1-1-2004

Hospital Universitario, “La Paz”, Madrid, SPAIN

Michael G. Zeece
University of Nebraska - Lincoln, mzeece1@unl.edu

Gautam Sarath
University of Nebraska - Lincoln, Gautam.sarath@ars.usda.gov

John P. Markwell
University of Nebraska - Lincoln, jmarkwell2@unl.edu

N. Palmer
University of Nebraska - Lincoln

J. Steckelberg
University of Nebraska - Lincoln

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/biochemtrysarath

Part of the Biochemistry, Biophysics, and Structural Biology Commons

http://digitalcommons.unl.edu/biochemtrysarath/3
Microarray Assessment of IgE-Binding Proteins in Lentils (Lens culinaris L.)

M. G. Zeece1, G. Sarath2, J. Markwell3, N. Palmer1, J. Steckelberg1, J. Schultz2, C. Pascual5; 1Food Science, University of Nebraska, Lincoln, NE, 2USDA-ARS, Lincoln, NE, 3Biochemistry, University of Nebraska, Lincoln, NE, 4University of Nebraska, Lincoln, NE, 5Hospital Universitario, “La Paz”, Madrid, SPAIN.

RATIONALE: Proteomic technology has been shown to have distinct advantages for allergen characterization and identification. Therefore, we have used 2-D electrophoresis and protein microarrays to characterize the profile of allergens and assess their level in lentils.

METHODS: Lentil varieties were extracted and centrifuged to obtain 2S, 7S and 11S fractions. The profile of IgE-binding proteins in these fractions was assessed using lentil-allergic sera, by immunoblotting of 2-D electrophoretic separations. The level of IgE-binding was also assessed using protein microarrays. Arrays of covalently attached proteins were first incubated with lentil-allergic sera, followed by incubation with fluorescently-labeled anti-IgE detection antibody. Laser-induced fluorescence was used to detect IgE-binding.

RESULTS: Immunoblotting of electrophoretic separations showed several regions of IgE-binding that were consistently observed for all varieties. Major IgE-binding was observed for isoforms of 31 and 48 kDa spots. These proteins are of particular interest because of their low abundance, but high IgE-binding. Comparatively less IgE-binding was found for 12 and 14 kDa spots. Microarray analysis showed that IgE-binding of the 11S fraction was significantly greater than all other fractions. Microarrays enabled quantitative assessment of IgE-binding.

CONCLUSIONS: The application of proteomic technologies resulted in characterization of IgE-binding protein profile and determination of their level in lentils. Microarrays represent a promising tool for allergen investigation, detection and diagnosis.

Funding: University of Nebraska