pan et al. (2003).

In this chapter, we will focus our attention on SAM, one of the most popular methods in

microarray data analysis. SAM identifies DE genes by computing a modified t-statistic as the

test score of a gene and finding the genes with test scores exceeding an adjustable threshold.

The false discovery rate (FDR) was then estimated by a permutation based method. More

specifically, the number of false positive (FP) genes among the significant genes is estimated as

the median of the numbers of scores exceeding the cutoffs in each permuted set of null scores.

Since the permutation based approach estimates the FDR by counting the number of FP

genes exceeding some cutoffs, we will call it the empirical method in this chapter. Due to its

nature, there are two drawbacks with the empirical method: 1) the granularity problem – the

FDR estimates based on the counted number of FP genes tend to be unstable when the actual



number of FP genes is small; 2) the zero FDR problem – the estimated FDR may be zero when

the range of the permuted null scores is smaller than that of test scores and when the cutoffs are

more extreme than the endpoints of permuted null scores. These two drawbacks are illustrated

in the Figure 4.1, 4.2 and 4.3.

In this chapter, we will propose a t-mixture model based approach as an improvement of the

empirical FDR estimation method of SAM. Our method aims to solve the two aforementioned

drawbacks of the current empirical FDR estimation method: the granularity and the zero FDR

problems. The performance of our method is assessed by applying them to simulated and real

microarray data.

4.2. Methods

4.2.1. SAM

4.2.1.1. SAM algorithm. Let Yij be the expression levels of genes i under array j (i = 1, ..., n,j =

1, ..., j1, j1 + 1, ..., j1 + j2 = J), and the first j1 and last j2 arrays are obtained under two con-

ditions. We need to test if gene i has differential expressions under the two conditions.

In SAM, the test statistic is defined as:

Zi =
Yi(1) − Yi(2)√

(1/j1 + 1/j2)s2
i + s0

,

where Yi(1) and Yi(2) are the sample means under two conditions; s2
i is the pooled sample vari-

ance; s0 is the fudge factor. The null score zbi is then computed by applying the test statistic to

the b-th set of permuted data.

In the SAM manual (Chu et al), the following algorithm is given to detect DE genes. First,

all genes are ranked by the magnitude of their test scores Zi so that Z(1) is the largest test score



and Z(i) is the i-th largest test score. For the b-th set of null scores, the same procedure is

applied so that zb(i) is the i-th largest null score in the b-th set of null scores. The expected

relative difference is then defined as zE(i) =
∑B

b=1 z
b
(i)/B. After that, a scatter plot of Z(i) vs.

zE(i) is plotted. In the scatter plot, some points are displaced from the Z(i)= zE(i) line with a

distance greater than ∆, a pre-specified threshold. Zhang (2007) pointed out that the estimated

total number of significant (TS) genes and FP genes obtained using the SAM algorithm can be

written as:

(4.1) T̂ S = #{i;Z(i) > δU or Z(i) < δL},

and

(4.2) F̂P =
B∑
b=1

#{i; zb(i) > δU or zb(i) < δL}/B,

where δU and δL are the upper and lower cutoffs decided by the pre-specified threshold ∆. For

simplicity, we only consider symmetric cutoffs (|δU | = |δL|) in this chapter though extensions to

asymmetric cutoffs are straightforward. Under symmetric cutoffs, (4.1) and (4.2) can be written

as:

(4.3) T̂ S(δ) = #{i; |Z(i)| > δ}



(4.4) F̂P (δ) =
B∑
b=1

#{i; |zb(i)| > δ}/B

4.2.1.2. Empirical FDR estimator of SAM. Given a gene-specific significance level α ∈

(0, 1] and assume that we have obtained the p-values for all the genes under consideration, the

FDR proposed by Benjamini and Hochberg (1995) is defined as:

(4.5) FDR = E[
N(α)

TS(α)
],

where N(α) is the number of genes among the EE genes whose p-values are less than or equal

to α, and TS(α) is the number of genes among all the genes whose p-values are less than or

equal to α (or it is the total number of significant genes). Instead of controlling gene-specific

significance level α, SAM usually controls the total number of significant genes by setting a

corresponding cutoff δ, hence (4.5) can be re-written as:

(4.6) FDR = E[
N(δ)

TS(δ)
],

where N(δ) is the number of EE genes with |Zi| greater than δ, and TS(δ) is the total number

of genes with |Zi| greater than δ.

It was shown in Storey and Tibshirani (2003) that the FDR can be approximated by



(4.7) FDR ≈ E[N(δ)]

E[TS(δ)]
.

Since N(δ) is the number of false positives among the EE genes, denote the proportion of

EE genes by π0, (4.7) becomes

(4.8) FDR ≈ π0E[FP (δ)]

E[TS(δ)]
,

where FP (δ) is the number of FP if all the genes are EE. FP (δ)and TS(δ) can be estimated

by F̂P (δ) and T̂ S(δ) in (4.3) and (4.4), respectively. As a result, the empirical FDR estimator

of SAM is

(4.9) F̂DR =
π̂0F̂P (δ)

T̂ S(δ)
,

As mentioned before, this empirical FDR estimator of SAM has the granularity problem

and the zero FDR problem. In the following sections, we solve these problems by proposing a

model based FDR estimation method.



4.2.2. The t-mixture model (TMM) based FDR estimation approach

Let f be the probability density of the test score Zi and f0 be the density of null score zbi .

In the TMM, it is assumed that the data are from several components with distinguished t-

distributions. In other words, both f and f0 are considered to be a mixture of the t-distributions

with probability density function:

(4.10) h(z;ψg) =

g∑
i=1

πiϕ(z;µi,Σi, νi),

where ϕ(z;µi,Σi, νi) denotes the t distribution density function with mean µi, variance Σi,

and degrees of freedom νi. The coefficients πi are the mixing proportions and g is the number

of components, which can be selected adaptively. ψg denotes all the unknown parameters (πi,µi

, Σi , νi) |i = 1, ...g in (4.10). The mixture model is fitted by maximum likelihood using an

expectation conditional maximization (ECM) algorithm (Liu and Rubin (1995)). The final

model is selected based on the Bayesian Information Criterion (BIC). More details on how to fit

the TMM to microarray data can be found in Jiao and Zhang (2008a). It was reported in their

paper that not only does the TMM approach provide more accurate estimates of the densities,

but also it enjoys computational efficiency since it was demonstrated in Jiao and Zhang (2008a)

that one only needs to use one set of permuted null scores to fit the t-mixture model. More

specifically, instead of using all zbi ’s (size=n*B) to fit the t-mixture model, a random sample

with size n can be drawn from
⋃B
b=1

⋃n
i=1 z

b
i and used as the null statistics.

Since the test statistic Zi and the null statistic zi (because only one set of null scores is used

now, we will denote the null statistic as zi instead of zbi ) have the densities f and f0, respectively,



it is easy to see from (4.8) that

FDR ≈π0
E[FP (δ)/n]

E[TS(δ)/n]

=π0
E

∑n
i=1 I(|zi| ≥ δ)/n

E
∑n

i=1 I(|Zi| ≥ δ)/n

=π0
P (|z| ≥ δ)

P (|Z| ≥ δ)

=π0

∫
|z|≥δ f0(z)dz∫
|z|≥δ f(z)dz

,(4.11)

where δ is chosen such that a given number of significant genes is detected. Equation (4.11) can

be viewed as the model based formula of FDR.

Assume that we have available the estimators f̂ and f̂0 of f and f0 from the TMM, respec-

tively, then the corresponding model based FDR estimator for (4.11) is

(4.12) F̂DR1 =π̂0

∫
|z|≥δ f̂0(z)dz∫
|z|≥δ f̂(z)dz

,

The model based FDR estimator (4.12) has the following advantages compared to the em-

pirical FDR estimator of SAM:

1) It does not have the granularity problem of the empirical FDR estimator (4.9);

2) It provides non-zero FDR estimate for any δ, while (4.9) only provides non-zero FDR

when cutoffs are within the two endpoints of the range of the permuted null scores;

3) Unlike (4.9), the numerator and the denominator of (4.12) are not subject to the sampling

variability.



4.3. Results

4.3.1. Simulated data

In the simulation, j1 = j2 = 4 replicates and n =5000 genes are generated while 200 of them

are assumed to be differentially expressed. For the DE genes, the data under condition 1 are

generated from N(2,1) and the data under condition 2 are generated from N(0,1). The EE genes

are generated from N(0,1) regardless of the conditions. For the generated data, we calculate the

true FDR and estimated FDR for a grid of total number of significant genes ranging from 100 to

1 (in decreasing order). This procedure is repeated five times. Figure 4.1 shows comparisons of

true FDR, empirical FDR estimator F̂DR defined by (4.9), and the model based FDR estimator

F̂DR1 defined by (4.12).

As we can see, the instability of empirical F̂DR increases significantly as it decreases to

0, which shows its granularity problem. Another fact worth noticing is that F̂DR tends go to

zero faster than the true FDR, which is the zero FDR problem. It can be seen that the true FDR

strictly decreases as the total number of significant genes decreases. However, the empirical

F̂DR does not show this characteristic. In contrast, F̂DR1 captures the decreasing trend very

well and does not have the erratic jumps of F̂DR. To check how well these two FDR estimators

approximate the true FDR, we calculate the mean squared error for both of them. MSE for

F̂DR is 0.00045 and MSE for F̂DR1 is 0.00021, which shows that our method outperforms

the empirical method.

Next, we compare the performances of the two methods when the two populations for

the DE and EE genes are not so well separated. For this purpose, we conduct another sim-

ulation which tries to mimic the real data. The expression levels for the EE genes under



the two conditions are generated from N(µi1, σ
2
i ) and N(µi1, σ

2
i ) with µi1 = µi2 ∼ N(0, 2)

σ2
i ∼ Gamma(4, 2). The expression levels for the DE genes are generated similarly as the

EE genes, except that µi1 and µi2 are generated from N(0, 2) separately. In this case, the grid

of total number of significant genes ranges from 150 to 1 (in decreasing order). Comparison

results are displayed in Figure 4.2.

It is seen from Figure 4.2 that F̂DR is very unstable and approximates true FDR poorly,

which makes the estimates highly inaccurate. On the other hand, F̂DR1 has a much smoother

curve than F̂DR and seems to be able to capture the decreasing trend of the true FDR very

well. In addition, the fact that MSE for F̂DR is 0.025 and for F̂DR1 is 0.015 shows that our

method gives a significantly better fit to the true FDR.

4.3.2. Real data

The Leukemia data of Golub et al. (1999) is one of the most studied gene expression data

sets. This data set includes 27 acute lymphoblastic leukemia (ALL) samples and 11 acute

myeloid leukemia (AML) samples for 7129 genes. In Figure 4.3, we estimate the FDR for

different number of significant genes using both our proposed model based FDR estimator and

the empirical FDR estimator. As we expect, the model based FDR estimator gives a more stable

estimate.

4.4. Discussion

In this chapter, we have proposed a t-mixture model based approach to improve the per-

formance of SAM’s empirical FDR estimator. We demonstrate that our method does not have

the granularity and zero FDR problems as the empirical method. The results also show that



our estimator provides more stable and accurate estimates of the FDR. The advantage of our

method is more evident in the case when DE genes are not well separated with EE genes and

the variances of expression levels for every gene are different. This is due to the fact that the

permutation FDR estimator is more easily affected by the sampling variability.



Figure 4.1. Comparison of the true FDR, the empirical FDR estimator F̂DR
and the model based FDR estimator F̂DR1 for two sample microarray data. 5
replicates are listed. Total number of significant genes is decreasing from 100 to
1 (left to right) for each replicate.



Figure 4.2. Comparison of the true FDR, the empirical FDR estimator F̂DR
and the model based FDR estimator F̂DR1 for two sample microarray data. 5
replicates are listed. Total number of significant genes is decreasing from 150 to
1 (left to right) for each replicate.



Figure 4.3. Comparison of the empirical FDR estimator F̂DR and the model
based FDR estimator F̂DR1 for Leukemia microarray data.
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CHAPTER 5

ON CORRECTING THE OVERESTIMATION OF THE

PERMUTATION-BASED FDR ESTIMATOR

Recent attempts to account for multiple testing in the analysis of microarray data have fo-

cused on controlling the false discovery rate (FDR), which is defined as the expected percentage

of the number of false positive genes among the claimed significant genes. As a consequence,

the accuracy of the FDR estimators will be important for correctly controlling FDR. Xie et al.

(2005) found that the overestimation of the FDR is caused by the discrepancy of the distribu-

tion of null statistics and the null distribution. More specifically, the distribution of null statistics

from DE genes is more dispersed than the true null distribution. Since DE genes cause the prob-

lem, removing them seems to be an intuitive solution. Nevertheless, in practice true DE genes

are unknown. Therefore, Xie et al. (2005) proposed to exclude the predicted DE genes from the

estimation of FDR. However, we found that removing all the predicted DE genes is not a proper

way to solve the problem. Other problems with their method include the biased estimation of

FDR caused by over- or under- deletion of DE genes in the estimation of the FDR and by the

implicit use of an unreasonable estimator of the true proportion of equivalently expressed (EE)

genes. Due to the great importance of accurate FDR estimation in microarray data analysis, it

is necessary to point out such problems and propose improved methods.

For this purpose, we propose a two-step procedure to estimate the FDR, in which the first

step is to remove all the predicted DE genes and the second step is trying to re-include the



possible FP genes to construct the null statistics. Our results confirm that the standard per-

mutation method overestimates the FDR. In addition, we show the method of Xie et al. (2005)

always gives biased estimation of FDR: it overestimates when the number of claimed significant

genes is small, and underestimates when the number of claimed significant genes is large. Most

importantly, the results show that our two-step estimator gives more accurate FDR estimation.

5.1. Introduction

The use of microarray technology makes it possible to monitor the expression levels of

thousands of genes simultaneously. A common goal of analyzing the genome-wide expression

data generated from this technology is to detect DE genes. Now, as the cost of microarray

experiments keeps decreasing, replicated microarray experiments are feasible.

Numerous methods (parametric and nonparametric) have been introduced to detect DE

genes. Some of the most well known parametric approaches include the regression approach of

Thomas et al. (2001), the empirical Bayes (EB) methods of Newton et al. (2001), Kendziorski

et al. (2003), and the linear models and empirical Bayes methods of Smyth (2004). Among

the nonparametric methods, some well known names include the EB method of Efron et al.

(2001), the Significance Analysis of Microarray (SAM) of Tusher et al. (2001) and the mixture

model method (MMM) of Pan et al. (2003).

The false discovery rate (FDR) introduced by Benjamini and Hochberg (1995) is now

commonly used as the choice of the Type I error rate in microarray studies. It is defined as

the expected percentage of false positive genes among the claimed significant genes. It was

proved that in many cases controlling FDR is more appropriate compared to controlling family-

wise error rate (FWER) since the FDR approaches typically reject more null hypotheses than



the FWER approaches (Yekutieli and Benjamini (1999) and Benjamini and Yekutieli (2001)).

Several FDR controlling methods are implemented in the R multtest package (Pollard et al.

(2004)).

However, the true FDR is unknown in practice. Hence, the estimated FDR will serve as

the criterion to compare different methods when controlling the error rates. The comparison

results are reasonable only if the estimated FDR approximates the true FDR well. The most

common method of estimating the FDR is to use the permutation method. However, it has been

reported in the literature that the permutation based FDR estimator tends to over- estimate the

true FDR. A number of papers has discussed the correction of the over-estimation problem of

the permutation method (Pan (2003), Zhao and Pan (2003), Guo and Pan (2005) and Zhang

(2006)).

Xie et al. (2005) also noticed the overestimation problem of standard permutation method.

Their paper showed that the over-estimation of the FDR is caused by the fact that the distribu-

tion of null statistics generated from the permutation method is more dispersed than the true null

distribution of the test statistics. To solve the problem, they proposed to exclude the predicted

DE genes from the estimation of the FDR. However, we find that their proposed method has se-

rious under- or over-estimation problem depending on the number of genes declared significant.

Another problem with the method of Xie et al. (2005) is that they implicitly used an estimator

of the proportion of the EE genes (π0) which can only provide good estimate of π0 when the

number of genes declared significant is equal or close to the true number of the DE genes in the

microarray data and is otherwise biased.



5.2. Methods

5.2.1. The test statistics and the null statistics

As in Xie et al. (2005), only one-sample comparison will be considered in this chapter. Suppose

that Yij is the expression level of gene i in array j (i = 1, 2, ..., n; j = 1, ..., k). The goal is to

test the following hypothesis: H0 : E(Yij) = 0 against H1 : E(Yij) 6= 0. We use the same three

test statistics as in Xie et al. (2005) for the purpose of comparison:

(1) The mean statistic: Mi = Y i,

(2) The t-statistic: Ti = Y i

Vi/
√
k
,

(3) The SAM statistic: Si = Y i

(Vi+V0)/
√
k
,

where Y i =
∑k

j=1 Yij/k, V 2
i =

∑k
j=1(Yij − Y i)

2/(k − 1), and V0 is the fudge factor used to

stabilize the variance.

In this chapter, we will focus on the permutation method for estimating the FDR. The key

issue in the permutation method is the generation of the so-called null statistics (the values of

the test statistic when the genes are EE). For convenience, we shall use Zi as a general notation

to denote the test statistic and use zi to denote its corresponding null statistic. In the standard

permutation method, one set of null statistics is calculated by applying the test statistic to one

set of permuted data. The set of permuted data is obtained by randomly assign the “+” or “-”

signs on each Yi1, ...Yik (SAM). Suppose the number of permutations is B, applying the test

statistic to the b-th set of permutated data will create the b-th set of null statistics z(b)
i , where

b = 1, ...B, and i = 1, ...n.



5.2.2. Method for FDR estimation

Given the test statistics Zi and a fixed cut-off value d, define TS(d) = #{i : |Zi| > d} as

the total number of significant genes; FP (d) = #{i : |Zi| > d, i ∈ EE} as the number of

false positive (FP) genes, where EE is the set of all equivalently expressed genes; π0 as the

proportion of EE genes; and π̂0 as its estimator. According to Storey and Tibshirani (2003), the

false discovery rate can be approximated as

(5.1) FDR(d) = E(
FP (d)

TS(d)
) ≈ E(FP (d))

E(TS(d))
.

A practical version of the FDR is the false discovery proportions (FDP) defined by

(5.2) FDP (d) =
FP (d)

TS(d)
.

To estimate the FDR, the standard method is to use the permutated null statistics. Define

(5.3) F̂P (d) =
B∑
b=1

#{i : |z(b)
i | > d}/B.

Notice that F̂P (d) is actually an estimate of FP (d)/π0. Storey and Tibshirani (2003) suggested

to estimate the FDR by

(5.4) F̂DR(d) =
π̂0F̂P (d)

TS(d)
.

However, as shown in Xie et al. (2005), although the null statistics of the EE genes have

the true null distribution of test statistics, the null statistics of DE genes are more dispersed

than those of EE genes. As a result, the empirical distribution of the null statistics from all

genes is not a good approximation to the true null distribution. To overcome this problem, Xie



et al. (2005) proposed a new FDR estimator. Their idea is as follows: Since the over-estimation

problem of standard permutation method is caused by the DE genes, using only EE genes to

construct the null distribution will avoid this problem. Nevertheless, in practice which genes are

EE genes is unknown. Therefore, they proposed to use the predicted EE genes to estimate the

FDR. Their FDR estimation procedure works as follows: SupposeZi is the test statistic and Si is

the SAM statistic, for any given d > 0, any gene i with |Si| > d is said to be significant. TS(d)

is defined the same as before. Define a set of non-significant genes D(d) = {i : |Si| ≤ d′},

where Si is the SAM statistic and d′ is chosen so that the number of genes not in set D(d) is the

same as TS(d). In other words, D(d) = Ω − TS(d), where Ω is the set of all genes. F̂P (d)

is then estimated by constructing B sets of null statistics as before. The only difference is that

only genes in D(d) are going to be used this time. Let

(5.5) F̂P (d)0 =
B∑
b=1

#{i ∈ D(d) : |z(b)
i | > d}/B.

Then, the FDR is estimated by

(5.6) F̂DR(d)0 =
F̂P (d)0

TS(d)
.

Note that F̂P (d)0 in (5.6) is the average number of significant genes found from the genes in

D(d). We can re-write (5.6) in the form of (5.4) as

(5.7) F̂DR(d)0 = π̂0F̂P (d)/TS(d),



where

(5.8) F̂P (d) =
n

n− TS(d)
F̂P (d)0

can be viewed as the average number of significant genes if all n genes are EE and π̂0 =

1− TS(d)/n is the estimated proportion of EE genes in the microarray data.

In Xie et al. (2005), the above method was proved to be able to correct the FDR overesti-

mation problem of the permutation method effectively. However, our study has found that (5.6)

has some problems:

(1) It can be seen from (5.7) and (5.8) that Xie et al. (2005) implicitly uses π̂0=1−TS(d)/n

as an estimate of π0. Noticing that TS(d) is the number of claimed significant genes,

such π̂0 can range from 0 to 1 for TS(d) from n to 0. As a consequence, one will

always under- or over- estimate π0 unless TS(d)=the true number of DE genes.

(2) The over- or under- estimation of FDR due to under- or over- deletion of genes, which

will be discussed in section 5.2.3.

(3) In Xie et al. (2005), the SAM statistic was used to define the set D(d), which is used

in (5.5) to estimate the number of FP even if the test statistic is the mean or t-statistics.

This is unreasonable. If one has chosen the mean or t statistic as the test statistic, why

would he/she use a different statistic to estimate the number of FP? The only explana-

tion is that the mean statistic and the t-statistic do not provide results as good as the

SAM statistic does. Note that the mean statistic and the t-statistic can be viewed as two

extreme cases of the SAM statistic with the fudge factor equal∞ and 0, respectively. It

is well known that the performance of the testing procedure based on the mean statistic

and the t-statistic is generally inferior to that based on the SAM statistic.



5.2.3. Our proposed method for FDR estimation

Considering the unreasonable estimates π̂0 of Xie et al. (2005) may provide, we suggest esti-

mating π0 by the method introduced in Storey and Tibshirani (2003), which is implemented in

SAM. In their paper, they calculated p-values for each gene. Denote the p-values by p1, p2, ...pn.

Then, π0 is estimated by π̂sam0 = #{pi > λ}/(n(1 − λ)), where λ is a tuning parameter. As

we can see, π̂sam0 is a constant no matter how TS(d) changes. In addition, unlike in Xie et al.

(2005), we use the same test statistic for both identifying the DE genes and defining the set

D(d). In other words, D(d) = {i : |Zi| ≤ d}. With π̂sam0 and this new D(d), we propose the

following FDR estimator

(5.9) F̂DR(d)1 = π̂sam0 F̂P (d)/TS(d),

where F̂P (d) = n
n−TS(d)

F̂P (d)0.

The estimator F̂DR(d)1 corrects Xie et al’s method by using a more reasonable estimator

of π0. However, another question comes to light: Is removing all the predicted DE genes a

proper way of estimating the FDR? As we know, what we really want is to remove all the DE

genes and use all the EE genes to construct the null statistics. However, in those predicted DE

genes, there are some genes which are actually EE genes, but are falsely identified as positive

(FP genes). It is obvious that the FP genes are the EE genes with the greatest test statistics in

absolute values. Therefore, excluding such genes will cause underestimation of the tail of the

null distribution. In Section 5.3.2, we will show that removing all the predicted DE genes gives

significantly different FP estimates from those obtained by removing the true DE genes (which

is not feasible in practice but good for comparison).



Since removing all predicted DE genes will cause underestimation of the FDR, an intuitive

solution would be to add the FP genes back into the pool of the genes for the estimation of the

FDR. For this purpose, we propose the following two-step procedure to estimate the FDR, in

which the first step is to remove all the predicted DE genes and the second step is trying to

re-include the possible FP genes to construct the null statistics:

(1) Suppose Zi is the test statistic, for any given d > 0, any gene i with |Zi| > d is said

to be significant. Let TS(d) = #{i : |Zi| > d}, D(d) = {i : |Zi| ≤ d}, F̂P (d)0 =∑B
b=1 #{i ∈ D(d) : |z(b)

i | > d}/B , and F̂DR(d)1 = n
n−TS(d)

π̂sam0 F̂P (d)0/TS(d).

(2) Using F̂DR(d)1 from Step 1, let D(d′) = {i : |Zi| ≤ d′}, d′ is chosen such that the

number of genes not in D(d′) is TS(d′) = TS(d)(1− F̂DR(d)1). Then following the

same procedure as step 1, we get F̂P (d′)0 =
∑B

b=1 #{i ∈ D(d′) : |z(b)
i | > d′}/B, and

(5.10) F̂DR(d)2 = π̂sam0 F̂P (d)/TS(d),

where F̂P (d) = n
n−TS(d′)

F̂P (d′)0.

The idea behind our proposed method is as follows: When the number of predicted DE

genes is greater than the true number of significant genes, there will be a substantial number of

FP genes in them. Since removing all predicted DE genes will cause biased estimation of the

FDR, we only remove the genes which we consider are most likely to be true DE genes.



5.3. Results

5.3.1. Problems caused by using Xie et al’s estimate of π0

In Xie et al. (2005), π0 is estimated by π̂0 = 1−TS(d)/n. As stated before, we would expect to

see over- or under- estimation of FDR by this method because of the over- or under- estimation

of π0 by π̂0.

To show this, 5 (= k) replicates of 4000(= n) genes are generated, among which 400 are

DE genes and the others are EE genes. The expression levels Yij for EE genes are generated

fromN(0, 4) and Yij for DE gene are generated fromN(µi, 4), while µi ∼ N(0, 16). The SAM,

mean, and t-statistics are used as the test statistics. Our purpose is to compare the FDR estimator

of Xie et al. (2005) (F̂DR(d)0) from (7) and one of our proposed estimator (F̂DR(d)1) from

(5.9). The values of the standard FDR estimator from (4) and the true FDR values are also

plotted as references.

5.3.1.1. Overestimation of FDR when TS(d) is smaller than the true number of DE genes.

.

In this scenario, TS(d) is set to vary between 100 and 200, which is much less than the

true number of DE genes (= 400). In Figure 5.1, as we expected, F̂DR(d)0 always overesti-

mates the true FDR while F̂DR(d)1 provides less biased estimates. In some cases, F̂DR(d)1

still gives overestimation. This overestimation is caused by the fact that the π̂sam0 also always

overestimates the true π0, but to a much lesser degree.

5.3.1.2. Underestimation of FDR when TS(d) is greater than the true number of DE genes.

.



The same simulation set-up is used as above except now TS(d) is set to be vary between

500 to 600, which is greater than the true number of DE genes (= 400).

As shown in Figure 5.2, for the t and SAM statistics, Xie et al’s method underestimates the

true FDR while our proposed method gives more accurate estimates. However, for the mean

statistic, our method does not give any improvement over Xie et al’s method. The reason is that

the SAM statistic was used to predict DE genes in Xie et al. (2005) while our method F̂DR(d)1

uses the same mean statistic in both predicting the DE genes and estimating the FDR. The better

performance of Xie et al’s method in this case is due to the use of the SAM statistic in predicting

DE genes, rather than the method itself. As it can be seen from the top plot of Figure 5.2, our

estimator F̂DR(d)1 performs much better than Xie et al’s method when the SAM statistic is

used.

5.3.2. Underestimation caused by removing the predicted DE genes

In this section, we show that removing all predicted DE genes will lead to an underestimation

of the true false positive number. We generate n = 4000 genes with k = 5, while 150 of

them are DE genes. The expression levels for EE and DE genes are generated in the same way

as in Section 5.3.1. The number of claimed significant genes is set to be 150, which is the

number of true DE genes. Table 5.1 lists the true FP number, the estimated FP number with

150 predicted DE genes removed (F̂P p), and the estimated FP number with 150 true DE genes

removed (F̂P t). The results reported are the averages from 50 replicates.

From Table 5.1, we can see F̂P p is always less than F̂P t. This shows removing predicted

DE genes gives a smaller estimate of FP number than that of removing the true DE genes.



Table 5.1. Comparison of estimated false positive numbers and the true false
positive numbers using the SAM, mean and t-statistics. F̂P p is the estimated FP
number with 150 predicted DE genes removed; F̂P t is the estimated FP number
with 150 true DE genes removed.

Statistic True FP F̂P p F̂P t

SAM 64.38 61.62 65.30
mean 58.96 53.96 60.81
t 79.78 77.21 81.19

5.3.3. Performance of our methods

To evaluate the performance of our methods, the same simulation set-ups are used as those

in Section 5.3.2. We want to see whether our proposed estimator F̂DR(d)2 from (5.10) can

overcome the problems or at least has some advantages over other estimators.

We compare four different FDR estimation methods: the standard estimator F̂DR(d) from

(5.4), Xie et al. (2005)’s estimator F̂DR(d)0 from (5.7), and two estimators we proposed:

F̂DR(d)1 from (5.9), F̂DR(d)2 from (5.10).

Figure 5.3 shows that the estimator of Xie et al. (2005) always significantly underestimates

the true FDR’s. The estimator F̂DR(d)1 also underestimates FDR due to over-deletion, but is

much better than Xie et al’s estimator for the SAM statistic. For the mean and t-statistics, Xie

et al’s estimator outperforms F̂DR(d)1 sometimes due to the same reason discussed previously

− the use of the SAM statistic in obtaining the predicted DE genes. In contrast, F̂DR(d)2

does not have this problem and has the best performance in most of the scenarios. However,

for the SAM statistic and the t-statistic, F̂DR(d)2 slightly overestimates the true FDR. This

over-estimation is not caused by the the underlying algorithm of estimator F̂DR(d)2, but by

the overestimation of π0 caused by π̂sam0 . To see this, we replaced π̂sam0 in (5.9) (F̂DR(d)1) and

in (5.10) (F̂DR(d)2) with the true π0 = 3850/4000. Figure 5.4 shows the comparison between



the true FDR and the estimated FDR from (5.9) and (5.10) with the true value of π0. We can

see that F̂DR(d)2 now gives smaller estimates of FDR for all three test statistics compared

to Figure 5.3. Another fact worth noticing in Figure 5.3 and 5.4 is that when the number of

claimed significant genes is small, F̂DR(d)2 does not show much advantage. The reason is

that, in such a case, most of the significant genes are true DE genes and the number of FP genes

is much smaller than the number of true DE genes. Hence, removing the FP genes is not going

to have significant impact on the estimation of the FDR.

5.3.4. Comparisons under other simulation set-ups

We also want to see how the ratio of induced (I) and repressed (R) genes influences the perfor-

mance of the FDR estimators. Here, k = 5, n = 4000 and there are 150 DE genes. The expres-

sion level Yij for EE genes are generated from N(0, 4). For DE genes, n′ of them are generated

from N(4, 4), and the rest of them are generated from N(−4, 4); where n′ = 150, 100, 50, 0.

We set the number of claimed significant genes as 300. The results reported in Table 5.2 are the

averages from 50 replications. The results confirm that our methods are stable to the change of

ratios of the induced and repressed genes.

We have also conducted another simulation which tries to mimic the real data. A similar

simulation set-up as above is used except the expression level Yij for EE genes are generated

from N(0, σ2
i ) while σ2

i ∼ Gamma(4, 2) and Yij for DE gene are generated from N(µi, σ
2
i )

while µi ∼ N(0, 16), σ2
i ∼ Gamma(4, 2).



Table 5.2. Comparison of the performance of FDR estimator when the ratio of
induced and repressed genes changes.

I/R FDRtrue F̂DR(d) F̂DR(d)0 F̂DR(d)1 F̂DR(d)2

150/0 SAM 0.507 0.572 0.461 0.486 0.521
mean 0.504 0.672 0.423 0.446 0.504
t 0.558 0.564 0.513 0.539 0.560

100/50 SAM 0.508 0.566 0.463 0.489 0.520
mean 0.504 0.665 0.416 0.439 0.498
t 0.557 0.569 0.512 0.538 0.562

50/100 SAM 0.509 0.570 0.460 0.485 0.520
mean 0.504 0.670 0.424 0.445 0.499
t 0.557 0.565 0.512 0.537 0.558

0/150 SAM 0.507 0.566 0.465 0.491 0.522
mean 0.504 0.661 0.427 0.449 0.504
t 0.556 0.562 0.514 0.544 0.562

From Figure 5.5, we can see that the results are similar as before for the SAM and t sta-

tistics: the standard method always overestimates and method of Xie et al. (2005) always un-

derestimates. F̂DR(d)1 performs better than Xie et al. (2005)’s method and F̂DR(d)2 always

performs the best.

5.3.5. Biological Data

In Zhong et al. (2004), duplications and deletions in an evolved strain (DD2459) were identified

by a whole-genome E. coli MG1655 spotted DNA microarray experiment with three replicates.

38 genes have been confirmed to be true duplicated/deleted genes by rtPCR. To compare our

proposed estimator F̂DR(d)2 with Xie et al. (2005)’s estimator F̂DR(d)0, we used this dataset

to construct a table summarizing the upper bound of true FDR (the proportion of detected DE

genes which are not in the confirmed 38 DE genes), FDR estimates given by F̂DR(d)2 and



Table 5.3. Comparison of the performance of F̂DR(d)2 and F̂DR(d)0 using
microarray data from Zhong et al. (2004).

Statistic TS(d) Upper bound F̂DR(d)0 F̂DR(d)2

SAM 35 0.457 0.347 0.506
40 0.500 0.304 0.443
45 0.533 0.272 0.404
50 0.560 0.267 0.386

mean 35 0.371 0.230 0.356
40 0.375 0.158 0.264
45 0.422 0.171 0.242
50 0.480 0.177 0.231

t 35 1.000 0.871 1.000
40 1.000 0.870 1.000
45 1.000 0.817 1.000
50 1.000 0.810 0.997

F̂DR(d)0 for different number of total significant genes (TS(d)). Because the confirmed 38

true DE genes are mostly genes with largest mean in absolute value, we can see from Table

5.3 that the mean statistic gives the smallest FDR upper bound while the t-statistic does not

detect any one of the 38 true DE genes. Table 5.3 also shows that F̂DR(d)2 always gives more

accurate FDR estimates than F̂DR(d)0.

5.4. Discussion

In this chapter, we have showed that the bias-corrected FDR estimator proposed in Xie

et al. (2005) uses an inappropriate estimate of π0 and still has severe under- or over- estimation

problem. We have proposed two new modifications to overcome those problems. Simulation

studies and application to real data have confirmed that our estimator F̂DR(d)2 gives signifi-

cantly better FDR estimates than F̂DR(d)0 in Xie et al. (2005).

Current null statistics are constructed by randomly assigning the “+” or “-” signs to repli-

cates of genes. As a consequence, the number of “+” and “-” signs can be different in this



random assignment. Mean expression levels of the EE genes will always be 0 regardless of the

way of assigning the signs. However, when there is an unbalanced number of “+” and “-”, the

mean expression levels of the DE genes will not be 0, which may cause the null statistics of DE

genes to have different distributions from that of the EE genes. Hence, it is intuitive to deduce

that if we make the number of “+” and “-” stay balanced, this problem can be avoided. In Pan

(2003) and Zhang (2006), they proposed a series of such kind of “balanced” null statistics,

which have the same distribution for both the DE and EE genes. It would be interesting to com-

pare the performance of our FDR estimators and estimators based on “balanced” null statistics

in the future research.
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Figure 5.1. The FDR curves of different estimation methods using the SAM,
mean, and t-statistics. There are 400 DE genes among 4000 genes. The number
of claimed significant gene ranges from 100 to 200. π̂sam0 is used as the estimate
of π0. Our method 1 is the estimator F̂DR(d)1 from (5.9).
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Figure 5.2. The FDR curves of different estimation methods using the SAM,
mean, and t-statistics. There are 400 DE genes among 4000 genes. The num-
ber of claimed significant gene ranges from 500 to 600. Our method 1 is the
estimator F̂DR(d)1 from (5.9).
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Figure 5.3. The FDR curves of different estimation methods using the SAM,
mean, and t-statistics. There are 150 DE genes among 4000 genes. The number
of claimed significant gene ranges from 20 to 400. π̂sam0 is used as estimate of
π0. Our methods 1 and 2 are the estimators F̂DR(d)1 from (5.9) and F̂DR(d)2

from (5.10), respectively.
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Figure 5.4. The FDR curves of different estimation methods using the SAM,
mean, and t-statistics. There are 150 DE genes among 4000 genes. The number
of claimed significant gene ranges from 20 to 400. The true π0 = 3850/4000 is
used as estimate of π0. Our methods 1 and 2 are the estimators F̂DR(d)1 from
(5.9) and F̂DR(d)2 from (5.10), respectively.
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Figure 5.5. The FDR curves of different estimation methods using the SAM,
mean, and t-statistics. Mimicking the real data. There are 150 DE genes among
4000 genes. The number of claimed significant gene ranges from 20 to 400. Our
methods 1 and 2 are the estimators F̂DR(d)1 from (5.9) and F̂DR(d)2 from
(5.10), respectively.
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CHAPTER 6

ESTIMATING THE PROPORTION OF EQUIVALENTLY EXPRESSED

GENES IN MICROARRAY DATA BASED ON TRANSFORMED TEST

STATISTICS

In microarray data analysis, the false discovery rate (FDR) is now widely accepted as the

control criterion to account for multiple hypothesis testing. The proportion of equivalently ex-

pressed genes (π0) is a key component to be estimated in the estimation of the FDR. Some

commonly used π0 estimators (BUM, SPLOSH, QVALUE, and LBE ) are all based on p-values

and they are essentially upper bounds of π0. Simulation shows that these four methods signifi-

cantly overestimate the true π0 when differentially expressed genes and equivalently expressed

genes are not well separated. To solve this problem, we first introduce a novel way of transform-

ing the test statistics to make them symmetric about 0. Then we propose a π0 estimator based

on the transformed test statistics using the symmetry assumption. Real data and simulation both

show that the π0 estimate from our method is less conservative than BUM, SPLOSH, QVALUE,

and LBE in most of the cases. Simulation results also show that our estimator always has the

least mean squared error among these five methods.



6.1. Introduction

Microarray technology makes it possible to measure the expression levels of thousands of

genes simultaneously. A typical goal of analyzing the gene expression data from this tech-

nology is to determine which genes are differentially expressed (DE) between two treatment

groups, which is actually a multiple hypothesis testing problem. Controlling family-wise error

rate (FWER) is a common practice in regular multiple testing problems. However, due to the

large number of genes in microarray data, false discovery rate (FDR) introduced by Benjamini

and Hochberg (1995) is now commonly used as the choice of the Type I error rate in microarray

studies. It is defined as the expected percentage of false positive genes among the claimed sig-

nificant genes. It was proved that in many cases controlling FDR is more appropriate compared

to controlling FWER since the FDR approaches typically rejects more null hypotheses than

the FWER approaches (Yekutieli and Benjamini (1999) and Benjamini and Yekutieli (2001)).

Several FDR controlling methods are implemented in the R multtest package (Pollard et al.

(2004)).

To estimate FDR, the proportion of equivalently expressed (EE) genes (π0) needs to be es-

timated first. A number of methods have been proposed to estimate π0 and most of them are

based on the distribution of p-values under the null hypothesis. For gene i, the null hypothesis is

that gene i is EE, and a p-value (pi) will be computed. Notice that the p-values of EE genes are

uniformly distributed and denote the distribution of p-values of DE genes by h1(p). It is reason-

able to model the overall p-values as a mixture distribution with two components (McLachlan

and Peel (2000)):

(6.1) h(p) = π0 ∗ 1 + (1− π0)h1(p).



In Pounds and Morris (2003), the authors proposed a method called BUM using a beta-

uniform mixture distribution to approximate h(p). Then they estimated π0 as π̂0 = ĥ(1), which

assumed h1(1) = 0 and is an upper bound of the true π0. Langaas and Lindqvist (2005) adopted

the same assumption but used nonparametric maximum likelihood method to estimate ĥ(p).

SPLOSH (Pounds and Cheng (2004)) uses a local regression technique (LOESS; Cleveland

and Devlin (1988)) to fit h(p) and gives π̂0 = minpĥ(p) as the estimator, which is still an

upper bound. Storey and Tibshirani (2003) proposed the QVALUE method. Given a tuning

parameter λ, QVALUE estimates π0 by π̂0(λ) = #(pi>λ)
n(1−λ)

. It can be proved that π̂0(λ)→ ĥ(1) as

λ → 1 (Dalmasso et al. (2005)), so QVALUE also overestimates π0 like BUM and SPLOSH.

All these estimators work well if the following assumption holds: few p-values of DE genes are

close to 1. Otherwise, if this assumption is strongly violated which will happen when DE and

EE genes are not well separated, all of them will tend to overestimate. There are other methods

not requiring this assumption. Allison et al. (2002) proposed a parametric method to estimate

π0. Dalmasso et al. (2005) proposed the LBE method based on the moments of p-values,

which also only gives an upper bound of π0. More recently, Lai (2007) proposed a moment

based method which requires no distribution assumption. Unfortunately, his method only works

well when there are enough replicates (>8). As we can see from above, the commonly used π0

estimators BUM, SPLOSH, QVALUE and LBE are all actually upper bounds of π0.

Most of the current π0 estimators are based on p-values because a p-value is a unified mea-

surement of significance. However, as a result of using p-values, we may lose some nice proper-

ties, such as the symmetry and unimodality of the original test statistics from which the p-values

are computed. As we know, the commonly used test statistics are t-type statistics, which are

generally symmetrically distributed and the use of symmetry can be helpful in estimation of π0.



Bordes et al. (2006) proposed a nonparametric method to estimate the parameters in a two

component mixture model with an unknown component, assuming the unknown distribution is

symmetric. The authors also tried to apply this method to microarray data by fitting a similar

model as (6.1) to test statistics. Since the t-type test statistics (without absolute value) for

upregulated and downregulated DE genes obviously have different distributions, they cannot

be modeled into one component. Hence, the authors constructed an F -type test statistic and

assumed that it has a symmetric density. However, assuming an F -type test statistic to be

symmetrically distributed is obviously not a reasonable assumption.

Although the method in Bordes et al. (2006) is not very appropriate for microarray data,

it inspired us to use test statistics instead of p-values when estimating π0. In the next section,

we will first introduce a transformation to make the test statistics symmetric about 0, then we

propose a π0 estimator based on the transformed test statistics using the symmetry assumption.

Some theoretical results are given. Finally, application to real microarray data sets and intensive

simulations are conducted to compare the performance of our method with BUM, SPLOSH,

QVALUE and LBE.

6.2. Methods

6.2.1. The test statistic and the null statistic

Suppose that Yij is the expression level of gene i in array j (i = 1, 2, ..., n; j = 1, ..., j1, j1+1,...,

j1+j2), and the first j1 and last j2 arrays are obtained under the two different conditions. For

gene i, the null hypothesis is that the mean expression levels under the two conditions are the

same.



To test this hypothesis, a possible test statistic would be the standard two sample t-statistic.

However, it only works well when the normality assumption is not strongly violated, which

is not always the case in practice. A class of nonparametric statistical methods (Pan et al.

(2003), Zhao and Pan (2003), Pan (2003), Zhang (2006)) have been proposed to overcome

this problem. The basic idea is to directly estimate the null distribution of the test statistic Z by

constructing a null statistic z which has the null distribution of Z. In other words, for EE genes,

the test and null statistics have the same distribution. Among those methods, we decided to use

the test and null statistics in Zhang (2006) because their performance are robust and they have

improved power over other methods. The test and null statistics are as following:

(6.2) Z =
Y 11+Y 12

2
− Y 21+Y 22

2

s0 +

√
1

j11
+ 1

j12

4
s2
1 +

1
j21

+ 1
j22

4
s2
2

,

(6.3) z =
Y 11−Y 12

2
+ Y 21−Y 22

2

s0 +

√
1

j11
+ 1

j12

4
s2
1 +

1
j21

+ 1
j22

4
s2
2

,

where j11 = j12 = j1/2 if j1 is even, and j11 = j12 − 1 = (j1 − 1)/2 if j1 is odd. j21

and j22 are similarly defined. Y 11,Y 12,Y 21,Y 22 are the sample means of the four partitions

of the replicates of each gene under the two experimental conditions. Those four partitions are

(Yij, j = 1, ..., j11) and (Yij, j = j11+1, ..., j1) from condition 1; (Yij, j = j1+1, ..., j1+j21) and

(Yij, j = j1 + j21 +1, ..., j1 + j2) from condition 2. s2
1 =

∑j11
j=1(Yij−Y 11)2+

∑j1
j=j11+1(Yij−Y 12)2

j1−2+I(j1=2)
, s2

1 =∑j1+j21
j=j1+1(Yij−Y 21)2+

∑j1+j2
j=j1+j21+1(Yij−Y 22)2

j2−2+I(j2=2)
are the two pooled sample variances from the replicates

under each condition. s0 is a fudge factor invented by SAM (Tusher et al. (2001)). In practice,

B sets of null statistics are constructed by permutations of data carried within each experimental

condition.



6.2.2. Our method

Now for gene i, i = 1, 2, ..., n, we have the test statistic Zi and the null statistic zbi from the bth

permutation set. Similarly as in (6.1), we try to fit a mixture distribution to the test statistics.

As stated in the previous section, the distribution of the test statistics for EE genes is already

known - same as the null statistics. However, for DE genes, there are two types - upregulated

and downregulated. Unlike the p-values, the t-type test statistics for those two types of DE genes

have means of opposite signs. Hence, instead of two subpopulations (EE and DE) of all genes, it

is more appropriate to use three subpopulations (EE, upregulated DE, and downregulated DE).

With three components in a mixture model, there are a lot more parameters to be estimated.

Fortunately, it is actually less problematic than it seems. We will transform the test statistics as

following:

The original test statistic for gene i is Zi. We can create a new set of test statistics Xi,

where Xi = −Zi or Zi with the same probability 0.5. In other words, we randomly keep or

flip the sign of each Zi. Now take gene i for example: if gene i is EE, then E(Zi) = 0 ⇒

E(−Zi) = 0 ⇒ E(Xi) = 0. Therefore, gene i is still EE after transformation; if gene i is DE,

we can see that E(Xi)=E(Zi) or −E(Zi) with same probability 0.5. In other words, for any

DE gene i, no matter if it is originally upregulated or downregulated, this DE gene has the same

chance of being upregulated or downregulated after the transformation, which indicates that the

proportion of upregulated and downregulated DE genes will be the same. It also implies that

the means of upregulated and downregulated DE genes after transformation will be the opposite

of each other regardless of their original means.



Before the transformation, separate proportion and mean parameters need to be estimated

for upregulated and downregulated DE genes. After the transformation, upregulated and down-

regulated DE genes have the same proportion and opposite means, which reduces the number

of parameters by 2. Now we can propose a mixture model for the new test statistic Xi:

(6.4) f(x) = π0f0(x) + (1− π0)(g(x+ µ0)/2 + g(x− µ0)/2),

where f(x) is the density function of test statistics Xi, f0(x) is the density function of the test

statistics for EE genes, g(x+µ0) and g(x−µ0) are densities for downregulated and upregulated

DE genes (µ0 > 0), respectively. g(x) is assumed to be an even and unimodal density function.

Since the test statistic is of t-type, this assumption is reasonable.

Since it is more convenient to estimate the empirical cumulative distribution function (CDF)

than density, we can rewrite (6.4) as:

(6.5) F (x) = π0F0(x) + (1− π0)(G(x+ µ0)/2 +G(x− µ0)/2),

where F (x), F0(x), and G(x) are the corresponding CDF’s for f(x), f0(x), and g(x), respec-

tively.

The next step is to estimate G(x) from (6.5). First, we have

G(x+ µ0) +G(x− µ0) = 2(F (x)− π0F0(x))/(1− π0),

and this implies

G(x− 2mµ0) +G(x− 2(m+ 1)µ0) = 2(F (x− (2m+ 1)µ0)− π0F0(x− (2m+ 1)µ0))/(1− π0),

(6.6)



Denote the LHS of (6.6) by C(m), we have
m1∑
m=0

(−1)mC(m) = C(0)− C(1) + C(2)...+ (−1)nC(n)

= G(x) +G(x− 2µ0)−G(x− 2µ0)−G(x− 4µ0)

+G(x− 4µ0)...+ (−1)m1G(x− 2(m1 + 1)µ0)

= G(x) + (−1)m1G(x− 2(m1 + 1)µ0)→ G(x)(6.7)

as m1 tends to infinity since G(x− 2(m1 + 1)µ0)→ 0 as m1 →∞.

Replace C(m) in (6.7) with the RHS of (6.6), we have

(6.8) G(x) =
∞∑
m=0

(−1)m
F (x− (2m+ 1)µ0)− π0F0(x− (2m+ 1)µ0)

(1− π0)/2
.

Consider the RHS of (6.8) as a function of x, p(= π0), and µ(= µ0), and denote it by

M(x; p, µ) =
∞∑
m=0

(−1)m
F (x− (2m+ 1)µ)− pF0(x− (2m+ 1)µ)

(1− p)/2

so we have G(x) = M(x; π0, µ0). We can also define

M̂(x; p, µ) =

m1∑
m=0

(−1)m
F̂ (x− (2m+ 1)µ)− pF̂0(x− (2m+ 1)µ)

(1− p)/2
(6.9)

as the corresponding estimator forM(x; p, µ). F̂ (x) = #(Xi < x)/n and F̂0(x) =
∑B

b=1 #(zbi <

x)/(Bn) are the corresponding empirical CDF’s for F (x) and F0(x); n is the number of genes;

B is the number of sets of null statistics; Xi is the test statistic and zbi is the bth set of null statis-

tic for gene i. m1 is a big integer such that G(x− 2(m1 + 1)µ0) and 1−G(x+ 2(m1 + 1)µ0)

are all very close to 0. In this chapter, it was chosen to be 20.



Recall that g(x) is an even function, so G(x) + G(−x) = 1. Following the idea of Bordes

et al. (2006) and Hunter et al. (2007), we define

(6.10) d(x; p, µ) = (
1− p

2
)2(M(x; p, µ) +M(−x; p, µ)− 1)2.

Notice that in M(x; p, µ), (1 − p)/2 is in the denominator, when p is close to 1 it can be

problematic. That is the reason we multiplied the factor (1−p
2

)2 in (6.10), and an estimate for

M(x; p, µ) is

d̂(x; p, µ) = (
1− p

2
)2(M̂(x; p, µ) + M̂(−x; p, µ)− 1)2.

As we can see, d(x; p, µ) = 0 for any x when p = π0 and µ = µ0, which indicates that when

p = π0 and µ = µ0,

(6.11) D(p, µ) =

∫ ∞

0

d(x; p, µ)dx = 0.

Hence, π0 can be estimated by minimizing

(6.12) D̂(p, µ) =

∫ ∞

0

d̂(x; p, µ)dx

with respect to p and µ. The integration starts from 0 because d(x; p, µ) is a symmetric function

of x.

Using the above results, the following procedure is proposed to estimate π0:

(1) Calculate the test statisticsZi and the null statistics zbi using (6.2) and (6.3), i = 1, ..., n,

b = 1, ..B.

(2) Create the new test statistics Xi by randomly keeping or flipping the sign of each Zi.

(3) Construct an arithmetic sequence with length J = 50. Initial term is 0 and last term

is 99th percentile of the new test statistic Xi. Denote this arithmetic sequence by xj ,



j = 1, ..., J . Then

(6.13) M̂SD(p, µ) =
|xJ |
J

J∑
j=1

d̂(xj; p, µ)

is an approximation for D̂(p, µ) in (6.12) when J is big enough.

(4) Let p∗ = pinit ≥ π0. pinit can be set to 1 or some known upper bound of π0.

(5) Let p∗∗ = p∗ − ∆, where ∆ > 0 is a small number. Minimize M̂SD(p∗, µ) and

M̂SD(p∗∗, µ) with respect to µ. M̂SD(p, µ) has two local minimums with respect to

µ, choose the one at larger µ (we will explain the reason for doing this). ∆ is set to

0.01 here.

(6) If minµM̂SD(p∗∗, µ) < minµM̂SD(p∗, µ), then let p∗ = p∗∗ and repeat step 5. If

not, π̂0 = p∗ will be the estimate of π0.

(7) Repeat step 2-6 for R = 20 times and return the average of all π̂0’s, which will be the

final estimate of π0.

Unlike the standard optimization procedure, our searching algorithm is conducted on a de-

creasing and discrete parameter space of π0 because of two reasons.

(1) Let g′(x) = g(x+ µ0)/2 + g(x− µ0)/2 from (6.4) and µ′0 = 0. We have

f(x) = π0f0(x) + (1− π0)(g(x+ µ0)/2 + g(x− µ0)/2)

= π0f0(x) + (1− π0)(g
′(x+ µ′0)/2 + g′(x− µ′0)/2).

Hence f(x) is not identifiable - there are two possible µ0’s. Hence, M̂SD(p, µ) is

small when µ is close to µ′0 = 0 for any p. If we use the standard optimization proce-

dure and search (p, µ) on the whole parameter space, we may get very biased results.



This is also the reason why we choose the local minimum at the larger µ in step 5 of

our algorithm - the µ associated with the other local minimum is close to µ′0 = 0.

(2) Our algorithm is more computationally efficient than the standard optimization proce-

dure since it only searches for p’s greater than π0. This can be proved by the following

theorem.

Theorem 6.1. Suppose Θ is the parameter space for (p, µ), and also assume that when |x|

is big enough, f(x) and g(x+ µ0)/2 + g(x− µ0)/2 in (6.4) are concave upward, then:

(i) D(p, µ) ≥ 0 is a continuous function on Θ.

(ii) minµD(p, µ) = 0 when p = π0.

(iii) There exist a threshold πu such that minµD(p, µ) is a strictly increasing function of p

when p > πu.

(iv) ‖ M̂SD(p, µ)−D(p, µ) ‖→ 0 as m1 →∞, J →∞ and n→∞

The proof of this theorem is in the Appendix. From Theorem 6.1 (iii) we can see that as

long as p∗ > πu, minµD(p∗, µ) will be strictly decreasing as p∗ decreases until p∗ reaches

πu. We can also notice that πu cannot be less than π0 because from Theorem 1 (ii), we know

that minµD(p, µ) will reach 0 as p reaches π0 - it cannot be strictly decreasing anymore. This

implies that argmin
p∗≥πu

(min
µ
D(p, µ)) = πu ≥ π0. Our algorithm is actually trying to search for

π̂0 = argmin
p∗≥πu

(min
µ
M̂SD(p, µ)), and M̂SD(p, µ) converges to D(p∗, µ) by Theorem 6.1 (iv).

Hence, our estimator π̂0 will converge to πu, an upper bound of π0. Through intensive simu-

lations in the next section, we will show that our π̂0 is less conservative than the π0 estimates

given by BUM, SPLOSH, QVALUE and LBE in most of the cases. In fact, πu is very close to

the true π0 in some scenarios.



6.3. Results

6.3.1. Real Data

First, we will apply our method, along with BUM, SPLOSH, QVALUE and LBE, to two real

microarray data sets. The first data set is the leukemia data from Golub et al. (1999). In

this study, the purpose was to find differentially expressed genes between acute lymphoblastic

leukaemia (ALL) and acute myeloid leukaemia (AML) samples. The total number of genes

is 7129 and there are 27 replicates for the ALL and 11 replicates for the AML. The data was

pre-processed by the method in Pan et al. (2002).

The second data set is the breast cancer data from Hedenfalk et al. (2001). This paper

tried to find genes which were differentially expressed in tumors with BRCA1 mutations and

tumors with BRCA2 mutations. In the original data set, there are 3226 genes, 7 replicates

for BRCA1 and 8 replicates for BRCA2. As suggested by Storey and Tibshirani (2003), 56

genes were removed in our study because they have expression level greater than 20, which

were considered not reliable.

Recall that the input for BUM, SPLOSH, QVALUE and LBE are p-values, and the input

for our method are test and null statistics. For every data set, test statistic from (6.2) and null

statistic from (6.3) were computed. B=100 sets of null statistics were obtained as in Storey and

Tibshirani (2003). Then the p-value pi for every gene i was computed by the method in Storey

and Tibshirani (2003) using test and null statistics.

In step 4 of our method, we let pinit = 2
∑n

i=1 pi/n. From (2.13), we have: h(p) = π0 ∗ 1 +

(1− π0)h1(p)⇒E(p) ≥ 0.5π0⇒π0 ≤ 2E(p). Therefore, the chosen pinit satisfies the condition

that pinit ≥ π0.



Table 6.1. Comparison of π0 Estimates from our method, BUM, SPLOSH,
QVALUE and LBE for the Golub et al. (1999) and Hedenfalk et al. (2001)
data.

Data our method BUM SPLOSH QVALUE LBE
Golub et al. 0.560 0.592 0.662 0.652 0.685

Hedenfalk et al. 0.533 0.603 0.675 0.709 0.710

Table 6.1 summarizes the π0 estimate of our method, BUM, SPLOSH, QVALUE and LBE

(BUM, SPLOSH, QVALUE and LBE all have R implementations). Among the four methods

other than our method, BUM always gives the smallest π0 estimates while the estimates from

the other three methods are close. On the other hand, π0 estimate from our method is always

the smallest. Since the π0 estimates from all the above methods are essentially upper bounds of

π0, our upper bound is apparently less conservative than the others.

Although the real data application shows some advantage of our method, getting a complete

idea about its performance is hard because the true π0 is unknown. For this reason, intensive

simulations with pre-specified π0 are conducted in the next section.

6.3.2. Simulated Data

Data were generated for n=10,000 genes under two conditions, mimicking the large number

of genes in practice. Each condition has four replicates, aiming to study the performance of

π0 estimators when the number of replicates is small (which is usually the case because of the

relatively high cost of microarray experiments). π0=0.4, 0.6 or 0.8, representing small, medium

and large proportion of EE genes. There are three types of simulation set-ups corresponding to

three different situations:



(a). EE, DE genes well separated

For 10000π0 EE genes, the expression levels were generated from N(0, 1) under both

conditions. For 10000(1 − π0) DE genes, the expression levels under condition 1

were also generated from N(0, 1); the expression levels under condition 2 were gener-

ated from either N(3, 1) or N(−3, 1), representing upregulated or downregulated DE

genes. The ratio #(upregulated genes)/ #(downregulated genes) is 1 for π0=0.4 and

0.8; when π0=0.6, the ratio is 2.

(b). EE, DE genes not well separated

All the other configurations are exactly the same as set-up (a) except that the expression

levels of DE genes under condition 2 are generated from N(1, 1) or N(−1, 1).

(c). Mimic the real data

For EE gene i, the expression levels under both conditions are generated fromN(0, σ2
i ),

where σi is generated from Gamma(2, 4). For DE gene j, the expression levels are

generated from N(µ1j, σ
2
j ) for condition 1 and from N(µ2j, σ

2
j ) for condition 2, where

µ1j and µ2j are generated from N(0, 2), and σj is generated from Gamma(2, 4).

Next we estimate π0 using our method, BUM, SPLOSH, QVALUE and LBE for the sim-

ulated data in the same way as for the real data. We repeated the simulation and estimation

process 100 times for each set-up. The mean, standard error (SE), and mean squared error

(MSE) for all the estimators are summarized in Table 6.2 , 6.3 and 6.4, respectively.

For Set-up (a), when DE and EE genes are well separated, there should be few DE genes

with p-values around 1, which is the assumption of BUM, SPLOSH, QVALUE and LBE. Hence,

they are all expected to give accurate π0 estimates. In fact, the results confirm that QVALUE,

and LBE all give satisfactory results, as well as our method. It is worth noting that these three



Table 6.2. Comparison of the mean and bias of the π0 estimates from our
method, BUM, SPLOSH, QVALUE and LBE for set-up (a), EE, DE genes well
separated; (b), EE, DE genes not well separated; and (c), Mimic the real data.
The values outside and inside parenthesis are mean and bias,respectively.

Set-up π0 our method BUM SPLOSH QVALUE LBE
(a) 0.8 0.797 0.711 0.899 0.798 0.792

(-0.003) (-0.089) (0.099) (-0.002) (-0.008)
0.6 0.594 0.480 0.828 0.598 0.594

(-0.006) (-0.120) (0.228) (-0.008) (-0.006)
0.4 0.391 0.274 0.725 0.397 0.398

(-0.009) (-0.126) (0.325) (-0.003) (-0.002)
(b) 0.8 0.818 0.841 0.842 0.869 0.878

(0.018) (0.041) (0.042) (0.069) (0.078)
0.6 0.636 0.693 0.717 0.739 0.747

(0.036) (0.093) (0.117) (0.139) (0.147)
0.4 0.456 0.568 0.597 0.610 0.623

(0.056) (0.168) (0.197) (0.210) (0.223)
(c) 0.8 0.865 0.873 0.872 0.902 0.908

(0.065) (0.073) (0.072) (0.102) (0.108)
0.6 0.728 0.749 0.764 0.792 0.799

(0.128) (0.149) (0.164) (0.192) (0.199)
0.4 0.596 0.620 0.659 0.679 0.695

(0.196) (0.220) (0.259) (0.279) (0.295)

Table 6.3. Comparison of the standard error of the π0 estimates from our
method, BUM, SPLOSH, QVALUE and LBE for set-up (a), EE, DE genes well
separated; (b), EE, DE genes not well separated; and (c), Mimic the real data.

Set-up π0 our method BUM SPLOSH QVALUE LBE
(a) 0.8 0.004 0.004 0.041 0.020 0.043

0.6 0.005 0.004 0.039 0.016 0.040
0.4 0.003 0.004 0.049 0.018 0.035

(b) 0.8 0.032 0.011 0.033 0.023 0.040
0.6 0.049 0.012 0.029 0.021 0.052
0.4 0.046 0.006 0.026 0.020 0.040

(c) 0.8 0.021 0.009 0.034 0.022 0.046
0.6 0.026 0.010 0.032 0.018 0.045
0.4 0.023 0.010 0.030 0.019 0.044



Table 6.4. Comparison of the mean squared error of the π0 estimates from our
method, BUM, SPLOSH, QVALUE and LBE for set-up (a), EE, DE genes well
separated; (b), EE, DE genes not well separated; and (c), Mimic the real data.

Set-up π0 our method BUM SPLOSH QVALUE LBE
(a) 0.8 0.00003 0.00793 0.01052 0.00038 0.00193

0.6 0.00006 0.01436 0.05377 0.00026 0.00164
0.4 0.00010 0.01599 0.10795 0.00034 0.00121

(b) 0.8 0.00136 0.00181 0.00284 0.00528 0.00759
0.6 0.00372 0.00876 0.01459 0.01986 0.02427
0.4 0.00528 0.02815 0.03931 0.04463 0.05160

(c) 0.8 0.00475 0.00537 0.00631 0.01096 0.01367
0.6 0.01709 0.02229 0.02774 0.03732 0.04161
0.4 0.03891 0.04845 0.06783 0.07811 0.08915

methods give an underestimation of π0 while they are supposed to be conservatively biased.

Nevertheless, the underestimation bias are very small so they can be explained by variability.

BUM and SPLOSH both give notably biased estimates compared to the other three methods in

this set-up. The reason may be that BUM and SPLOSH both need to fit h(p) in (6.1), and the

fitted ĥ(p) does not approximate the real data well. Except when π0 = 0.6 the SE of our method

is 0.0001 greater than BUM, the SE and MSE of our method are always the smallest among all

the five methods.

DE and EE genes are not well separated in Set-up (b). Therefore, we would expect BUM,

SPLOSH, QVALUE and LBE to largely overestimate π0, which is confirmed by the results.

Our method also overestimates π0, but to a much less degree. Our method also has the smallest

MSE for all π0’s. The SE of our method is relatively big when π0=0.4 and 0.6 but they are still

within an acceptable range.

Set-up (c) adds more variations in the simulation process to mimic the real data. As we

expected, the bias of all π0 estimates tend to increase compared to (b) because of the bigger



variation. Nevertheless, our method still gives the least biased estimate and has the smallest

MSE compared with the other methods.

6.4. Discussion

In this chapter, we introduce a way of transforming the test statistics, which may be asym-

metrically distributed, to make them symmetric about 0. Then we propose a π0 estimator based

on the transformed test statistics using the symmetry assumption. The real data application and

simulation results show the advantageous performances of the proposed method compared with

BUM, SPLOSH, QVALUE and LBE.

There are several important parameters in our estimation procedure, such as m1 in (6.9), J

in step 3 of our procedure, ∆ in step 5, and R in step 7. As we can see, the precision of our es-

timator will increase as m1, J , and R increase and as ∆ decreases. However, the computational

burden will also increase. Hence, more research are necessary to find the optimized choice of

those parameters so that we can achieve a balance between precision and computational effi-

ciency.

Furthermore, since this chapter has focused on microarray data with a large number of

genes and a small number of replicates, more comprehensive studies are needed to compare the

performance of different π0 estimators under other data configurations.

It should also be noticed that our method is applicable in situations where the test statistics

are t-type, hence it is not as general as other methods which are based on p-values.

6.5. Appendix

First, we need a lemma.



Lemma. Suppose F (x) and f(x) are the CDF and PDF of an even function, respectively;

Also assume when |x| is big enough f(x) is concave upward. Define

N(x;µ, F ) =
∑∞

m=0(−1)m(F (x− (2m+ 1)µ) + F (−x− (2m+ 1)µ)),

Then there exist a certain threshold t > 0 such that when µ > t,

x > µ⇔ N(x;µ, F ) > 1/2

x < µ⇔ N(x;µ, F ) < 1/2.

PROOF. We only need to consider x > 0 since N(x;µ) is an even function. When x = µ,

it is obvious that

N(x;µ, F ) =
∑∞

m=0(−1)m(F (−2mµ) + F (−(2m+ 2)µ))

= F (0)− F (−2µ) + F (−2µ)− F (−4µ) + F (−4µ)− ... = F (0) = 1/2.

Suppose the corresponding PDF of F (x) is f(x),
∂N(x;µ, F )

∂x
=

∞∑
m=0

(−1)m(f(x− (2m+ 1)µ)− f(−x− (2m+ 1)µ)).

Consider one part of the RHS of the above equation∑2k+1
m=2k(−1)m(f(x− (2m+ 1)µ)− f(−x− (2m+ 1)µ))

= f(x− (4k + 1)µ) + f(−x− (4k + 3)µ)− f(−x− (4k + 1)µ)− f(x− (4k + 3)µ),

and from the assumption we know that when |x| is big enough, f(x) is concave. Hence, when

µ is big enough,

f(x− (4k + 1)µ) + f(−x− (4k + 3)µ) > f(−x− (4k + 1)µ)− f(x− (4k + 3)µ)

for any k.

Therefore
∑∞

m=0(−1)m(f(x− (2m+ 1)µ)− f(−x− (2m+ 1)µ)) > 0, which implies
∂N(x;µ, F )

∂x
> 0.



Hence, when µ is big enough, x > µ ⇔ N(x;µ, F ) > 1/2 and x < µ ⇔ N(x;µ, F ) < 1/2.

�

PROOF. Proof of Theorem 1.

(i) D(p, µ) =
∫∞

0
d(x; p, µ)dx, and d(x; p, µ) is continuous and bounded. From Lebesgue

dominated convergence Theorem, we can conclude that D(p, µ) is continuous.

(ii) Since

d(x; π0, µ0) = (
1− π0

2
)2(M(x; π0, µ0) +M(−x; π0, µ0)− 1)2

= (
1− π0

2
)2(G(x) +G(−x)− 1)2 = 0,

Therefore D(π0, µ0) =
∫∞

0
d(x; π0, µ0)dx = 0.

Also we haveminµD(π0, µ) ≥ 0 andminµD(π0, µ) ≤ D(π0, µ0) = 0. Hence,minµD(π0, µ) =

0.

(iii) First, we will prove that if µ is big enough, D(p, µ) is a strictly increasing function of

p.

Since d(x; p, µ) = (1−p
2

)2(M(x; p, µ) +M(−x; p, µ)− 1)2, and

M(x; p, µ) =
∞∑
m=0

(−1)m
F (x− (2m+ 1)µ)− pF0(x− (2m+ 1)µ)

(1− p)/2



DenoteK(x) = G(x+µ0)/2+G(x−µ0)/2 and plug the RHS of (6.5) into the above equation,

we have
1− p

2
M(x; p, µ) =

∞∑
m=0

(−1)m{(1− π0)K(x− (2m+ 1)µ) + (π0 − p)F0(x− (2m+ 1)µ)}

Write d(x; p, µ) in terms of N(x;µ, F ) in the Lemma, we have

d(x; p, µ) = ((1− π0)N(x;µ,K) + (π0 − p)N(x;µ, F0)− (1− p)/2)2.

Take the derivative of d(x; p, µ) w.r.t p, we have:
∂d(x; p, µ)

∂p
= 2((1− π0)N(x;µ,K) + (π0 − p)N(x;µ, F0)− (1− p)/2)(1/2−N(x;µ, F0)).

When µ is big enough and x > µ, we know that N(x;µ,K) > 1/2 and N(x;µ, F0) > 1/2

from the Lemma. Hence,

(1 − π0)N(x;µ,K) + (π0 − p)N(x;µ, F0) − (1 − p)/2 > (1 − π0 + π0 − p − 1 + p)/2 = 0,

and 1/2−BN(x;µ, F0) < 0.

Therefore ∂d(x;p,µ)
∂p

< 0. When x < µ, it can be similarly proved that ∂d(x;p,µ)
∂p

< 0. Hence

∂D(p,µ)
∂p

=
∫∞

0
∂d(x;p,µ)

∂p
dx < 0 and D(p, µ) is a strictly increasing function of p.

We can also see that when p = 1, argmin
µ

D(p, µ) → ∞ and D(p, µ) is a continuous function.

Hence, for any c > 0, there exist a pc such that argmin
µ

D(pc, µ) > c. Now suppose we have

p∗ > p∗∗, and p∗ and p∗∗ are big enough such that argmin
µ

D(p∗∗, µ) > t, the upper bound in

the Lemma, and from the Lemma, we have

minµD(p∗, µ) = D(p∗, argmin
µ

D(p∗, µ)) < D(p∗∗, argmin
µ

D(p∗, µ)) ≤ minµD(p∗∗, µ).

(iii) is proved.



(iv) From Lemma 3.2 (iii) in Bordes and Vandekerkove (2007), (iv) is obviously true.

�
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CHAPTER 7

CONCLUSION

7.1. Summary

In this dissertation, a series of methods have been proposed to detect differentially expressed

genes and estimate the false discovery rate for the two-condition microarray data. The perfor-

mance of our methods are evaluated using both simulated and real data.

The t-mixture model in Chapter 3 improves the performance of the normal mixture model

method (Pan et al. (2003)) by fitting the test and null statistics with a more appropriate, heavy-

tailed t-mixture distribution instead of a normal mixture distribution. Because of the heavy-

tail property of t-mixture model, we show that only one set of permutation of null statistics

is enough for the t-mixture model to achieve satisfactory performance, which saves a lot of

computation time compared to the normal mixture model.

Chapter 4 is a natural extension of Chapter 3, in which the t-mixture model is used to build

a model-based, continuous FDR estimator. This new model-based FDR estimator does not have

the problems of the empirical FDR estimators such as the granularity problem, the zero FDR

problem and the nonexistent FDR problem. The model-based FDR has smaller MSE compared

to the empirical FDR in the simulation study.

Chapter 5 and 6 are all improvements to the current FDR estimators for microarray data.

Chapter 5 improves the current method for estimating the number of false positive genes when

all genes are EE (FP ∗ in (1.3)), a key element in the FDR estimators. In Chapter 5, we show



that including DE genes when estimating FP ∗ will give overestimates because DE genes have

greater variability than EE genes. We also showed that removing all the predicted DE genes

when estimating FP ∗ would give underestimates. Hence, a two-step FDR estimation procedure

is proposed which has been shown to have superior performance than the permutation based

method.

Chapter 6 improves the current method for estimating the proportion of EE genes (π0 in

(1.3)), which is also an important component when estimating the FDR. Unlike most of the

current methods, which use the p-values as the input and assumes zero density of the p-values

around 1 for DE genes, we use the transformed test statistics as the input. In this way, we can

take advantage of the symmetry property of the test statistics. The comparison results show

that our estimator gives more accurate and precise π0 estimates than several commonly used π0

estimators.

7.2. Future work

It is noticeable that in this dissertation, both the fitting of the t-mixture model and the min-

imization procedure to estimate the π0 are relatively computation intensive, which will be a

great obstacle for people to use them. Therefore, it is desirable to improve their efficiency in

the future.

In this dissertation, the parameters of the t-mixture model are estimated by maximum likeli-

hood method using the ECM algorithm, which is known to be time-consuming. There are some

possible ways to improve the efficiency of the ECM algorithm. For example, because the null

statistics are known to have mean 0, if we fix the µi’s in (3.9) to 0 instead of letting the ECM

algorithm to estimate them when fitting the probability density (f0) for the null statistics, the



convergence speed of the ECM algorithm may be improved. Another interesting topic would be

to study the relationship between the number of observations (number of genes) and the conver-

gence speed of the ECM algorithm. For example, if for 10000 genes, the ECM algorithm takes

t10000 minutes to converge; for 1000 genes, the ECM algorithm takes t1000 minutes to converge.

If 10 ∗ t1000 < t10000, then we can take a random sample of size 1000 from the 10000 genes and

fit the 1000 genes with the ECM algorithm. Repeat this process for 10 times and get the average

estimate of all the parameters. In this way, we can save some computation time and probably

get similar results as using all 10000 genes.

Instead of fitting the test and null statistics with the t-mixture model, we can use the p-values

as the input. In that way, we can fit the density of the p-values with some much faster algorithm

compared to the ECM algorithm. One example would be binning method in Ruppert et al.

(2007), in which they used a B-spline method to fit the density curve of the binned p-values.

In Chapter 5, a two-step procedure is proposed to estimate the FDR. An interesting modi-

fication would be to repeat this two-step procedure until the estimated FDR converges. More

specifically, we can use the FDR estimate from step 2 to re-adjust the number of genes excluded

from the FDR estimation procedure. Then use the rest of the genes to get a new estimate of the

FDR. Repeat this process until there is no significant change in the estimated FDR.

In all current simulations, the genes are considered as independent with each other. In the

future, we should explore the performance of our methods while the genes are correlated.

Another worth noting fact is that our methods are limited to the two-condition microarray

data. Extensions to the multiple conditions and time course data are not trivial because both the

t-mixture model and our π0 estimator are based on a t-type test statistic. This is also a possible

topic for the future work.
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APPENDIX

a. Codes for fitting a t-mixture model

#TMM function is the function to detect differentially expressed genes for
a given significance level alpha

#y is the expression matrix with row as genes and column as replicates
#alpha is the significance level
#Replicates of 1 to j1 columns are under first condition; replicates of j1

+1 to j1+j2 columns are under second condition
#tol is a tolerance bound for t-mixture model fitting
#Output of this function is a list of rows numbers corresponding to genes

TMM<-function(y,alpha,j1,j2,tol=0.00001)
{n<-dim(y)[1]
data<-as.matrix(y)
j11<-floor(j1/2)
j12<-j1-j11
j21<-floor(j2/2)
j22<-j2-j21

data1<-as.matrix(data[,1:j1])
data2<-as.matrix(data[,(j1+1):(j1+j2)])
data11<-as.matrix(data[,1:j11])
data12<-as.matrix(data[,(j11+1):j1])
data21<-as.matrix(data[,(j1+1):(j1+j21)])
data22<-as.matrix(data[,(j1+j21+1):(j1+j2)])
y11<-apply(data11,1,mean)
y12<-apply(data12,1,mean)
y21<-apply(data21,1,mean)
y22<-apply(data22,1,mean)
s1<-(apply((data11-y11)ˆ2,1,sum)+apply((data12-y12)ˆ2,1,sum))/(j1-2)
s2<-(apply((data21-y21)ˆ2,1,sum)+apply((data22-y22)ˆ2,1,sum))/(j2-2)

#Search for s0
nh<-c()
for(h in 1:99/100)



{s0<-h/(1-h)
z.zhang<-(y11-y12+y21-y22)*0.5/(sqrt(s1*(0.25/j11+0.25/j12)+s2*(0.25/j21

+0.25/j22))+s0)
Z.zhang<-(y11+y12-y21-y22)*0.5/(sqrt(s1*(0.25/j11+0.25/j12)+s2*(0.25/j21

+0.25/j22))+s0)
cutoff<-quantile(abs(z.zhang),1-alpha)
nh<-c(nh,sum(abs(Z.zhang)>cutoff))
}
h0<-median((1:99/100)[nh==max(nh)])
s0<-h0/(1-h0)

z.zhang<-(y11-y12+y21-y22)*0.5/(sqrt(s1*(0.25/j11+0.25/j12)+s2*(0.25/j21
+0.25/j22))+s0)

Z.zhang<-(y11+y12-y21-y22)*0.5/(sqrt(s1*(0.25/j11+0.25/j12)+s2*(0.25/j21
+0.25/j22))+s0)

# t mixture data fit function
tmixture.1<-function(y,g,tol)
{errortimes<-0
ind<-1
con<-1
dim<-1
n<-dim(y)[2]
#initial
while(ind&(errortimes<3))
{ind<-0
ybar<-as.vector(apply(y,1, mean))
cov<-(y-ybar)%*%t(y-ybar)/n
loglik<-(-Inf)
sigma<-matrix(rep(cov,g),dim,dim*g)
u<-matrix(NA,dim,g)
p<-rep(1/g,g)
margin<-matrix(NA,g,n)
mu<-matrix(NA,g,n)
cat("Searching for initial values","\n")
for (rep in 1:30)
{
if(g==1){df<-sample(1:50,1)}
if(g>1){df<-c(250,sample(1:100,g-1))}
for (i in 1:g)
{
u[,i]<-ybar
}
# initial margin



v<-df
for( i in 1:g)
{
sqrtinv<-sqrt(1/as.numeric(sigma[,(dim*i-dim+1):(dim*i)]))
yprime<-as.vector(sqrtinv*(y-u[,i]))
ysquare<-yprime*yprime
margin[i,]<-p[i]*gamma(v[i]/2+dim/2)*(det(as.matrix(sigma[,(dim*i-dim+1):(

dim*i)])))ˆ(-0.5)/((pi*v[i])ˆ(dim/2)*gamma(v[i]/2)*(1+ysquare/v[i])ˆ(v[i
]/2+dim/2))

mu[i,]<-(v[i]+dim)/(v[i]+ysquare)
}
sum.margin<-apply(margin,2,sum)
if(loglik<sum(log(sum.margin)))
{u0<-u
margin0<-margin
v0<-df
loglik<-sum(log(sum.margin))}
}
u<-u0
margin<-margin0
v<-v0
stop<-c(loglik-1,loglik)
count<-1
cat("Using ECM algorithm to estimate parameters........"," \n")

while ( ((abs(stop[count+1]-stop[count])>tol)&con&(count<20))|(((stop[count
+1]-stop[count])>tol)&con&(count>=20)))

{ptm<-proc.time()
#e step 1

tau<-matrix(NA,g,n)
taumu<-matrix(NA,g,n)
for( i in 1:g)
{tau[i,]<-margin[i,]/sum.margin
taumu[i,]<-tau[i,]*mu[i,]
}
u0<-u
sigma0<-sigma
v0<-v
p0<-p
margin0<-margin
stop0<-stop



#m step 1

t1<-apply(taumu,1,sum)
p<-apply(tau,1,mean)
for(i in 1:g)
{u[,i]<-as.vector(taumu[i,]%*%t(y))/t1[i]
yu<-t(y-u[,i])*sqrt(taumu[i,])
sigma[,(dim*i-dim+1):(dim*i)]<-t(yu)%*%yu/as.numeric(t1[i])}

# e step 2

margin<-matrix(NA,g,n)
mu<-matrix(NA,g,n)
for( i in 1:g)
{
sqrtinv<-sqrt(1/as.numeric(sigma[,(dim*i-dim+1):(dim*i)]))
yprime<-as.vector(sqrtinv*(y-u[,i]))
ysquare<-yprime*yprime
margin[i,]<-p[i]*gamma(v[i]/2+dim/2)*(det(as.matrix(sigma[,(dim*i-dim+1):(

dim*i)])))ˆ(-0.5)/((pi*v[i])ˆ(dim/2)*gamma(v[i]/2)*(1+ysquare/v[i])ˆ(v[i
]/2+dim/2))

mu[i,]<-(v[i]+dim)/(v[i]+ysquare)
}

sum.margin<-apply(margin,2,sum)
tau<-t(t(margin)/sum.margin)
sum.tau<-apply(tau,1,sum)

# m step 2
for (i in 1:g)
{
constant<-(1/sum.tau[i])*sum(tau[i,]*(log(mu[i,])-mu[i,]))+1+digamma(v[i]/

2+dim/2)-log(v[i]/2+dim/2)
if (constant<(-0.002926826))
{
solve.v<-function(v){-digamma(v/2)+log(v/2)+constant}
v[i]<-uniroot(solve.v,c(2.680138e-304,2.146436e+14))$root
}else{cat("loop",count, "v",i,">342","\n")
con<-0}
}

margin<-matrix(NA,g,n)
mu<-matrix(NA,g,n)



for( i in 1:g)
{
sqrtinv<-sqrt(1/as.numeric(sigma[,(dim*i-dim+1):(dim*i)]))
yprime<-as.vector(sqrtinv*(y-u[,i]))
ysquare<-yprime*yprime
margin[i,]<-p[i]*gamma(v[i]/2+dim/2)*(det(as.matrix(sigma[,(dim*i-dim+1):(

dim*i)])))ˆ(-0.5)/((pi*v[i])ˆ(dim/2)*gamma(v[i]/2)*(1+ysquare/v[i])ˆ(v[i
]/2+dim/2))

mu[i,]<-(v[i]+dim)/(v[i]+ysquare)
}
sum.margin<-apply(margin,2,sum)
loglik<-sum(log(sum.margin))
stop<-c(stop,loglik)
count<-count+1

if(is.na(loglik))
{ind<-1
errortimes<-errortimes+1
cat("Not converge. Try another initial value \n")
break}
}
}
if(!ind){return(u0,v0,sigma0,p0,stop0,margin0,loglik)}else{return(loglik=(-

Inf),margin0=matrix(NA,g,n))}
}

y.z.zhang<-t(as.matrix(z.zhang))

bic.find<-function(fit,k)
{margin<-fit$margin
loglik<-fit$loglik
value<--2*loglik+(k*dim(margin)[1]-1)*log(dim(margin)[2])
return(value)
}

bic<--1
bic0<-0
i<-1
fit.z.zhang.t<-0
while ((i==2)|(bic<bic0))
{

bic0<-bic



fit.z.zhang.t0<-fit.z.zhang.t

cat("Try cluster number =",i,"\n")

fit.z.zhang.t<-try(tmixture.1(y.z.zhang,i,tol),TRUE)
if(is.matrix(fit.z.zhang.t$margin0)){bic<-bic.find(fit.z.zhang.t,4)}
i<-i+1
}
fit.t.u<-rep(NA,10)
fit.t.v<-rep(NA,10)
fit.t.sigma<-rep(NA,10)
fit.t.p<-rep(NA,10)
fit.t.u[1:length(fit.z.zhang.t0$u0)]<-fit.z.zhang.t0$u0
fit.t.v[1:length(fit.z.zhang.t0$v0)]<-fit.z.zhang.t0$v0
fit.t.sigma[1:length(fit.z.zhang.t0$sigma0)]<-fit.z.zhang.t0$sigma0
fit.t.p[1:length(fit.z.zhang.t0$p0)]<-fit.z.zhang.t0$p0
fit<-fit.z.zhang.t0

fit.t<-function(x){-alpha+sum(fit$p*pt((x-fit$u)/sqrt(fit$sigma),df=fit$v))
+1-sum(fit$p*pt((-x-fit$u)/sqrt(fit$sigma),df=fit$v))}

critic.t<-uniroot(fit.t,c(-100,100))$root

sig.gene<-(1:n)[abs(Z.zhang)>abs(critic.t)]
return(sig.gene)
}

b. Codes for comparison between the model based FDR and the empirical FDR

rep<-0
kk<-c()
trynumber<-1000
FDR.mix.t<-fdr.sam<-c(NA,trynumber)
i=1

for (critic in quantile(abs(Z.sam), 1-trynumber:1/7129))
{
rep<-rep+1
p.t<-fit.t.p[i,][!is.na(fit.t.p[i,])]
u.t<-fit.t.u[i,][!is.na(fit.t.u[i,])]
sigma.t<-fit.t.sigma[i,][!is.na(fit.t.sigma[i,])]
v.t<-fit.t.v[i,][!is.na(fit.t.v[i,])]
fit.t.new<-function(x){sum(p.t*pt((x-u.t)/sqrt(sigma.t),df=v.t))+1-sum(p.t*

pt((-x-u.t)/sqrt(sigma.t),df=v.t))}



p.t.Z<-fit.t.p[i+1,][!is.na(fit.t.p[i+1,])]
u.t.Z<-fit.t.u[i+1,][!is.na(fit.t.u[i+1,])]
sigma.t.Z<-fit.t.sigma[i+1,][!is.na(fit.t.sigma[i+1,])]
v.t.Z<-fit.t.v[i+1,][!is.na(fit.t.v[i+1,])]
fit.t.new.Z<-function(x){sum(p.t.Z*pt((x-u.t.Z)/sqrt(sigma.t.Z),df=v.t.Z))

+1-sum(p.t.Z*pt((-x-u.t.Z)/sqrt(sigma.t.Z),df=v.t.Z))}

fdr.sam[rep]<-pi0sam[(i+1)/2]*median(apply(matrix(abs(z.sam)>abs(critic)
,10,7129),1,sum))/sum(abs(Z.sam)>abs(critic))

FDR.mix.t[rep]<-pi0sam[(i+1)/2]*fit.t.new(-critic)/fit.t.new.Z(-critic)
}

plot(1:trynumber, fdr.sam,axes=FALSE,type=’l’, lty=3,col=2,ylim=c(0,0.06),
ylab="FDR",xlab="Number of Significant Genes")

axis(1,at=c(0,200,400,600,800,1000),labels=c(1000,800,600,400,200,0))
axis(2)
lines(1:trynumber,FDR.mix.t,lty=5,col=3)
legend(’topright’,c("empirical method","our method"),lty=c(3,5),col=c(2,3),

bty=’n’)

c. Codes for comparison between the two-step FDR estimator and the standard method

s.stat<-function(y)
{
n<-dim(y)[1]
k<-dim(y)[2]
y.mean<-apply(y,1,mean)
y.var<-apply(y,1,var)
y.var0<-median(y.var)
s.stat<-y.mean*sqrt(k)/(sqrt(y.var)+s0.sam)
return(s.stat)
}

mean.stat<-function(y)
{
n<-dim(y)[1]
k<-dim(y)[2]
y.mean<-apply(y,1,mean)
return(y.mean)
}

t.stat<-function(y)
{
n<-dim(y)[1]
k<-dim(y)[2]



y.mean<-apply(y,1,mean)
y.var<-apply(y,1,var)
s.stat<-y.mean*sqrt(k)/sqrt(y.var)
return(s.stat)
}

postscript(file="fdr1fdr2_09625.eps", onefile=FALSE, horizontal=FALSE)
par(mfrow=c(3,1))

lengtho<-70
fdr.true=fdr.std=fdr.xie=fdr.zhang=fdr.jiao=fdr.jiao2=matrix(NA,50,lengtho)
for( rep in 1:50)
{
y<-yall[,(rep*5-4):(rep*5)]
n<-dim(y)[1]
k<-dim(y)[2]
nonnull<-150

x.group<-rep(1,k)
data.sam=list(x=y,y=x.group, geneid=as.character(1:nrow(y)),genenames=paste

("g",as.character(1:nrow(y)),sep=""), logged2=TRUE)
samr.obj<-samr(data.sam,resp.type="One class")

pi0.sam<-min(1,samr.obj$pi0)
s0.sam<-samr.obj$s0
cat(pi0.sam)
nperm<-samr.obj$nperms.act

y0<-y
stat.test<-s.stat(y0)

B<-nperm
perm.m<-matrix(sample(c(1,-1),size=k*B,replace=TRUE,prob=c(0.5,0.5)),k,B)
ysquare<-apply(y0ˆ2,1,sum)
y.per.sum<-y0%*%perm.m
y.var.m<-(ysquare-y.per.sumˆ2/k)/(k-1)
y.var0<-apply(y.var.m,2,median)
stat.null<-(y.per.sum/sqrt(k))/(sqrt(y.var.m)+s0.sam)
from<-20
to<-400



sig.number<-seq(from,to, length.out=lengtho)
fnnum=tpnum=fpnum.true=fpnum.est=fpnum.std=fpnum.est.temp=fpnum.est1=fpnum.

est2=rep(NA,lengtho)

for(i in 1:lengtho)
{
sig.num<-sig.number[i]
quant<-quantile(abs(stat.test),probs=c(1-sig.num/n))
tpnum[i]<-sum(abs(stat.test)>quant)
fpnum.true[i]<-sum((1:n)[abs(stat.test)>quant]<(n-nonnull+1))
fpnum.std[i]<-sum(abs(stat.null)>quant)/B
fpnum.est[i]<-sum(abs(stat.null)[abs(stat.test)<=quant]>quant)/B
fdr.temp<-(fpnum.est[i]*n*pi0.sam)/((n-tpnum[i])*tpnum[i])
quant.temp<-quantile(abs(stat.test),probs=c(1-sig.num*(1-fdr.temp)/n))
fpnum.est.temp[i]<-sum(abs(stat.null)[abs(stat.test)<=quant.temp,]>quant)/B
}
fdr.true[rep,]<-fpnum.true/tpnum
fdr.xie[rep,]<-fpnum.est/tpnum
fdr.std[rep,]<-fpnum.std*(n-nonnull)/(n*tpnum)
fdr.zhang[rep,]<-(fpnum.est*n*0.9625)/((n-tpnum)*tpnum)
fdr.jiao[rep,]<-(fpnum.est.temp*n*0.9625)/((n-tpnum*(1-fdr.zhang[rep,]))*

tpnum)
}

fdr.true.ave<-apply(fdr.true,2,mean)
fdr.xie.ave<-apply(fdr.xie,2,mean)
fdr.std.ave<-apply(fdr.std,2,mean)
fdr.zhang.ave<-apply(fdr.zhang,2,mean)
fdr.jiao.ave<-apply(fdr.jiao,2,mean)

plot(sig.number, fdr.true.ave,type=’l’, lty=1,xlab=’Number of significant’,
ylab=’FDR’,main=’SAM statistics’,col=1)

lines(sig.number, fdr.std.ave, pch=’*’,cex=1.5, type=’p’,col=2)
lines(sig.number, fdr.xie.ave, lty=4,lwd=2,col=3)
lines(sig.number, fdr.zhang.ave, lty=3,col=4)
lines(sig.number, fdr.jiao.ave, lty=5,col=5)
legend(’topleft’,cex=1.6,c("true","standard method","xie et al method","our

method 1", "our method 2"),col=c(1,2,3,4,5), lty=c(1,NA,4,3,5),lwd=c
(1,1,2,1,1),pch=c(NA,’*’,NA,NA,NA),bty=’n’)

lengtho<-70
fdr.true=fdr.std=fdr.xie=fdr.zhang=fdr.jiao=fdr.jiao2=matrix(NA,50,lengtho)
for( rep in 1:50)
{



y<-yall[,(rep*5-4):(rep*5)]
n<-dim(y)[1]
k<-dim(y)[2]
nonnull<-150
x.group<-rep(1,k)
data.sam=list(x=y,y=x.group, geneid=as.character(1:nrow(y)),genenames=paste

("g",as.character(1:nrow(y)),sep=""), logged2=TRUE)
samr.obj<-samr(data.sam,resp.type="One class")
pi0.sam<-min(1,samr.obj$pi0)
s0.sam<-samr.obj$s0
cat(pi0.sam)
nperm<-samr.obj$nperms.act
y0<-y
stat.test<-mean.stat(y0)
stat.test.sam<-s.stat(y0)
B<-nperm
perm.m<-matrix(sample(c(1,-1),size=k*B,replace=TRUE,prob=c(0.5,0.5)),k,B)
ysquare<-apply(y0ˆ2,1,sum)
y.per.sum<-y0%*%perm.m
y.var.m<-(ysquare-y.per.sumˆ2/k)/(k-1)
y.var0<-apply(y.var.m,2,median)
stat.null<-y.per.sum/k
from<-20
to<-400
sig.number<-seq(from,to, length.out=lengtho)
fnnum=tpnum=fpnum.true=fpnum.est=fpnum.est.xie=fpnum.std=fpnum.est.temp=

fpnum.est1=fpnum.est2=rep(NA,lengtho)

for(i in 1:lengtho)
{
sig.num<-sig.number[i]
quant<-quantile(abs(stat.test),probs=c(1-sig.num/n))
quant.sam<-quantile(abs(stat.test.sam),probs=c(1-sig.num/n))
tpnum[i]<-sum(abs(stat.test)>quant)
fpnum.true[i]<-sum((1:n)[abs(stat.test)>quant]<(n-nonnull+1))
fpnum.std[i]<-sum(abs(stat.null)>quant)/B
fpnum.est[i]<-sum(abs(stat.null)[abs(stat.test)<=quant]>quant)/B
fpnum.est.xie[i]<-sum(abs(stat.null)[abs(stat.test.sam)<=quant.sam]>quant)/

B
fdr.temp<-(fpnum.est[i]*n*pi0.sam)/((n-tpnum[i])*tpnum[i])
quant.temp<-quantile(abs(stat.test),probs=c(1-sig.num*(1-fdr.temp)/n))
fpnum.est.temp[i]<-sum(abs(stat.null)[abs(stat.test)<=quant.temp,]>quant)/B
}
fdr.true[rep,]<-fpnum.true/tpnum



fdr.xie[rep,]<-fpnum.est.xie/tpnum
fdr.std[rep,]<-fpnum.std*(n-nonnull)/(n*tpnum)
fdr.zhang[rep,]<-(fpnum.est*n*0.9625)/((n-tpnum)*tpnum)
fdr.jiao[rep,]<-(fpnum.est.temp*n*0.9625)/((n-tpnum*(1-fdr.zhang[rep,]))*

tpnum)
}

fdr.true.ave<-apply(fdr.true,2,mean)
fdr.xie.ave<-apply(fdr.xie,2,mean)
fdr.std.ave<-apply(fdr.std,2,mean)
fdr.zhang.ave<-apply(fdr.zhang,2,mean)
fdr.jiao.ave<-apply(fdr.jiao,2,mean)

plot(sig.number, fdr.true.ave,type=’l’, lty=1,xlab=’Number of significant’,
ylab=’FDR’,main=’mean statistics’,col=1)

lines(sig.number, fdr.std.ave, pch=’*’,cex=1.5, type=’p’,col=2)
lines(sig.number, fdr.xie.ave, lty=4,lwd=2,col=3)
lines(sig.number, fdr.zhang.ave, lty=3,col=4)
lines(sig.number, fdr.jiao.ave, lty=5,col=5)

lengtho<-70
fdr.true=fdr.std=fdr.xie=fdr.zhang=fdr.jiao=fdr.jiao2=matrix(NA,50,lengtho)
for( rep in 1:50)
{
y<-yall[,(rep*5-4):(rep*5)]
n<-dim(y)[1]
k<-dim(y)[2]
nonnull<-150

x.group<-rep(1,k)
data.sam=list(x=y,y=x.group, geneid=as.character(1:nrow(y)),genenames=paste

("g",as.character(1:nrow(y)),sep=""), logged2=TRUE)
samr.obj<-samr(data.sam,resp.type="One class")
pi0.sam<-min(1,samr.obj$pi0)
s0.sam<-samr.obj$s0
cat(pi0.sam)
nperm<-samr.obj$nperms.act
y0<-y
stat.test<-t.stat(y0)
stat.test.sam<-s.stat(y0)
B<-nperm
perm.m<-matrix(sample(c(1,-1),size=k*B,replace=TRUE,prob=c(0.5,0.5)),k,B)
ysquare<-apply(y0ˆ2,1,sum)



y.per.sum<-y0%*%perm.m
y.var.m<-(ysquare-y.per.sumˆ2/k)/(k-1)
y.var0<-apply(y.var.m,2,median)
stat.null<-(y.per.sum/sqrt(k))/sqrt(y.var.m)
from<-20
to<-400
sig.number<-seq(from,to, length.out=lengtho)
fnnum=tpnum=fpnum.true=fpnum.est=fpnum.est.xie=fpnum.std=fpnum.est.temp=

fpnum.est1=fpnum.est2=rep(NA,lengtho)

for(i in 1:lengtho)
{
sig.num<-sig.number[i]
quant<-quantile(abs(stat.test),probs=c(1-sig.num/n))
quant.sam<-quantile(abs(stat.test.sam),probs=c(1-sig.num/n))
tpnum[i]<-sum(abs(stat.test)>quant)
fpnum.true[i]<-sum((1:n)[abs(stat.test)>quant]<(n-nonnull+1))
fpnum.std[i]<-sum(abs(stat.null)>quant)/B
fpnum.est[i]<-sum(abs(stat.null)[abs(stat.test)<=quant]>quant)/B
fpnum.est.xie[i]<-sum(abs(stat.null)[abs(stat.test.sam)<=quant.sam]>quant)/

B
fdr.temp<-(fpnum.est[i]*n*pi0.sam)/((n-tpnum[i])*tpnum[i])
quant.temp<-quantile(abs(stat.test),probs=c(1-sig.num*(1-fdr.temp)/n))
fpnum.est.temp[i]<-sum(abs(stat.null)[abs(stat.test)<=quant.temp,]>quant)/B
}
fdr.true[rep,]<-fpnum.true/tpnum
fdr.xie[rep,]<-fpnum.est.xie/tpnum
fdr.std[rep,]<-fpnum.std*(n-nonnull)/(n*tpnum)
fdr.zhang[rep,]<-(fpnum.est*n*0.9625)/((n-tpnum)*tpnum)
fdr.jiao[rep,]<-(fpnum.est.temp*n*0.9625)/((n-tpnum*(1-fdr.zhang[rep,]))*

tpnum)
}

fdr.true.ave<-apply(fdr.true,2,mean)
fdr.xie.ave<-apply(fdr.xie,2,mean)
fdr.std.ave<-apply(fdr.std,2,mean)
fdr.zhang.ave<-apply(fdr.zhang,2,mean)
fdr.jiao.ave<-apply(fdr.jiao,2,mean)

plot(sig.number, fdr.true.ave,type=’l’, lty=1,xlab=’Number of significant’,
ylab=’FDR’,main=’t statistics’,col=1)

lines(sig.number, fdr.std.ave, pch=’*’,cex=1.5, type=’p’,col=2)
lines(sig.number, fdr.xie.ave, lty=4,lwd=2,col=3)
lines(sig.number, fdr.zhang.ave, lty=3,col=4)



lines(sig.number, fdr.jiao.ave, lty=5,col=5)

dev.off()

d. Codes for estimating π0 using our method

pi0.out.leuk<-rep(NA,50)
for (num in 1:50)
{
cat("######################Replic",num,"###################","\n")
Z.zhang<-Z.zhang.leuk
z.zhang<-z.zhang.leuk
m<-7129
B<-100
Z.zhang.new<-Z.zhang*sample(c(-1,1),m,replace=TRUE)
att_1<- abs(Z.zhang)
att0_1 <- abs(z.zhang)
v_1 <- c(rep(T,m),rep(F,m*B))
v_1 <- v_1[rev(order(c(att_1,att0_1)))]
u_1 <- 1:length(v_1)
w_1 <- 1:m
p_1 <- (u_1[v_1==TRUE]-w_1)/(B*m)
pvalue2_1 <- p_1[rank(-att_1)]

F.cdf<-ecdf(Z.zhang.new)
f0.cdf<-ecdf(z.zhang)
F.cdf.n<-ecdf(-Z.zhang.new)
f0.cdf.n<-ecdf(-z.zhang)
iter.num<-20

pi0<-0.6
mse.pi0<-c()
mse.com<-100000
mse.com1<-99999
while ((pi0>0)&(mse.com1<mse.com))
{
mse.com<-mse.com1
opt<-optimize(find.mu,c(0,quantile(Z.zhang.new,0.999)))
mse.pi0<-c(mse.pi0,opt$objective)
cat(c(pi0,opt$objective,opt$minimum),"\n")
pi0<-pi0-0.01
mse.com1<-opt$objective
}
pi0.out.leuk[num]<-pi0+0.02
}
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