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By scattering from a variety of acoustic phonons, a complete stiffness tensor has been determined
for crystalline b-HMX. The results are compared with recent experimental and theoretical
determinations of the elastic constants and bulk modulus. Reasons for disagreement are discussed in
terms of experimental limitations and anharmonic effects. The observed ordering of stiffness
constants,C11 s18.4 GPad, C22 s14.4 GPad, and C33 s12.4 GPad, is qualitatively associated with
physical phenomena including cleavage planes, patterns in crystal growth, and molecular packing.
This interpretation is further corroborated by the linear compressibilities plotted in three
crystallographic planes. The Voigt–Reuss–Hill bulk and shear moduli were found to be 9.9 and 3.7
GPa, respectively. The elasticity ofb-HMX is also discussed in relation to proposed mechanisms for
the initiation of detonation. ©2005 American Institute of Physics. fDOI: 10.1063/1.1883627g

INTRODUCTION

The structure-function relationship for many materials
remains a fundamental question in solid-state research. Con-
comitant with a broader understanding of this relationship,
the properties of solid-state materials are becoming increas-
ingly tunable.1–3 This comprehension, particularly for the
mechanical properties, is essential to the development of sec-
ondary explosives, such as HMXscyclotetramethylenetetran-
itramined, that characteristically balance low sensitivity to
detonation with high power. Elasticity is fundamental to un-
derstanding such materials’ mechanical response to stress.
The elastic constants, which arise from intermolecular
forces, provide a window into the microscopic interactions
that affect phonon propagation, lattice compressibility, and
thermal conductivity. A well-developed experimental basis,
particularly for elasticity, not only provides insight into the
fundamental cohesive forces of solids but also allows con-
struction of theoretical potentials that more accurately repro-
duce and predict the properties of materials.

A detailed understanding of the mechanical properties
can also provide insight into solid-state reactivity. The origi-
nal picture of organic solid-state reactivity was developed
using the topochemical principle.4 However, as more organic
systems were studied, application of this principle became
increasingly limited. Evidence for an active role of the lattice
led to an extended, analytical development of a model for
solid-state reactivity.5,6 This model incorporates local strain
fields and cooperative effects such as exciton–phonon or
phonon–phonon coupling. Strain fields have been proposed
to be fundamental to understanding the photochemically in-
duced, solid-state reactions observed in diundecanoyl
peroxides5 and 2,5-distyrylpyrazinesDSPd.6 In the context of
strain-mediated solid state reactivity, mechanochemical

transformations, such as detonation, are a natural branch of
solid-state reactions. While the phenomenon of detonation is
well known, the initial mechanism by which mechanical en-
ergy becomes available for molecular dissociation, other than
by thermalization, is not.7 Insight into the mechanisms of
detonation is limited due to the complicated spatial and tem-
poral regimes associated with different stages of detonation.
However, our focus is with theinitial shockwave-induced
molecular response, i.e., on the femtosecond time scale.
Since the shockwave traverses, at least initially, an intact
lattice, the solid’s mechanical properties are particularly ger-
mane to understanding the material’s response to this initial
step of detonation.

The goal of this research is to experimentally determine
a complete stiffness tensor forb-HMX. This ambient
pressure- and temperature-stable polymorph crystallizes in
the monoclinic system.8,9 As a consequence of this low sym-
metry, 13 elastic constants are required to fully describe the
molecular displacements associated with an arbitrary elastic
wave. This significantly complicates the experimental deter-
mination of a complete stiffness tensor. These complications
have, in part, led to a lack of experimental data and of con-
sistency among the relatively few stiffness tensor determina-
tions for molecular crystals, most of which are of low sym-
metry. Zaug has reported the first experimentally determined
stiffness tensor forb-HMX.10 However, due to limited
sample orientations, only five elastic constants were experi-
mentally accessible. While his work provides a first step to-
ward a better understanding of the mechanical properties of
b-HMX, a complete picture of its elasticity can only be
drawn if all elastic constants are experimentally determined.

A variety of theoretical methods and potentials have
been used to successfully calculate the lattice parameters and
heat of sublimation forb-HMX.11–14 While these methods
are becoming increasingly competent at reproducing the
static properties, the more potential-sensitive dynamical
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properties have not been as widely investigated. Sewellet al.
have reported two separate calculations of the stiffness tensor
using the same quantum-chemistry-based force field in dif-
ferent types of molecular simulations.15,16 The earlier re-
ported elastic constants were calculated from a molecular-
dynamicssMDd simulation based on the Rahman–Parrinello
isothermal–isobaricsNpTd approach. The authors note that
determining the elastic tensor using this method, which used
an external barostat coupled to the lattice through the stress
tensor, is disadvantageous due to the sensitivity of this cou-
pling. This complication, coupled with a lower than expected
isothermal bulk modulus of 11.1 GPa, prompted a new
method of calculation. The second approach used an
isothermal–isochoric MD simulation coupled with a permu-
tation of the cell and its volume with anNpT Monte Carlo
method. This calculation produced a significantly less com-
pliant lattice for b-HMX. Such discrepancies in the calcu-
lated results require resolution by experiment.

In the next following sections, a brief introduction to
Brillouin scattering is given. All 13 elastic constants of
b-HMX are then presented and compared to the results of
earlier work. This is followed by a discussion of some spe-
cific elastic constants and linear compressibilities. Finally,
the role of elasticity with emphasis on shear deformation in
recently developed models for detonation is discussed.

THEORY

The theory of Brillouin scattering is well
documented.17,18 Near the Brillouin-zone center, the wave-
length of an acoustic phonon is on the order of hundreds of
unit cells. This mesoscopic scale permits modeling the ma-
terial as an elastic continuum with a propagating acoustic
wave described by

rüi = cijkl
]2ul

]r j ] rk
, s1d

which relates the densityr and the ith component of the
molecular displacement about the equilibrium positionui to
its spatial derivatives through the elastic coefficient tensor
cijkl . Substituting a plane-wave solution into Eq.s1d and us-
ing the long-wavelength approximation yield

scijklqkql − rn2dimdum
0 = 0, s2d

in which theqk,l are the appropriate direction cosines repre-
senting the phononq referenced to a Cartesian system. Non-
trivial solutions arise from the Christoffel determinant,

ucijklqkql − rn2dimu = 0, s3d

whose eigenvalues are related to the three acoustic velocities
for an arbitraryq. The polarization of the three acoustic
modes is often mixed. Therefore, for eachq there are two
quasitransverse modes, often differentiated as slow and fast
quasitransverse modes, and one quasilongitudinal mode.
When the elastic constants are not known, an overdetermined
set of experimental velocities can be used to calculate them
from Eq. s3d.

As an acoustic phonon travels through the lattice, the
molecular displacements generate a periodic fluctuation in

the local density. Bragg reflection from this “thermal grat-
ing” gives rise to the Doppler-shifted frequencies observed in
Brillouin scattering. The acoustic velocities are then calcu-
lated from these frequency shifts using the Brillouin shift
equation for an optically anisotropic medium,

dve = ±
nevi

c
Îni

2 + ns
2 − 2nins cosu, s4d

whereni andns represent, respectively, the refractive indices
of the crystal along the incident and scattered light direc-
tions, u is the angle between these directions,dve is the
angular frequency shift relative to the incident angular fre-
quencyvi, andne is the acoustic velocity. From these veloci-
ties, the elastic constants are determined using an iterative,
linear, least-squares minimization routine.19 The minimiza-
tion routine incrementally steps the elastic constants until a
minimum in the square of an error vector is found,

eTe= o
j

urne,j ,obs
2 − rne,j ,calc

2 u2. s5d

This minimum represents the set of elastic constants that
most accurately reproduces the experimental data.

EXPERIMENT

Crystal parameters

Optical quality, untwinned, single crystals ofb-HMX
were evaporatively grown from an acetone solution held at
20 °C. The P2l/n

space group and lattice parameters were
verified using x-ray diffraction and were consistent with
those reported by Kohnoet al.9 The crystals exhibited well-
formed faces predominately zonal to thea-crystallographic
axis. In order to assign the faces, the angles between all
zonal and capping faces were determined by optical goniom-
etry. The indices, which were subsequently corroborated by
single-crystal x-ray diffraction, are necessary to precisely de-
fine the scattering angleu.

In addition to a well-defined scattering geometry, the re-
fractive indices must be determined in order to solve Eq.s4d.
For b-HMX, the axes of the optical indicatrix are not con-
strained by symmetry to be coincident with all crystallo-
graphic axes. The principal directions for each unique face
were determined with near-normal-incidence specular reflec-
tion using the microspectroreflectometer described
elsewhere.20 The refractive indices, calculated from the
single-wavelength reflectivities using Fresnel’s Law, were
measured at 514.5 nm, which is the incident wavelength used
in the Brillouin experiments reported here.

The previously described four-circle Brillouin scattering
instrument, which allows rotation of the incident beam and
sample independently so that a greater number of phonons
can be sampled, was used with minimal modification.21 This
facilitates a complete determination of the stiffness tensor.
Frequency shifts were measured using a triple-pass Fabry–
Perot interferometer. Free spectral rangessFSRsd, were cali-
brated with pure liquid benzene, and ranged from 0.6 to
1.8 cm−1. At least three FSRs were used for each scattering
geometry using all polarization combinations,VV, VH, etc.
This standard designation for polarization is used for clarity
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but the actual polarizations were along the major and minor
principal directions, which were primarily vertical and hori-
zontal, respectively, to the scattering plane. The measured
Brillouin spectra are each a result of 50–200 summed inter-
ferometer scans depending on the scattering intensity of the
modes observed. A representative Brillouin spectrum of
b-HMX is shown in Fig. 1.

RESULTS

All 13 elastic constants forb-HMX, in standard Voigt
notation,22 are reported in Table I. The elastic constants were
determined from a set of 21 velocities found from a variety
of scattering geometries. Including an error of60.5° for an-
gular crystal and polarization alignment, the errors in the
refractive index measurement, and an error of ±0.003 cm−1

for determination of the acoustic-mode energy shifts, the un-
certainties in the elastic constants are estimated to be on the
order of 0.06 GPa. The average deviation of the experimental
velocities compared to those calculated from the minimized
elastic constants was 47.7 m/s or 2.4%. The largest absolute

error of 10% was observed for the quasilongitudinal mode
for the f001g phonon. Additionally, all principal minors of
the stiffness tensor determinant were found to be positive,
ensuring that the elastic constants represent a physically re-
alistic system.23

The elastic constants from three other reports are also
listed in Table I. In order for a valid comparison to be made
to these values, the Cartesian system to which the elastic
constants are referenced must be the same for all three sets.
We adopt the reference system of Sewellet al. with the Car-
tesianx andy axes parallel to thea- andb-crystallographic
axes, respectively, while thez axis is parallel to the recipro-
cal lattice vectorc* . Sewellet al. transformed Zaug’s stiff-
ness tensor into their reference frame, so the elastic constants
in Table I, representing Zaug’s experimental work as trans-
formed by Sewellet al., may be directly compared to our
results and those of Sewellet al.

DISCUSSION

Comparison with previous experiment and theory

While a complete stiffness tensor was reported by Zaug,
not all elements were completely determined by experiment.
For comparison, the sound velocities, which are, respec-
tively, calculated from the elastic constants determined in
Zaug’s and this work, are presented in three orthogonal
planes in Fig. 2. Inspection of Fig. 2 shows that Zaug’s ve-
locities are generally larger than those found in this work.
These faster velocities merely reflect that Zaug’s elastic con-
stants are generally stiffer than those determined here. How-
ever, the comparison among some elastic constants is more
relevant than others. Zaug’s experimental conditions most
directly relate the “empirically sensitive”10 constants,
CxxxxsC11d, CxxxzsC15d, CzzzzsC33d, CzzxzsC35d andCxzxzsC55d to
his measured values. The full, four-index, tensor notation is
used here to illustrate the phonon wave-vector dependence in
solving the Christoffel determinant for the elastic constants.
Zaug’s impulse stimulated light scatteringsISLSd experi-
ments were confined to a plane perpendicular to the
y-Cartesian axis. Therefore, the elastic constants in the ex-
panded Christoffel determinant that have an explicit associa-
tion with they-direction cosine cannot be experimentally de-
termined fromfx0zg phonons alone. Additionally, due to low
scattering intensity or possible ambiguity in mode assign-
ment, the quasitransverse modes were not used in Zaug’s
stiffness tensor minimization. Due to these experimental re-
strictions, the most pertinent comparison is among the five
elastic constants mentioned above.

Our results show a fair agreement with Zaug’s values for
C11, C33, and C55 with an average difference of approxi-
mately 16%. The agreement with the off-diagonal elastic
constants,C15 andC35, is less acceptable. Traditionally, these
elastic constants are the source of the greatest discrepancy.24

For arbitrary phonon directions in low-symmetry crystals,
the expanded Christoffel determinant yields a system of
equations in which the elastic constants are strongly coupled
to one another. Hence, as these equations become increas-
ingly complicated, the probability for a high propagation of
error grows.

FIG. 1. VV-polarized Brillouin spectrum forb-HMX. Scattering is from the
f0, 0.8787,20.4772g phonon and the FSR=1.013 cm−1. TS, TF and L de-
note, respectively, the slow and fast quasitransverse modes and the quasi-
longitudinal mode.

TABLE I. Comparison of the elastic constants forb-HMX.

Elastic
constants

sGPad
This
work

Zauga

sRef. 10d

Sewellet al.
s2002d

sRef. 15d

Sewellet al.
s2003d

sRef. 16d.

C11 18.41 20.8 19.4 22.2
C12 6.37 4.8 5.9 9.6
C13 10.50 12.5 8.4 13.2
C15 21.10 20.5 21.1 20.1
C22 14.41 26.9 17.5 23.9
C23 6.42 5.8 8.2 13.0
C25 0.83 21.9 3.2 4.7
C33 12.44 18.5 17.8 23.4
C35 1.08 1.9 0.2 1.6
C44 4.77 4.2 9.1 9.2
C46 2.75 2.9 2.4 2.5
C55 4.77 6.1 9.2 11.1
C66 4.46 2.5 9.8 10.1

a“Empirically sensitive” constants appear in boldface.
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Even though ISLS and Brillouin scattering are comple-
mentary methods for elasticity measurements, fundamental
differences in sample requirements provide reasons for dis-
agreement. ISLS often requires larger crystals than those
used in Brillouin scattering. These crystals are either cut or
coarsely ground and subsequently polished in order to access
the desired orientation. Internal defects can arise from me-
chanical grinding and polishing, especially for relatively soft
molecular crystals. The introduced internal strain may affect
the phonon dynamics. By being able to define any scattering
geometry without resorting to altering the crystal itself, the
Brillouin instrument used in these experiments facilitates
keeping these defect-related strains to a minimum.

Although the agreement between separate elastic con-
stants in the theoretical reports is varied, taken as a whole,
the elastic constants and bulk modulus reported here are in
better agreement with the earlier reported stiffness tensor of
Sewell et al. Because of its marked difference, particular
attention must be paid to theC22 elastic constant. Since the
y-axis is parallel to the high-symmetryb-crystallograpic axis
of the monoclinic lattice,C22 can be directly measured from
the f010g phonon longitudinal mode.17 We used a scattering
geometry that directly probed thisf010g phonon. Unfortu-
nately, three modes were not observed in this spectrum.
Therefore, a completely unequivocal assignment of the lon-

gitudinal mode could not be made. For reasons discussed
earlier, the comparison ofC22 with Zaug’s value is uncertain.

However, the higher theoretical values prompted a re-
analysis of our data. Use of a stifferC22 elastic constant,
comparable to that found in the second calculation by Sewell
et al., in the minimization routine, yielded much larger er-
rors. This error was particularly pronounced for the veloci-
ties associated with thef0yzg phonons. These spectra were
used as a benchmark for accuracy for two reasons. First, as
seen in Fig. 1, all three Brillouin modes were observed;
therefore, a definite differentiation between the quasitrans-
verse and quasilongitudinal modes can be made. Second, the
velocities measured in symmetrically equivalent scattering
geometries on three different crystals were reproducible
within 1%.

Furthermore, the theoretical elastic constants are isother-
mal. However, the discrepancy in a direct comparison to the
isentropic velocities would not produce an error of this mag-
nitude. Our overall better agreement with the earlier reported
theoretical stiffness tensor suggests that the Rahman–
ParrinelloNpTapproach may be suitable for determining the
elastic constants with the caveat that the theoretical potential
accurately represents the system.

Although the potential used by Sewellet al. provided an
accurate reproduction of the crystal structure and lattice en-
ergy, this does not necessarily guarantee that the curvature of
the potential’s hypersurface accurately represents the
elasticity.25 Theoretical elastic constants are often stiffer
compared to those of experiment. This overestimation is usu-
ally attributed to the use of the rigid-body approximation for
flexible molecules or to neglecting the anharmonic softening
of the lattice with temperature. Our more compliantC22

value may also be partly explained by an acoustic damping
via coupling to low-energy molecular modes.26 This is rel-
evant to the “doorway mode” anharmonic coupling model
that has been posited by Dlott and Fayer to be an important
feature of detonation of secondary explosives.27 Experimen-
tal and theoretical vibrational analyses ofb-HMX have
shown the presence of low-energy modes that have the nec-
essary symmetry for coupling.28–30 However, a lack of con-
sistency in the assignment of these modes to either the mo-
lecular or lattice regime precludes an exact analysis of this
coupling without further experimental investigation.

The theoretical works of Sewellet al.use a fully flexible
molecular potential that begins to account for anharmonicity.
However, ascertaining how accurately a given potential
mimics the real system requires comparison to experiment.
Beyond augmenting theoretical potentials, independent ex-
perimental stiffness tensor determinations also begin to miti-
gate the experimental errors associated with determining
elastic constants. This allows for the development of a more
consistent stiffness tensor, particularly, for the case of lower-
symmetry crystals.25 Therefore, an individual elastic constant
comparison to theory would be more insightful after a thor-
ough experimental basis, including pressure- and
temperature-dependent studies, has been developed.

FIG. 2. Plotted sound velocities calculated from the elastic constants of this
work sleftd and Zaug’s worksrightd. From the center out, each line repre-
sents the quasitransverse slow mode, quasitransverse fast mode and the
quasilongitudinal mode, respectively.sEach tick mark on the abscissa and
ordinate represents 0.5 km/sd
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Bulk and shear moduli

Previous experimental and theoretical isotherms have
been used to calculate isothermal bulk moduli ranging from
9 GPa to almost 17 GPa.16,31,32For comparison, the approxi-
mation that the isothermal and adiabatic moduli are nearly
the same under ambient conditions is made. The ReusssKRd
and Voigt sKVd bulk moduli were calculated using33

KR = So
i,j

3

SijD−1

, s6d

KV =
1

9o
i,j

3

Cij , s7d

whereSij denotes the elements of the compliance tensor. The
moduli listed in Table II also include the Voigt–Reuss–Hill
sVHRd arithmetic mean ofKR andKV. Acceptable agreement
is found with Zaug’s experimental findings and the initial
theoretical work of Sewellet al. While our results suggest
the bulk modulus is lower than recently reported,16,31,32 the
possibility of a larger modulus is certainly not without pre-
cedent. However, Sewellet al. have shown that the analysis
of compression isotherms using different equations of state
can yield results varying as much as 5 GPa within a given
data set.16,34 This variance is, in part, due to the higher cur-
vature of an isotherm at lower pressures. Therefore, a
complementary method for determining the bulk modulus at
strictly ambient pressure is required. The complete stiffness
tensor reported here provides such an experimental determi-
nation.

Analogous to the association of a higher bulk modulus to
lower hydrostatic compressibility, the shear modulus relates
to resistance in shearing. Since shear deformations have been
proposed to be a critical component in the initiation of
detonation,35–37a precise determination of the shear modulus
is necessary for substantiating possible detonation mecha-
nisms. The ReusssGRd and Voigt sGVd shear moduli for
b-HMX were calculated using33

GR = f 4
15ss11 + s22 + s33d − 4

15ss12 + s13 + s23d

+ 1
5ss44 + s55 + s66dg−1, s8d

GV = 1
15sc11 + c22 + c33d − 1

15sc12 + c13 + c23d

+ 1
5sc44 + c55 + c66d. s9d

These shear moduli, along with the VHR average, are shown
in Table II. Good agreement is found between the shear
moduli calculated from two experimental works, while the
theoretical moduli were almost twice that determined from
experiment. This suggests thatb-HMX has a decreased re-
sistance to shear than theoretically predicted.

Physical interpretation

Since the consistency amongst the reported stiffness ten-
sors is limited, the interpretation of other physical phenom-
ena can also provide supporting evidence for the reported
elasticity values. Cleavage planes have been previously used
to substantiate the presence of weak intermolecular forces.38

A classic example of this association is seen in graphite.
While hexagonal sheets of covalently bonded carbon act as
an exaggeration of “intermolecular bonding” when compared
to forces connecting separate sheets, the logic may be ex-
tended to van der Waals crystals. The two elastic constants
C11 and C22, which are directly associated with the forces
within the graphite sheets, are on the order of 1000 GPa.39 In
comparison, theC33 elastic constant, which relates to the
weak forces disrupted as carbon sheets are separated, is ap-
proximately 40 GPa. While the relation of elastic constants
and cleavage planes becomes less distinct for traditional mo-
lecular crystals, its application to systems such as anthracene
and phenothiazine warrants its use here.24,38The observation
of a s011d cleavage plane inb-HMX by Palmer and Field40

suggests that the intermolecular forces in thebc* plane are
weaker. This observation is supported by the lowerC22 and
C33 elastic constants compared toC11.

While cleavage planes may be qualitatively related to
single elastic constants, other macroscopic observations are
more realistically associated with the entire tensor. The linear
compressibility relates a relative change in a linear dimen-
sion to an applied hydrostatic pressure. The linear compress-
ibility is calculated from

b = o
i

o
j

sijkkqiqj . s10d

In general, the compressibility is a function of direction and
can provide insight into the anisotropy in the strength of
intermolecular interactions. Thus, a direction in which the
intermolecular interactions are stronger would reflect a lower
compressibility in that direction. A polar plot of Eq.s10d
provides an association of the entire compliance tensor and
compressibility which more accurately portrays the tensor
property rather than using single elements of the tensor that
have a greater projection along a given direction. The com-
pressibilities ofb-HMX and respective crystallographic pro-
jections, plotted in three orthogonal planes, are presented in
Fig. 3. These plots show directions of lower compressibility
which is particularly evident along thea axis. Also, the av-
erage compressibility is greater in thebc* crystallographic
plane than in either theac* or ab plane. This suggests that
the intermolecular interactions are weaker in this plane

TABLE II. Bulk sKd and shear modulisGd for b-HMX.

Modulusa

sGPad
This
work

Zaug
sRef. 10d

Sewellet al.
s2002d

sRef. 15d

Sewellet al.
s2003d

sRef. 16d

KV 10.2 12.5 11.1 15.7
KR 9.6 12.5 10.9 15.1

KVRH 9.9 12.5 11.0 15.4
GV 4.3 5.4 7.8 8.3
GR 3.1 1.3 6.7 7.0

GVRH 3.7 3.4 7.3 7.7

aV, R, and VRH denote, respectively, the moduli calculated using the Voigt,
Reuss, and Voigt–Reuss–Hill approximation.
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which further correlates to thef011g cleavage plane.
Patterns in crystal growth can also provide information

about the microscopic interactions and how they manifest
themselves in the solid state. The observations that crystals
of b-HMX are zonal to the crystallographica axis and elon-
gated along it suggest that the intermolecular interactions are
stronger along this direction. This qualitatively substantiates
C11 as being the largest elastic constant. This qualitative as-
sociation can be observed for a variety of molecular crystals
that exhibit a definite zonal axis.41 Additionally, the single-
crystal x-ray diffraction study by Kohnoet al. shows that
there are shorter hydrogen-bonded contacts along thea axis,
which may stiffen the associatedC11 elastic constant. These
short contacts reflect a stronger intermolecular interaction
which is consistent with the decreased compressibility, as
well as the larger sound velocities, in this direction. The
observations of the macroscopic behavior ofb-HMX suggest
that the relative ordering of the first three diagonal elastic
constants should beC11.C22,C33. This ordering is ob-
served in this work as well as that initially calculated by
Sewellet al.

While intermolecular forces are more difficult to directly

interpret from the shear elastic constants, some insight can
be gained by examining their deviation from Cauchy behav-
ior which assumess1d all constituent molecules are at sites of
inversion ands2d the forces connecting two points is purely a
function of distance, i.e., a central potential. Under this ap-
proximation, the deduced Cauchy relations—C12=C66, C13

=C55, C23=C44, andC25=C46—decrease the number of inde-
pendent elastic constants for a monoclinic system from 13 to
9.42 For our stiffness tensor, the average deviation from a
purely central-force approximation is about 44%. While the
Ci site symmetry ofb-HMX fulfills the requirement of in-
version, the large percent deviation suggests the importance
of many-body interactions in accurately describingb-HMX.
These angular and torsional interactions may be an expected
consequence of the high number of flexible nitrogroups.

Relevance to detonation

During theinitial excitation by a shockwave, the lattice,
although greatly deformed, remains intact. Furthermore, it is
arguable that the elastic constants for theinitially shock-
compressed medium can be approximated by the equilibrium
lattice values since there is insufficient time for renormaliza-
tion to new values. Therefore, the mechanical properties are
crucial for understanding this initial deformation, as well as
how the deformation energy couples from the lattice into the
molecular degrees of freedom. Some of the previously devel-
oped models for detonation have introduced a correlation
between shear strain and detonation. Orientationally sensi-
tive detonation was observed in pentaerythritol tetranitrate
sPETNd.36 The proposed argument for this detonation aniso-
tropy was that interleaving molecules of PETN “sterically
hindered” particular slip systems activated by the uniaxial
compression of the shockwave.37 Those slip systems that
were most hindered were associated with directions that were
most sensitive to detonation. However, the fundamental
question of how energy coupled into the molecular degrees
of freedom for bond dissociation remained unanswered. Gil-
man has proposed that the extreme shear-induced deforma-
tion of the molecule’s electron density results in local “met-
allization”, i.e., a closure of the highest-occupied-molecular-
orbital–lowest-occupied-molecular-orbitalsHOMO-LUMOd
gap.35 A model for mechanochemical transformations based
on this idea has been proposed by Lutyet al.43 This model
defines a deformation energyfdef that quantifies the me-
chanically induced decrease in the HOMO–LUMO gap and
shows that complete band-gap closure is unnecessary for re-
action. Sincefdef is intimately associated with the dynamical
matrix, elasticity measurements are required to quantify its
role in detonation. Additionally, shear deformation provides
a symmetry-breaking distortion of the molecule. This de-
crease in symmetry is proposed by Lutyet al. to facilitate a
coupling to the electronic states of the molecule and forma-
tion of subsequent chemical reactions.

While a detailed understanding of elasticity’s role in the
initiation of detonation is limited by a lack of experimental
evidence, the stiffness tensor forb-HMX provides an initial
substantiation of the importance of shear in detonation. Al-
though the relationship between stress and strain involves the

FIG. 3. Linear compressibility diagrams and crystallographic projections for
b-HMX. sEach tick mark on the abscissa and ordinate in the linear com-
pressibility plots represents 0.01 GPa−1d
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entire stiffness tensor, specific interactions can be associated,
to a degree, with the appropriate elastic constants. The
shorter intermolecular O–H contacts along thea axis may
facilitate a shear-induced dislocation along the other crystal-
lographic directions. Since the nitrogroups contribute to the
interactions that stiffen thea axis, a shear dislocation may
distort the molecule such that the N–NO2 bond suffers a
pronounced deformation. This bond, at least for nitramine
explosives, is suspected to be the initial bond fractured in
detonation and has been shown by calculation to specifically
occur for cyclotrimethylenetrinitraminesRDXd.43–45

Using the linear elasticity ofb-HMX, one may speculate
on a similar detonation anisotropy seen in PETN. While the
cyclic b-HMX molecule precludes a strong interleaving of
molecular contacts, the shorter molecular interactions along
the a axis may provide an analogous situation to the steri-
cally hindered slip systems in PETN. Therefore, the shock-
wave compression that more markedly affects these stronger
interactions may be associated with a direction of higher
detonation sensitivity. However, much additional work will
be required before such a connection can be justified. While
the subsequent shockwave-induced lattice deformation may
be necessarily plastic, the elasticity provides crucial insight
into the initial molecular deformation and its relation to the
initial step in the mechanism of detonation.

CONCLUSION

Brillouin scattering from a variety of acoustic phonons
propagating in orthogonal planes allowed the experimental
determination of all 13 elastic constants ofb-HMX. Com-
parison to previously reported stiffness tensors produced a
varied agreement. Three of the five “empirically sensitive”
elastic constants determined by Zaug correlated fairly well
with results presented here. The earlier reported theoretical
elastic constants by Sewellet al.agree better with our results
than did their later calculation. Our more compliant stiffness
tensor indicates that effects of anharmonicity are more im-
portant than suggested by recent calculations. The low-
pressure determination of the adiabatic bulk modulus is
found to be 9.9 GPa. Precise determinations of this elastic
tensor’s invariant at low pressures are required for its appli-
cation in equations of state. With an improving experimental
basis for comparison, further progress in the theoretical mod-
eling of high explosives can be realized.

Intermolecular forces associated with the observeds011d
cleavage plane are qualitatively used to corroborate the rela-
tive ordering ofC11, C22 andC33. This observation is further
substantiated by patterns in crystal growth and molecular
packing. Additional information about intermolecular forces
is garnered from the observed deviation from Cauchy behav-
ior. This deviation suggests a higher degree of elastic aniso-
tropy that may necessitate the role of many-body interactions
in describingb-HMX.

The stiffness tensor ofb-HMX shows compliantb andc
axes, which favor dislocations along these directions. Re-
cently reported mechanisms for detonation suggest that a
strong shear deformation is integral to understanding how
mechanical energy is initially transferred into the

molecule.35,37,43 Undoubtedly, as the mechanical properties
of high explosives become more widely quantified, a broader
understanding of the initial mechanism for detonation can be
gained.

ACKNOWLEDGMENTS

Support of this research by the U.S. Office of Naval
Research under Grant No. N000149810736 and by Pfizer,
Inc. is gratefully acknowledged.

1T. Luty and C. J. Eckhardt, inCooperative Effects in Solid-State Reac-
tions, Reactivity of Molecular Solids, in Molecular Solid State, Vol. No. 3,
edited by E. Boldyreva and V. BoldyrevsWiley, Chichester, 1999d,
Chap. 2.

2H. Iwahura, T. Sugawara, K. Itoh, and T. Takui, Mol. Cryst. Liq. Cryst.
125, 251 s1985d.

3O. Ermer, J. Am. Chem. Soc.110, 3747s1988d.
4G. M. J. Schmidt, inSolid State Chemistry, edited by D. GinsburgsVerlag,
Weinheim, Germany, 1976d, p. 2.

5J. M. McBride, B. E. Segmuller, M. D. Hollingsworth, D. E. Mills, and B.
A. Weber, Science234, 830 s1986d.

6N. M. Peachey and C. J. Eckhardt, J. Phys. Chem.97, 10849s1993d.
7P. Maffre and M. Peyrard, J. Phys.: Condens. Matter6, 4869s1994d.
8C. S. Choi and H. P. Boutin, Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem.B26, 1235s1970d.

9Y. Kohno, K. Maekawa, N. Azuma, T. Tsuchioka, T. Hashizume, and A.
Imamura, Kogyo Kayaku53, 227 s1992d.

10J. M. Zaug,Proceedings of the 11th Detonation Symposium, 1998sunpub-
lishedd, p. 498.

11S. Ye, K. Tonokura, and M. Koshi, Kayaku Gakkaishi63, 104 s2002d.
12D. C. Sorescu, B. M. Rice, and D. L. Thompson, J. Phys. Chem. A102,

8386 s1998d.
13A. V. Dzyabchenko, T. S. Pivina, and E. A. Arnautova, J. Mol. Struct.

378, 67 s1996d.
14J. P. Lewis, T. D. Sewell, R. B. Evans, and G. A. Voth, J. Phys. Chem. B

104, 1009s2000d.
15T. D. Sewell, D. Bedrov, R. Menikoff, and G. D. Smith, inShock Com-

pression of Condensed Matter, AIP Conf. Proc.No. 620sAIP, New York,
2002d, Part 1, p. 399.

16T. D. Sewell, R. Menikoff, D. Bedrov, and G. D. Smith, J. Chem. Phys.
119, 7418s2003d.

17H. Z. Cummins and P. E. Schoen, inLaser Handbook, edited by F. T.
Arecchi and E. O. Schulz-DuboissNorth-Holland, Amsterdam, 1972d,
Chap. El.

18I. L. Fabelinskii, Molecular Scattering of LightsPlenum, New York,
1968d.

19K. H. Brose, and C. J. Eckhardt, Chem. Phys. Lett.125, 235 s1986d.
20C. J. Eckhardt, and R. R. Pennelly, Chem. Phys. Lett.9, 572 s1971d.
21R. C. Dye, J. Sartwell, and C. J. Eckhardt, Rev. Sci. Instrum.60, 2610

s1989d.
22J. F. Nye, Physical Properties of CrystalssUniversity Press, London,

1957d.
23M. Born, and K. Huang,Dynamical Theory of LatticessOxford University

Press, Oxford, 1954d.
24R. C. Dye, and C. J. Eckhardt, J. Chem. Phys.90, 2090s1989d.
25G. M. Day, S. L. Price, and M. Leslie, Cryst. Growth Des.1, 13 s2001d.
26L. N. Liebermann, inPhysical Acoustics, edited by W. P. MasonsAca-

demic, New York, 1966d Vol. 4.
27D. D. Dlott, and M. D. Fayer, J. Chem. Phys.92, 3798s1990d.
28Z. Iqbal, S. Bulusa, and J. R. Autera, J. Chem. Phys.60, 221 s1974d.
29F. Goetz, and T. B. Brill, J. Phys. Chem.83, 340 s1979d.
30H. V. Brand, R. L. Rabie, D. J. Funk, I. Diaz-Acosta, P. Pulay, and T. K.

Lippert, J. Phys. Chem. B106, 10594s2002d.
31B. Olinger, B. Roof, and H. Cady, Proceedings of the SymposiumsIntern.d

On High Dynamic Pressures C. E. A., Paris, France, 1978sunpublishedd,
p. 3.

32C.-S. Yoo and H. Cynn, J. Chem. Phys.111, 10229s1999d.
33E. Schreiber, O. L. Anderson, and N. Soga,Elastic Constants and Their

MeasurementsMcGraw-Hill, New York, 1973d. Equation 2.22, p. 30, of
this reference omitted the factor ofs1/15d. This was subsequently cor-
rected in Eq.s8d of this manuscript.

174701-7 The elastic properties of b-HMX J. Chem. Phys. 122, 174701 ~2005!

Downloaded 12 Apr 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



34R. Menikoff, and T. D. Sewell, High Press. Res.21, 121 s2001d.
35J. J. Gilman, Philos. Mag. B71, 1057s1995d.
36J. J. Dick, Appl. Phys. Lett.44, 859 s1984d.
37J. J. Dick, and J. P. Ritchie, J. Appl. Phys.76, 2726s1994d.
38J. Sartwell, and C. J. Eckhardt, Phys. Rev. B48, 12438s1993d.
39O. L. Blakslee, D. G. Proctor, E. J. Seldrin, G. B. Spence, and T. Weng, J.

Appl. Phys. 41, 3373s1970d.
40S. J. P. Palmer, and J. E. Field, Proc. R. Soc. London, Ser. A383, 399

s1982d.
41S. Haussuhl, Z. Kristallogr.216, 339 s2001d.
42A. E. H. Love,The Mathematical Theory of Elasticity, 4th ed.sCambridge

University Press, London, 1934d.
43T. Luty, P. Ordon, and C. J. Eckhardt, J. Chem. Phys.117, 1775s2002d.
44M. Choi, H. Kim, and C. J. Chung, J. Phys. Chem.99, 15785s1995d.
45T. R. Botcher, and C. A. Wright, J. Phys. Chem.97, 9149s1993d.

174701-8 L. L. Stevens and C. J. Eckhardt J. Chem. Phys. 122, 174701 ~2005!

Downloaded 12 Apr 2007 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


