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1. Introduction

The large uniaxial anisotropy K1 of materials such as FePt 
and CoPt is the basis for creating coercivity Hc in L10-based 
permanent magnets and magnetic recording media [1], [2] 
and [3]. However, the corresponding Stoner–Wohlfarth pre-
diction Ha = 2K1/μoMs signifi cantly overestimates the coer-
civity, because it ignores the real structure of the magnets 
[4] and [5]. There are two main reasons for the reduced co-
ercivity: intragranular imperfections and intergranular inter-
actions, including domain-wall pinning effects.

The real-structure dependence of the coercivity, as epit-
omized by the simultaneous presence of magnetically hard 
and soft phases, has far-reaching consequences. First, it lim-
its the performance of nanostructured L10 permanent mag-
nets, such as FePt:Fe3Pt [3], and is responsible for the ‘re-
sidual’ deviations from Stoner–Wohlfarth magnetism, as 
encountered in thin-fi lm FePt dots deposited onto MgO [6]. 
Second, in magnetic recording media, the large anisotropy 
of L10 particles helps to ensure the thermal stability of the 
stored information. However, the coupling to a soft phase 

may reduce the coercivity to facilitate writing, without nec-
essarily deteriorating the zero-fi eld thermal stability of the 
medium [7].

This paper focuses on the static softening of the hystere-
sis of interaction-free and interacting L10 nanoparticles. The 
corresponding dynamic effects [4], [5] and [8], being of im-
portance in many of the considered scenarios, including that 
of Ref. [7], will be discussed elsewhere.

2. Core-shell nanoparticles

To a large extent, the physics of inhomogeneous magnet-
ic systems is contained in the core-shell model. Specifi cally, 
magnetic recording media tend to contain nanograins that 
are isolated by a non-magnetic matrix and do not exhibit 
strong intergranular interactions. (The effects of intergran-
ular magnetostatic and exchange interactions will be ana-
lyzed in Sections Sections 3 and 4, respectively.)

Measured coercivities tend to be signifi cantly small-
er than the Stoner–Wohlfarth predictions. For example, the 
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particles investigated in Ref. [2] have an anisotropy fi eld of 
12 T (or 120 kOe), but the observed coercivity is only about 
2 T. Aside from metallurgical contributions, such as inter-
phase diffusion, this refl ects magnetocrystalline surface and 
interface anisotropy [5], [9] and [10]. Previous research has 
shown that FePt nanoparticles have different properties at 
the surface rather than inside the sphere [11]. Very recent-
ly [12], analysis has shown that missing 3d–4d/5d bonds at 
surfaces and interfaces yield a disproportionately strong re-
duction of the anisotropy, similar to the effect of fi nite-tem-
perature disorder [13].

In this section, we consider magnetic particles character-
ized by reduced surface anisotropy. Nucleation-fi eld analy-
sis, that is, considering perpendicular magnetization modes 
m of the type M = Ms(√1 – m2ez + m), yields [5]

                                      (1)

where κ2 (r) = (K1(r) + μoMsH/2)/A. The magnetization 
modes m(r) are obtained as eigenmodes of Eq. (1) subject 
to the free surface boundary condition dm/dr = 0. In addi-
tion, A dm/dr and m are continuous inside the material [14], 
but since A is much less real-structure dependent than K1 
it is usually suffi cient to assume that both dm/dr and m are 
continuous.

For spherical geometries, the solutions of Eq. (1) are 
spherical Bessel functions. The nucleation behavior of 
stepwise continuous profi les K1(r) = Kh for r < Rcore and 
K1(r) = Ks for Rcore < r < R amounts to a superposition of 
functions of the type sin(x)/x, cos(x)/x, and sinh(x)/x. Fig. 
1 and Fig. 2 show the real-space meaning of the perpendic-
ular component |m| and its explicit radial dependence, re-
spectively.

Fig. 3 shows the nucleation-fi eld coercivity for a soft 
shell of thickness 0.5 nm. The assumed core and shell an-
isotropies are 5 and 0.05 MJ/m3, respectively. The shallow 
small-particle minimum indicates the vanishing of the hard-
magnetic phase when ΔR = R. For R = ∞, Hc remains small-
er than 2K1/μoMs due to surface nucleation.

Numerically, we have analyzed single particles with 
core-shell structure using the OOMMF micromagnetic sim-
ulation code provided by NIST [15]. The simulations are 
based on the Landau–Lifshitz–Gilbert equation, and the re-
spective anisotropy, exchange, and magnetization parame-
ters are K1 = 6 MJ/m3, A = 10 pJ/m, and Ms = 1 MA/m. The 
unit cell size is chosen as 0.75 nm.

One reason for performing the numerical simulations 
is to investigate the hysteresis-loop shape. In the Stoner–
Wohlfarth model, the parallel and perpendicular hysteresis 
loops reach M = Ms at the same fi eld Ha. In reality, both in-
tersection fi elds are reduced, but the reduction of the coer-
civity is more pronounced.

Our uniaxial FePt model particles have a core-shell mag-
netic structure with an outer diameter of 6.7 nm and a soft-
shell thickness of 0.75 nm.

Fig. 1. Real-space spin structure of a core–shell particle 
(Rcore = R−ΔR).

Fig. 2. Analytical results for size-dependence of spheres’ spin 
structure.

Fig. 3. Coercivity as a function of the particle diameter D = 2R 
for typical L10 parameters.
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Fig. 4 shows the simulated hysteresis loops for the core-
shell sphere. In agreement with experiment, both the effec-
tive anisotropy, as given by the perpendicular loop, and the 
coercivity are smaller than the anisotropy fi eld of 120 kOe. 
The coercivity reduction is particularly pronounced, qualita-
tively reproducing the hysteresis-loop narrowing frequently 
encountered [2] and [16] in practice.

Quantitatively, the total coercivity reduction of about 
50% falls in the range encountered in practice, although in 
many L10 systems there is a additional decrease due to diffi -
cult-to-quantify factors such as incomplete L10 ordering.

3. Ensembles of nanoparticles

Even in the absence of intergranular exchange interac-
tions, there is a hysteresis-loop modifi cation due to magne-
tostatic interactions. In diluted systems, these interactions do 
not affect the Stoner–Wohlfarth character of the individual 
grains’ reversal but may slightly distort the hysteresis loop.

A good experimental example is diluted FePt nanoclus-
ters in a C matrix. Recent investigations have yielded a low 

temperature coercivity of more than 40 kOe in a 5% FePt 
nanoclusters in C matrix [17]. High-resolution transmission 
electron microscopy (TEM) shows that the clusters are sin-
gle-crystalline, with a diameter of about 5 nm, and well sep-
arated by the C matrix [17]. In such a condition there is no 
intergranular exchange interaction.

To simulate this system, 27 L10 FePt spheres with diameter 
of 5 nm are arranged in a cubic lattice, with a center-to-cen-
ter distance of 9 nm, corresponding to a 5 vol.% FePt spheres 
in C matrix. The anisotropy axis of each sphere is randomly 
oriented, representing the randomly distributed easy axis for 
each FePt cluster. Fig. 5 shows a simulated magnetic hyster-
esis curve. The measured coercivity at 10 K is 4 T, as com-
pared to the simulated coercivity of 3.76 T. The curve match-
es the experimental result well, indicating the diluted FePt 
nanoclusters reverse as Stoner–Wohlfarth particles.

4. Dependence of coercivity on exchange

In nanocomposite systems, the mechanism of magnetiza-
tion reversal depends on the density of the magnetic particles. 
With increasing particle density, intergranular exchange in-
teractions become important. Previous work has shown that 
in the Sm–Co particulate system the coercivity mechanism 
changes from a coherent rotation regime for non-exchange–
interaction to discrete pinning for large exchange–interaction 
[18]. Similarly, in the FePt particulate magnets, both analyt-
ical and numerical simulations show a coercivity maximum 
during the transition between the two regimes.

In our numerical simulation, 18 FePt spheres with 7 nm di-
ameter are arranged in a two-layer rectangular lattice. Fig. 6 
shows a typical spin structure during magnetization reversal. 
Inside the grains, the magnetization is largely coherent, where-
as most of the magnetization gradient is localized between the 
grains. This agrees with earlier analytical calculations [5].

Fig. 4. Hysteresis loops of core-shell structure.

Fig. 6. Spin structure of nano-particulate FePt particles in matrix.Fig. 5. Simulated hysteresis for assembly of isolated nanoclusters.
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Fig. 7 shows a typical demagnetization curve for FePt 
spheres in a semi-hard matrix, such as FeNiPt. The anisot-
ropies taken are 6 MJ/m3 for FePt particles and 2 MJ/m3 
for the matrix. To investigate the dependence of coercivi-
ty on the intergranular exchange, the exchange constant A 
of the matrix is varied. Fig. 8 shows that with an increas-
ing exchange constant A, the coercivity of the system reach-
es a maximum and then decreases. This fi gure shows that, 
with increasing exchange, the magnetization reversal tran-
sits from a nucleation-type regime to a discrete-pinning re-
gime. Below the coercivity maximum, the reversal is real-
ized by the switching of individual grains, or of small clus-
ters. Above the coercivity maximum, the reversal proceeds 
by the motion of ‘domain walls’ separating big interaction 
clusters [18]

5. Conclusions

In summary, we performed analytical and numerical 
micromagnetic calculations to investigate the magnetiza-
tion reversal in systems of L10 FePt nanograins and clus-
ters; this was investigated by micromagnetic simulations. 
The experimental systems considered included anisotropic 
nanograins embedded in non-magnetic matrices such as C, 
SiO2, and Ag, randomly oriented nanoclusters in a C ma-
trix, and an exchange-coupled nanocomposite of FePt par-
ticles embedded in semi-hard matrix. Both interaction-free 
and interacting grains have been investigated. The mag-
netization reversal in weakly-coupled granular magnets is 
very similar to Stoner–Wohlfarth coherent rotation, but re-
duced anisotropy due to surface and interface imperfec-
tions yields a disproportionately strong coercivity reduc-
tion. In FePt nanocomposites, increasing intergranular ex-
change interactions yield a transition to a discrete pinning 
regime, where the magnetization remains nearly coher-
ent in any given grain but a domain wall forms between 
the grains. The transition from single-grain rotation to dis-
crete pinning is accompanied by a coercivity maximum. 
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