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Abstract—Botulinum neurotoxins (BoNTs) are the most potent of the known biological toxins, and consequently are listed as cate-
gory A biowarfare agents. Currently, the only treatments against BONTSs include preventative antitoxins and long-term supportive
care. Consequently, there is an urgent need for therapeutics to counter these enzymes—post exposure. In a previous study, we iden-
tified a number of small, nonpeptidic lead inhibitors of BoNT serotype A light chain (BoNT/A LC) metalloprotease activity, and we
identified a common pharmacophore for these molecules. In this study, we have focused on how the dynamic movement of amino
acid residues in and surrounding the substrate binding cleft of the BONT/A LC might affect inhibitor binding modes. The X-ray
crystal structures of two BoNT/A LCs (PDB refcodes = 3BTA and 1E1H) were examined. Results from these analyses indicate that
the core structural features of the examined BoNT/A LCs, including a-helices and B-sheets, remained relatively unchanged during
1 ns dynamics trajectories. However, conformational flexibility was observed in surface loops bordering the substrate binding clefts
in both examined structures. Our analyses indicate that these loops may possess the ability to decrease the solvent accessibility of the
substrate binding cleft, while at the same time creating new residue contacts for the inhibitors. Loop movements and conforma-
tional/positional analyses of residues within the substrate binding cleft are discussed with respect to BONT/A LC inhibitor binding
and our common pharmacophore for inhibition. The results from these studies may aid in the future identification/development of
more potent small molecule inhibitors that take advantage of new binding contacts in the BONT/A LC.

Published by Elsevier Ltd.

1. Introduction serotype A (BoNT/A) in humans is 1-5ngkg '2?

Annually, numerous cases of accidental BONT poison-

Botulinum neurotoxins (BoNTs) are secreted by anaero- ing are reported in both humans and animals.! Further-
bic spore-forming bacteria Clostridium botulinum, and more, as BoNTs continue to gain popularity as: (1)
are the most poisonous of known biological substances. therapies for muscle hyperactivity and spasticity* 7 and
It is estimated that the lethal intravenous dose of BONT (2) preferred agents for a range of cosmetic applica-
tions,®1° inadvertent overdosing (requiring immediate

I toxin inhibition) may become problematic. More omi-

Abbreviations: BoNT, botulinum neurotoxin; BoNT/A, botulinum nous is the fact that BoNTs have been weaponized in

neurotoxin serotype A; BoNT/B, botulinum neurotoxin serotype B; highly toxic aerosol form, and malevolent airborne
. . . . . bl

LC, light chain; HC, heavy chain; Rmsd, rms deviation. release and/or food contamination pose a significant

Keywords: Bioterrorism; Botulinum neurotoxin; Drug discovery; Inhi- . .
e - e v, threat to both civilians and military personnel.>!! In
bitors; Molecular dynamics; Molecular modeling; Pharmacophore;

Metalloprotease. light of the. le'thality of BoNTs, and theéongevity of

* Corresponding authors. Tel.: +1 301 846 5791; fax: +1 301 846 6106 the paralysis induced by these enzymes, = there is a
(R.G.); tel.: +1 301 619 4246; fax: +1 301 619 2348 (S.B.); e-mail pressing need for a better understanding of how inhibi-
addresses: gussio@ncifcrf.gov; sina.bavari@amedd.army.mil tors might interact with these toxins.
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BoNTs are composed of a heavy chain (HC) (100kDa)
and a light chain (LC) (50kDa), which are linked by a
disulfide bridge.'* The HC is responsible for: (1) binding
to surface receptors on cholinergic nerve terminals; (2)
plasma membrane penetration via receptor mediated
endocytosis; and (3) toxin release into the nerve cyto-
sol."*15 For BoNT/A, a protective belt extending from
the translocation domain of the HC wraps around the
LC and shields the substrate binding cleft prior to neur-
onal internalization.'® The LC (also referred to as the
catalytic domain) separates from the HC under the
low pH conditions of the endosome, and acts as a zinc
metalloprotease that cleaves SNARE (soluble NSF-eth-
ylmaleimide-sensitive factor attachment protein recep-
tor) proteins.!*!> SNARE proteins are involved in
membrane fusion and the exocytosis of neurotransmitter
containing vesicles.!” BoNT serotypes A and E cleave
SNAP-25  (synaptosomal-associated  protein  of
25kDa),!8 serotypes B, D, F, and G cleave VAMP (ves-
icle-associated membrane protein) or synaptobrevin,'®-2?
and serotype Cl cleaves both SNAP-25 and syntaxin
1.%3 Following BoNT LC mediated cleavage of SNARE
proteins, acetylcholine release into neuromuscular syn-
apses is compromised, and paralysis ensues.

In a recent report,?* we identified novel, small (nonpept-
idic) molecule leads that inhibit BONT/A LC metallo-
protease activity by up to 62% at 20uM
concentrations, and we developed a common pharmaco-
phore for these inhibitors based on conformational
analyses and molecular docking studies** (Fig. 1 shows
the two-dimensional structures of two of the most po-
tent of these inhibitors, which will be referred to in the
text). In this study, we used molecular dynamics to ex-
plore how the motion of residues in and around the
BoNT/A LC substrate binding cleft might affect inhibi-
tor binding. In general, the reported analyses support
the crystallographically determined structures of
BoNT/A LCs that were obtained from the holotoxin
(PDB refcode = 3BTA)!® and PDB refcode = 1IE1H
(two LCs engaged in intermolecular autocatalysis)*>—
o-helices and B-sheets remained stable over the course
of the dynamics simulations. However, our results do
suggest that surface loops'>!%2> may reorient to par-

HN/\/\NH
D 5
| P

cl N HN
7]

X

cl N

OH O Q2-15
Michellamine B

Figure 1. Two-dimensional structures of BONT/A LC metalloprotease
inhibitors michellamine B and Q2-15. Michellamine B potency: 62%
inhibition at 20uM concn; Q2-15 potency: 60% inhibition at 20 uM
concn.

tially shield the substrate binding cleft following LC re-
lease from the HC, and that these loop movements may
create new binding surfaces for inhibitors, and/or facili-
tate inhibitor desolvation. Molecular docking studies
using previously identified small molecule inhibitors of
BoNT/A LC metalloprotease activity?* have been used
to refine our common pharmacophore.?*

2. Methods
2.1. Molecular modeling

The BoNT/A holotoxin X-ray structure (PDB code =
3BTA!'9) includes both the HC and the LC. First, the
HC, which is composed of the translocation domain
(residues A448—A872) and the receptor binding domain
(residues A873-A1295), was removed from the struc-
ture, as: (1) access to the substrate binding cleft of the
BoNT/A is completely blocked by the protective belt
of the HC;'31¢ (2) it is the reduced form of this enzyme
(i.e., the disulfide bridge connecting the HC and the LC
is broken) that displays peptidase activity;'®>?® and (3)
the BONT/A LC alone (i.e., without the HC component)
is active.?>?” Hydrogens were added to the LC (residues
A1-A415, which are complementary to the residues of
the 1IE1H BoNT/A LC structure (see below),>’) and
the structure was energy refined using the DISCOVER
(Accelrys, San Diego, CA) program’s cff91 force field.
The zinc ion, and coordinating residues (H222, E223,
H226, and E261) were fixed to their original crystallo-
graphic coordinates. The molecular mechanics energy
refinement involved applying 2000kcal/mol per A® of
force that was stepped off the structure in 100kcal/mol
decrements by minimizing with conjugate gradients until
the norm of the gradient was 0.01 kcal/A%.2%2° The coor-
dinates of the energy-refined model were within the
experimentally determined X-ray crystallographic reso-
lution, and were used as a starting point for molecular
dynamics simulations.

Molecular dynamics were performed using DISCOVER
3.0, and involved 200 ps of direct velocity scaling (cff91
force field, distance dependent dielectric, 0.5fs time step,
initial temperature = 10K, final temperature = 300K),
followed by dynamics using the Berendsen method of
temperature-bath coupling (0.5fs time step; 300K) to
I ns. Initially, at least 100 lowest energy structures and
10 highest energy structures were used to analyze
BoNT/A LC conformers collected over the course of
the dynamics simulation.

The X-ray structure PDB code = 1E1H? is composed of
two LCs engaged in the intermolecular autocatalysis of
a peptide bond located in corresponding loops (com-
posed of residues 232-258). For these studies, one of
the LCs and all water molecules were removed from
the X-ray crystal structure; the LC composed of residues
A7-A249 and B251-B415 was chosen for dynamics
simulations. Several residues were missing from surface
loops of the crystal structure: L1199, E200, V201,
D202, T203, N204, P205, L206, Y250, and N393. These
missing residues were built into the structure using
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corresponding residues in the 3BTA BoNT/A LC as
templates. Following, hydrogens were added and the
1E1H BoNT/A LC was subjected to the same molecular
mechanics and molecular dynamics protocols as de-
scribed for the 3BTA BoNT/A LC (see above). At least
100 lowest energy structures and 10 highest energy struc-
tures from the dynamics trajectory were used to analyze
conformers of this BONT/A LC.

Inhibitors were docked by combining molecular
mechanics minimizations with the hydropathic scoring
function HINT (eduSoft, Richmond, VA) in an iterative
manner to achieve optimal complementarity with
BoNT/A LC substrate binding clefts.?®?° With regard
to BoNT/A LC dynamics structures, 3BTA structures
collected up to 225ps following trajectory equilibration
were found to possess suitable complimentary for mic-
hellamine B docking; for 1E1H, structures collected up
to 205 ps following trajectory equilibration were found
to possess suitable complementarity for docking Q2-
15. Lowest energy structures from these trajectory
ranges were subsequently used in the docking studies.
For 3BTA, this corresponded to a structure collected
at 188.5ps; for 1E1H this corresponded to a structure
collected at 123.5ps. These two structures were refined
with molecular mechanics as described above. Follow-
ing, compounds were manually docked into the BoNT/
A LC substrate binding clefts of the indicated dynamics
models, as well as the molecular mechanics ‘only’ refined
X-ray crystal structures, and van der Waals violations
>0.25A were removed by small adjustments to inhibi-
tor positioning and enzyme side-chain torsion angles.
The inhibitor-enzyme structure coordinates were mini-
mized in the same manner as described above, and were
subjected to hydropathic analyses, using the program
HINT, to eliminate/reduce unfavorable contacts.
Coordinates for the docked models are available upon
request.

2.2. Compound information and HPLC-based assay

Michellamine B (Fig. 1)** was obtained from the
National Cancer Institute, and Q2-15 (Fig. 1)** was
obtained from Dr. Jonathan Vennerstrom, University
of Nebraska Medical Center. The HPLC based assay
used to quantitate BoNT/A LC inhibition has been
described in detail elsewhere.?%-3!

3. Results and discussion

Molecular dynamics simulations were used to evaluate
BoNT/A LC conformations at 300K over 1ns. These
studies were initiated to answer the following question:
how might residue movements in and around the
BoNT/A LC substrate binding cleft affect predicted
inhibitor binding modes,?* and how might this informa-
tion be used to refine the common pharmacophore for
BoNT/A LC inhibitors?** Answers to this question will
provide important information for ongoing studies to
develop our lead inhibitors into therapeutically viable
countermeasures against BONT/A LC metalloprotease
activity.

3.1. Comparisons of BoNT/A LCs following dynamics
simulations

Two BoNT/A LC structures were examined. One
BoNT/A LC was taken from the X-ray crystal structure
of the holotoxin (PDB refcode = 3BTA;!°) the other was
obtained from a recently released X-ray crystal structure
of two LCs engaged in intermolecular autocatalysis
(PDB refcode = 1E1H.%>*) With regard to the dimeric
1E1H X-ray crystal structure, BONT/A LC autocataly-
sis has been observed in solution, and may occur via
an intermolecular route.’?33 Hence, these atomic co-
ordinates® provide evidence to structurally explain a
mechanism of intermolecular BoNT/A LC auto-
catalysis.?>32:33

Following the dynamics simulations, analyses of at least
100 lowest-energy and 10 highest-energy structures from
the trajectories of both BONT/A LCs did not reveal the
existence of significantly different conformations of this
enzyme (Table 1). For example, individual superimposi-
tions across all backbone atoms of each of the 100 low-
est-energy conformers from the dynamics trajectory
of the 3BTA BoNT/A LC with that of the average
structure (from the same trajectory) resulted in a mean

Table 1. Comparisons of BONT/A LC models
BoNT/A LC structures Rmsd?*

All (A) Loops 1-3  Only o-helices_
omitted (A) and B-sheets (A)

3BTA
Crystal versus 4.0 2.7 1.8
dynamics avg.
Dynamics avg. 0.76¢
versus 100 L.E confs.”
Dynamics avg. 0.86°
versus 10 H.E. confs.
IEIH
Crystal versus 3.8 2.4 1.8
dynamics avg.
Dynamics avg. 0.71°
versus 100 L.E confs.
Dynamics avg. versus 0.73¢%
10 H.E. confs.
3BTA versus 1E1H
Crystal versus crystal 2.2 1.1 0.57
Dynamics avg. versus 3.8 2.4 1.7

dynamics avg.

# All superimpositions were performed using backbone atoms.

YL E. confs. = lowest-energy conformers from the trajectory.

°H.E. confs. = highest-energy conformers from the trajectory.

9The average rmsd for 100 L.E. confs. from the 3BTA dynamics
trajectory compared with the average structure from the same tra-
jectory (rmsd range = 0.64~0.94/°\).

¢The average rmsd for 10 H.E. confs. from the 3BTA dynamics tra-
jectory compared with the average structure from the same trajectory
(rmsd range = 0.70-0.99 A).

"The average rmsd for 100 L.E. confs. from the 1E1H dynamics tra-
jectory compared with the average structure from the same trajectory
(rmsd range = 0.61—0.941&).

€The average rmsd for 10 H.E. confs. from the 1E1H dynamics tra-
jectory compared with the average structure from the same trajectory
(rmsd range = 0.63-0.79 A).
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(b)

Figure 2. Comparisons of BONT/A LC models. (a) All backbone atoms superimposition of the BONT/A LCs from X-ray crystal structures PDB
refcodes = 3BTA (red) and 1E1H (blue); (b) all backbone atoms superimposition of the 3BTA BoNT/A LC X-ray crystal structure (green) and its
dynamics average structure (magenta). Loops 1-3 are shown as ribbons; (c) all backbone atoms superimposition of the 1E1H BoNT/A LC X-ray
crystal structure (green) and its dynamics average structure (magenta). Loops 1-3 are shown as ribbons.

rmsd of only 0.76 A (range = O.61—1.()A), with a stand-
ard deviation of 0.95A (Table 1). Comparable results
were obtained when comparing lowest-energy con-
formers from the dynamics simulation of the 1EIH
BoNT/A LC with the average structure from its trajec-
tory (Table 1). Additionally, the secondary structures
(i.e., a-helices and B-sheets) of the 3BTA and 1E1H
BoNT/A LC X-ray structures were nearly identical
(Fig. 2a), and remained so throughout these analyses
(Table 1).

3.2. BoNT/A LC surface loop movements

In contrast, the molecular dynamics studies did provide
evidence that surface loops bordering the substrate
binding clefts of the examined BoNT/A LCs possess
the ability to undergo movement that may be important
for optimizing inhibitor binding. The surface loops,!2
referred to as: loop 1 (residues 48-78); loop 2 (residues
167-180); and loop 3 (residues 232-258) for the remain-
der of the text (Fig. 2b and c), were the main contribu-
tors to conformational differences between average
structures obtained from the dynamics simulations and
original X-ray crystallographic structures (Table 1). In
accordance with these results, B-factors for residues
forming o-helices and B-sheets, which remained stable
over time (as described above, Table 1), possess, in gen-
eral, greater thermodynamically stability than residues
in the indicated loops. Furthermore, the observed loop
movements in both LC structures, which were solved
under different crystallographic conditions, were very
similar in nature. Segelke et al.?® and Lacy and Stevens'?
have suggested that conformational changes in surface
loops, which are also found in BoNT/B LC X-ray struc-
tures,>3> may impact substrate recognition/binding
and/or catalysis. The fact that our analyses indicate
the possibility of conformational changes in these loops
supports their hypotheses.

Observed loop 1 (residues 48-78) movements during
dynamics simulations indicated that this structural fea-
ture may play an important role in inhibitor binding
(Fig. 2b and c¢). Interestingly, during the dynamics simu-

lations of both the 3BTA and the 1E1H BoNT/A LCs,
loop 1 possessed the ability to move toward and par-
tially into the substrate binding clefts. Furthermore, it
should be noted that the intermolecular lysis observed
in the 1E1H structure did not impact loop 1’s position
in the X-ray crystal structure, and therefore would prob-
ably not play a significant role in predetermining the
position of this loop.

Taking this information into consideration, the exam-
ined BoNT/A LC dynamics trajectories may provide
snapshots of possible loop 1 movement. Specifically,
the two X-ray crystal structures show loop 1 in a more
‘open’ conformation, allowing for unimpeded access to
a solvent exposed cleft; however, dynamics simulations
appear to indicate that the natural movement of loop
1 may allow it to reorient toward the LC substrate bind-
ing cleft, and it is this relatively more ‘closed’ conforma-
tion that may present additional enzyme contacts that
facilitate inhibitor or substrate binding. At the same
time, loop 1 movement partially shields the cleft from
the solvent interface, which might aid the catalytic proc-
ess. Future docking studies of the most potent BONT/A
LC inhibitor to date (a pseudo-peptide possessing a ter-
minal 3-phenyl-2-thiol-propionyl attached via an amide
bond to the N-terminus of RATKML (K; = 300nM),>%)
and a rationalization of the SAR that accompanies this
inhibitor,3® would help to clarify which conformation of
the enzyme may be the active form.

Loop 2 (residues 167-180) in the X-ray structure of the
3BTA LC is oriented away from the substrate binding
cleft—due to the presence of residues from the translo-
cation domain protective belt (Fig. 2b). In the absence
of the protective belt, this loop adopted a new conform-
ation (i.e., during the dynamics simulations) that
brought it into closer association with the substrate
binding cleft. Similar orientation of loop 2 toward the
substrate binding cleft was also observed for the 1E1H
LC (Fig. 2c). However, loop 2 in the 1E1H X-ray struc-
ture was positioned in such a way that it was already ori-
ented toward the substrate binding cleft (as opposed to
this loop in the 3BTA BoNT/A LC x-ray structure), thus
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providing further evidence that this loop is in closer
association with the substrate binding cleft.

Loop 2 orientation toward the substrate binding cleft
may: (1) provide additional ligand contacts and (2) de-
crease binding cleft solvent accessibility, which would
reinforce inhibitor/substrate binding by creating a more
favorable environment for desolvation. Indeed, it is pos-
sible that the combined movements of both loop 1 and
loop 2 help induce the required conformation of the
(otherwise flexible) substrate, SNAP 25, which is neces-
sary for optimal binding. From a teleological perspec-
tive, perhaps taking advantage of such surface loop
movements may have facilitated the evolution of highly
toxic and substrate specific BONT serotypes from a com-
mon ancestor.

Loop 3 (residues 232-258) movement during dynamics
simulations of both examined BoNT/A LCs did not af-
fect accessibility to the enzymes’ substrate binding clefts.
Both the 3BTA LC loop 3 and the 1E1H LC loop 3 col-
lapsed toward space on the enzyme’s surface (Fig. 2b
and c) that was originally occupied by either: (1) the
holotoxin translocation domain and its protective belt
component (in the case of the 3BTA BoNT/A LC) or
(2) the loop 3 of the opposing LC in the dimeric struc-
ture (in the case of the 1EIH BoNT/A LC).

3.3. Loop movements and BoNT/A LC inhibitor binding
In a previous report,* molecular docking studies were
used to define three regions in the BONT/A LC substrate
binding cleft that are hypothesized to be contact subsites
for identified BoNT/A LC inhibitors. These regions in-
cluded hydrophobic binding subsite 1 (composed of resi-

F162
N
\

K65 ™= \\

t

P A

dues F162, F177, F193, and T219), binding subsite 2
(composed of residues C164, T175, H226, R230, P238,
and E260), and a more loosely organized polar contact
region (composed of residues E55, Q161, E163, K165,
and R176). During these earlier studies, a molecular
mechanics refined BoNT/A LC from the 3BTA X-ray
crystal structure served as the toxin model.?* Observed
reorientations of BoONT/A LC surface loops bordering
the enzyme’s substrate binding cleft (during dynamics
simulations) are now considered with respect to previ-
ously specified inhibitor contact subsites in both the
3BTA and the 1E1H BoNT/A LC models.

The composition of binding subsite 1 (also referred to as
the S| binding site?>3®) remained relatively unchanged
during the dynamics simulations, as examination of
structures from the dynamics trajectories of both the
3BTA LC and the 1EIH LC showed that previously
identified residues: F162, F187, F193, and T219** com-
posed this subsite consistently over time. Consequently,
binding subsite 1 is a stable pocket where hydrophobic
collapse between the enzyme and moieties from our
inhibitors, such as a chloro, methyl, methoxy, or a dihy-
dro imidazolyl, is likely to occur.?* For example, when
one of our previously identified inhibitors, Q2-15 (Fig.
1) (60% inhibition at 20uM concn),?* is docked into
either a structure from the IE1H BoNT/A LC dynamics
trajectory (a low energy structure obtained at 123.5ps
following trajectory equilibration), or the mechanics
refined X-ray structure of 1E1H, one of the chloro sub-
stituents engages in favorable contacts with the hydro-
phobic side chains of residues in subsite 1 (Fig. 3a and
b). At the same time, the accompanying quinoline nitro-
gen is in close proximity to the enzyme’s catalytic engine,
where it is positioned such that it may either engage in a

Figure 3. (a) BONT/A LC inhibitor Q2-15 docked in the molecular dynamics model for the 1EIH BoNT/A LC. Enzyme atom colors: subsite 1
carbons (light blue); subsite 2 carbons (magenta); polar contact region carbons (orange); all other carbons (green); oxygen (red); nitrogen (blue);
sulfur (yellow). Q2-15 carbons are white and chlorine atoms are light green. BONT/A LC loops 1, 2, and 3, as well as the side chains of specified
residues of these loops are shown in thicker stick. Residues with brown stripes are new contacts that are observed when docking Q2-15 in the
dynamics BONT/A LC (as opposed to contacts made by Q2-15 docked in the molecular mechanics refined X-ray structure); (b) BONT/A LC inhibitor
Q2-15 docked in the molecular mechanics refined X-ray crystal structure of the lE1H BoNT/A LC. All colors and stick thickness are as described for
(a). A comparison of (a) and (b) shows how loop 1 reorientation provides additional contacts for the inhibitor.
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direct interaction with the zinc ion, or displace the
engine’s catalytic water. In a similar manner, Figure 4a
and b show how the methoxy and methyl substituents
of michellamine B (Fig. 1) (62% inhibition at 20uM
concn) naphthalene ring A engage in favorable hydro-
phobic interactions with residues of binding subsite 1
in both a structure from the 3BTA dynamics simulation
(a low energy structure obtained at 188.5ps following
trajectory equilibration) and the mechanics refined
X-ray structure of 3BTA, respectively. Additionally, as
observed for the quinoline nitrogen of Q2-15, the
hydroxyl moiety of naphthalene ring A is positioned
such that it may interact directly with the enzyme’s cata-
lytic zinc, or displace the water that is used by the
enzyme’s catalytic engine.

The binding mode of Q2-15 in the dynamics structure of
1E1H (Figure 3a) also shows that loop 1 orientation to-
ward the enzyme’s substrate binding cleft creates a new
hydrophobic pocket near subsite 1 (composed of resi-
dues K65 (hydrophobic side chain), V67, and P68),
which provides a complimentary binding surface for
three methylene carbons that form half of the flexible
linker connecting the inhibitor’s two 7-chloroquinoline
components (Fig. 3a). These additional hydrophobic
contacts are not observed when Q2-15 is docked in the
more ‘open’ mechanics refined structure (Fig. 3b). In like
manner, michellamine B binding in the 3BTA dynamics
structure (Fig. 4a) shows the methyl substituent of naph-
thalene ring A engaging in a hydrophobic contact with
V67 (this contact is not observed when michellamine B
is docked in the 3BTA mechanics refined structure
(Fig. 4b)).

The solvent accessibility of binding subsite 2 is reduced
during the dynamics simulation of the 3BTA structure—
due to loop 2 movement (as indicated above, loop 2 was

already oriented toward the substrate binding cleft in
the 1E1H X-ray crystal structure). However, these
changes had little affect on the amino acids composing
this subsite: C164, H226, R230, E260, and P238 re-
mained key residues surrounding this pocket. Figure
3a and b show how Q2-15 binding within this subsite
is very similar in both the 1E1H dynamics structure
and the 1E1H mechanics refined X-ray structure, respec-
tively. Specifically,the other Q2-15 chloroquinoline moi-
ety docks in this subsite in such a way that the quinoline
ring sits in close proximity to the side chain of R230
(with the quinoline nitrogen pointed toward that solvent
interface), while the 7-chloro substituent of this moiety
points into the binding subsite and engages in favorable
hydrophobic contacts with the side-chain imidazole of
H226 and the side-chain methylenes of E260.

Loop 2 reorientation is more dramatic when comparing
michellamine B docked in the 3BTA dynamics structure
(Fig. 4a) and the mechanics refined structure (Fig. 4b).
Figure 4a shows how loop 2 reorientation increases
the depth of this subsite—compared to the crystal struc-
ture (Fig. 4b)—with the entire loop rising as it moved to-
ward the enzyme’s binding cleft. As a result, a new
boundary for this end of the substrate binding pocket
is created, and solvent accessibility is reduced. With re-
gard to michellamine B binding in subsite 2, the meth-
oxy substituent of naphthalene ring B packs into space
located behind H226 (in a manner similar to one of
the chloro substituents of Q2-15) in both the 3BTA
dynamics structure and the mechanics refined X-ray
crystal structure. In contrast, the methyl substituent on
naphthalene ring B in the dynamics structure sits behind
loop 2 and engages in hydrophobic contacts with the
side-chain methylenes of residue E170 (Fig. 4a), while
this same substituent in the molecular mechanics refined
structure of 3BTA is more solvent exposed (Fig. 4b).

Figure 4. (a) Michellamine B docked in the molecular dynamics structure for the 3BTA BoNT/A LC. All colors and stick thickness are as described
in the caption for Figure 3a; (b) michellamine B docked in the molecular mechanics refined X-ray crystal structure of the 3BTA BoNT/A LC. All
colors and stick thickness are the same as described in Figure 3a. A comparison of (a) and (b) shows that their are more favorable electrostatic and
hydrophobic contacts between michellamine B and the BONT/A LC dynamics structure, and that these interactions are the result of loop

reorientations toward the substrate binding cleft.
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Residues in the previously identified polar contact re-
gion (composed of residues ES5, Q161, E163, K165,
and R1762%) for inhibitors also remained consistent over
the course of the dynamics trajectory. However, loop 1
reorientation partially covers this contact region, leaving
it less solvent accessible, and also brings new contact res-
idues into association with this binding region.

Models of Q2-15 docked in both the BoNT/A LC
dynamics structure (Fig. 3a) and the mechanics refined
X-ray structure (Fig. 3b) indicate that the inhibitors
ionizable secondary nitrogen engages in a hydrogen
bond with the side-chain carboxylate of E163. Further-
more, due to loop 1 reorientation in the dynamics struc-
ture, the inhibitor’s secondary nitrogen also engages in
an ion-dipole interaction with the backbone carbonyl
of K65 (Fig. 3a). For comparison, the ionizable nitrogen
of the michellamine B tetrahydro-isoquinoline moiety
attached to naphthalene ring B engages in a hydrogen
bond with the side-chain carboxylate of residue ESS5,
and is also in close proximity to the side chain carboxy-
late of E163, in both the dynamics and molecular
mechanics refined models of 3BTA. Furthermore, in
the 3BTA dynamics structure (Fig. 4a), loop 1 reorienta-
tion resulted in additional residue contacts with the 1,3-
dimethyl-1,2,3,4-tetrahydro-isoquinoline-6,8-diol  moi-
ety attached to naphthalene ring B. Specifically, the
side-chain carboxylate of E63 is located near the ioniza-
ble nitrogen of the 1,3-dimethyl-1,2,3,4-tetrahydro-iso-
quinoline-6,8-diol moiety, and engages in a hydrogen
bond with the 8-hydroxyl substituent, while the moieties
3-methyl substituent engages in a hydrophobic interac-
tion with the P61 pyrrolidine (Fig. 4a).

In general, Q2-15 and michellamine B, although struc-
turally very different, engage in similar contacts in the
BoNT/A LC substrate binding cleft—regardless of the
enzyme model that is used. These two compounds also
share comparable pharmacophoric features,>* which
would seem to explain their comparable inhibitory po-
tency. Furthermore, analyses of inhibitors docked in
the dynamics structures, versus mechanics refined X-
ray crystal structures of both 1E1H and 3BTA, indicate
that the models obtained from the dynamics simulations
provide additional inhibitor contacts that may be
important for inhibitor binding. In particular, addi-
tional hydrophobic contacts near subsite 1, additional
contacts at the polar contact region, and a reduction
in the solvent accessibility at subsite 2 (following loop
2 reorientation toward the substrate binding cleft) all
seem to suggest that possible loop reorientations toward
the BONT/A LC substrate binding cleft may be impor-
tant for understanding inhibitor/substrate binding, and
consequently, for the future development of small mole-
cule inhibitors.

3.4. Potential silver ion binding sites

We have also reported that silver ion inhibits BoNT/A
LC metalloprotease activity (100% inhibition at
>5uM) without displacing the catalytic zinc ion or
causing enzyme denaturation.?* Observed loop 1 move-
ment toward the substrate binding cleft may aid in par-

Figure 5. A proposed binding site for silver ion in the dynamics
structure of the 3BTA BoNT/A LC. Oxygen atoms are red and
nitrogen atoms are blue. The silver ion is shown as a light blue sphere
and the zinc ion is a magenta sphere. All other atoms are green. Loops
1, 2, and 3 are shown in thicker stick. Loop 1 reorientation partially
shields the polar contact region from solvent, creating a pocket that
may potentially trap a silver ion.

tially explaining these results. In particular, Figure 5
shows how loop 1 reorientation in the 3BTA dynamics
structure creates a pocket that could potentially trap a
silver ion. In Figure 5, a silver ion is shown engaging
in an ionic interaction with the side-chain carboxylate
of D158, and ion-dipole interactions with the side-chain
amide carbonyl of Q161, and the backbone carbonyl
oxygens of V69 and 1160. In addition to the above con-
tacts, the silver ion might also interact with other resi-
dues in the polar contact region, including E163. It
should also be noted that binding subsite 2 may provide
a potential silver ion contact region, with the ion coordi-
nated to the C164 side-chain thiol, and engaging in elec-
trostatic interactions with surrounding residues H226
and E260. Interestingly, there are no other regions in
or near the substrate binding cleft that would provide
similar clusters of residues for silver ion ‘trapping’.

3.5. Refinement of the BoNT/A LC inhibitor
pharmacophore

Figure 6 shows the components of our pharmacophore
for BONT/A LC inhibition.?* Components A and B in
Figure 6 represent two planar moieties, one of which
contains a heteroatom that may engage in an interaction
with the enzyme’s catalytic zinc, or potentially replace
the water used by the zinc engine during substrate lysis.
Examples of components A and B include the two-quin-
oline rings of Q2-15 (Figs. | and 3a and b) and the two
naphthalene rings of michellamine B (Figs. 1 and 4a and
b). In Figure 6, pharmacophore components C and D
are two hydrophobic substituents, which are predicted
to interact with subsites 1 and 2 in the substrate binding
cleft, respectively. Examples of components C and D in-
clude the two chloro substituents of Q2-15 and the
methoxy substituents (attached to the naphthalene
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Figure 6. Refined pharmacophore for BONT/A LC inhibition. Planar
components A and B are blue dashed rectangles. The dashed circle in
plane A represents a heteroatom. Hydrophobic components C and D
are shown as light blue circles. The positive ionizable component E of
the pharmacophore is shown as a red circle. Residues that remained
consistent when docking inhibitors in predicted binding subsites of
both dynamics and molecular mechanics ‘only’ refined models are
shown as gray spheres. Residues E63, V67, and E170 are shown as a
gray spheres with dashed black boarders—to indicate that these amino
acids were found to participate when docking inhibitors in dynamics
structures.

rings) of michellamine B. Finally, the polar, ionizable
pharmacophore component E (Fig. 6) is hypothesized
to either engage in electrostatic or water mediated inter-
actions with residues in the polar contact region. Exam-
ples of component E include the secondary nitrogen of
Q2-15 and the secondary nitrogen of one of the tetra-
hydro-isoquinolines of michellamine B.

Comparisons between inhibitors docked in molecular
dynamics models (Figs. 3a and 4a) and inhibitors
docked in molecular mechanics refined models (Figs.
3b and 4b) indicate that inhibitor residue contacts in
binding subsites 1 and 2, and the polar contact region,
remain relatively consistent during the dynamic move-
ment of BONT/A LC. Moreover, our analyses indicate
that loop reorientations may bring additional residues
into play, which may serve to facilitate inhibitor bind-
ing. Based on these observations, the BONT/A LC inhib-
itor pharmacophore has been refined via the addition of
residues that are predicted to interact with specified
pharmacophore components (Fig. 6). Table 2 provides
an overview of the torsional angle ranges of residues
shown in Figure 6. In agreement with comparable dyn-
amic motion observed for the two BoNT/A LCs, tor-
sional ranges for the indicated contact residues also
follow similar trends.

4. Conclusions

These studies have, for the first time, used molecular
dynamics to explore conformationally available binding
contacts for our BONT/A LC inhibitors.?* Results from
dynamics simulations performed on two separate

Table 2. Torsional ranges for potential inhibitor contact residues shown in Figure 6

X4

13

12

A1

Residue

1EIH
High Low

3BTA
High Low

1E1H
High Low
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BoNT/A LCs indicated that the a-helices and B-sheets of
this enzyme remain stable over time, but that conform-
ational flexibility in surface loops surrounding the sub-
strate binding cleft may affect inhibitor binding.
Specifically, our results show that surface loops 1 and
2 may reorient, thereby creating additional residue—
inhibitor contacts, as well as serving to decrease the sol-
vent accessibility of the substrate binding cleft. Finally,
these studies have provided a unique opportunity to
reexamine BoNT/A LC inhibitor binding, and to further
refine a previously proposed pharmacophore for inhibi-
tion via the inclusion of potential binding subsite
contacts.
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