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AN EMPIRICAL EXAMINATION OF JUMP RISK IN
U.S. EQUITY AND BOND MARKETS

Lee M. Dunham* and Geoffrey C. Friesen†

ABSTRACT

Actuaries manage risk, and asset price volatility is the most fundamental parameter in models of
risk management. This study utilizes recent advances in econometric theory to decompose total
asset price volatility into a smooth, continuous component and a discrete (jump) component. We
analyze a data set that consists of high-frequency tick-by-tick data for all stocks in the S&P 100
Index, as well as similar futures contract data on three U.S. equity indexes and three U.S. Treasury
securities during the period 1999–2005. We find that discrete jumps contribute between 15%
and 25% of total asset risk for all equity index futures, and between 45% and 75% of total risk
for Treasury bond futures. Jumps occur roughly once every five trading days for equity index
futures, and slightly more frequently for Treasury bond futures. For the S&P 100 component
stocks, on days when a jump occurs, the absolute jump is between 80% and 90% of the total
absolute return for that day. We also demonstrate that, in the cross section of individual stocks,
the average jump beta is significantly lower than the average continuous beta. Cross-correlations
within the bond and stock markets are significantly higher on days when jumps occur, but stock-
bond correlations are relatively constant regardless of whether or not a jump occurs. We conclude
with a discussion of the implications of our findings for risk management.

1. INTRODUCTION

Actuaries manage risk, and asset price volatility is the most fundamental element of risk management.

Therefore, actuaries must understand asset price volatility. Beginning with Merton (1976), financial

economists have modeled price volatility as a combination of a smooth and continuous process, along

with a much less persistent jump process (e.g., the jump-diffusion model). A thorough understanding

of both the continuous and jump components of volatility is required to manage risk effectively.

Until recently it has been difficult for actuaries and financial economists to separate jumps from the

underlying diffusion process when estimating parameters in a jump-diffusion model, in part because

the actual jump is not readily observable from the time-series data of the underlying asset returns.

Most jump parameter estimates are based on numerical simulations, since direct estimates are difficult

to obtain in all but a few special cases (Aı̈t-Sahalia 2004). Tauchen and Zhou (2006) note that ‘‘the

main message from the empirical literature seems to be that jumps are very important in asset pricing,

but the estimation of jump parameters and the pricing of jump risk are not easy to implement.’’ This

poses a serious practical challenge to actuaries and other risk managers.

This study examines the distributional properties of jumps for a large sample of U.S. stocks, stock

index futures contracts, and U.S. Treasury Bond futures contracts by utilizing econometric techniques

recently developed by Anderson, Bollerslev, and Diebold (2007), Barndorff-Nielsen and Shephard

(2004), and Tauchen and Zhou (2006). These studies have demonstrated that by using high-frequency
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trade-by-trade data, one can effectively separate the continuous and jump components of the underlying

price process. They demonstrate that one can accurately estimate the total volatility and the volatility

of the underlying continuous-time process with measures they call the ‘‘Realized Volatility’’ (RV) and

‘‘Bi-power Variation’’ (BV) measures, respectively. The difference between these two measures provides

an unbiased estimate of the jump component of prices.

Several recent papers have applied these techniques to limited sets of high-frequency data. Anderson,

Bollerslev, and Diebold (2007) apply their methodology to a single exchange rate time series, a single

futures contract, and a single U.S. Treasury bond. Tauchen and Zhou (2006) examine the S&P 500

Index, a U.S. Treasury bond futures contract, Microsoft stock, and the Brazilian reais. Thus, the first

contribution of the current study is to apply these newly developed estimation techniques to a broad

cross section of data, examining for the first time the variations in jump risk across a large number of

assets. Specifically, we decompose total volatility into its continuous and discrete components for every

stock in the S&P 100 Index, for three U.S. equity index futures, and for the 30-, 10-, and 2-year U.S.

Treasury futures.

In addition, we further decompose each of the volatility components into their systematic and non-

systematic constituents. The importance of systematic risk has been well understood since the advent

of the Capital Asset Pricing Model (Sharpe 1964). By regressing excess returns for an individual asset

on the excess returns of the market, one can estimate in principle the asset’s systematic risk, measured

by the regression beta. Historically, however, the estimation of systematic risk has been done exclusively

at the level of total risk. To our knowledge, ours is the first empirical study to decompose jump risk

into its systematic and nonsystematic parts.

The difference between continuous betas and jump betas has important implications for risk man-

agement: with a total beta, one knows only the average level of systematic risk. However, given an

asset’s continuous and jump betas, one can explicitly calculate the asset’s systematic risk conditional

on whether or not the market experiences a jump. This is important for risk managers: if an asset

behaves differently during a severe market downturn than it does at other times, this information offers

the potential to significantly improve on calculations such as Value at Risk (VAR). Moreover, if assets

are combined in a well-diversified portfolio, then the asset’s systematic jump risk is more relevant than

the asset’s total jump risk. This highlights the importance of decomposing total jump risk into its

systematic and nonsystematic components.

Specifically, we find that jump betas are significantly lower than continuous betas, which indicates

that stocks co-move with the market much less on days when the market experiences a jump. The

average stock in our sample has a total beta of 0.68. The average continuous beta is 0.80, but the

average jump beta is only 0.29. We also demonstrate that jumps account for 80–90% of total daily

return on days when jumps occur, so the jump beta is the most relevant measure of co-movement with

the market on days when the market experiences a jump.

We also study the correlation between different asset classes. Although asset cross-correlations have

been previously examined, the added contribution of our study is that we can calculate not only un-

conditional correlations between stock and bond index futures, but also the correlations between the

continuous and jump components. We find that the correlation between one stock index and another

stock index is significantly higher on jump days than nonjump days, and bond-bond correlations also

differ significantly between jump and nonjump days. However, stock-bond correlations are relatively

constant regardless of whether a jump has occurred. In addition, continuous returns are more strongly

correlated than jumps, both within and across asset classes. This suggests that asset allocation models

that utilize stock-bond cross-correlations may be more robust to the presence of asset price jumps

than models that rely on estimates of cross-correlations within stock and bond markets.

The rest of the article is organized as follows. Section 2 discusses the empirical methodology used

to identify statistically significant jumps. Section 3 describes the data, Section 4 presents our empirical

results, and Section 5 concludes.
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2. JUMP DETECTION METHODOLOGY

This section describes the empirical methodology utilized for this study, which is developed in Ander-

son, Bollerslev, and Diebold (2007), Barndorff-Nielsen and Shephard (2004), and Tauchen and Zhou

(2006). Let p(t) denote the time-t logarithmic price of the asset. The continuous-time jump diffusion

process traditionally used in asset pricing is usually expressed as a stochastic differential equation:

dp(t) � �(t) dt � �(t) dW(t) � �(t) dq(t), 0 � t � T, (2.1)

where �(t) is a continuous and locally bounded variation process, �(t) is a stochastic volatility process,

and W(t) denotes standard Brownian motion. The counting process dq(t) � 1 corresponds to a jump

at time t and dq(t) � 0 otherwise, and �(t) and is a measure of the size of the jump, conditional on a

jump occurring. The quadratic variation for the cumulative return process, r(t) � p(t) � p(0), is given

by

t

2 2[r, r] � � � (s) ds � � (s). (2.2)�t
s�0 0�s�t

In the absence of jumps, the second term on the right-hand side disappears, and the quadratic variation

simply equals the integrated (continuous) volatility.

Let the discretely sampled �-period returns be denoted by rt,� � p(t) � p(t � �), and define the

daily realized volatility by the summation corresponding to 1/� high-frequency intradaily squared

returns,1

1/�

2RV (�) � r . (2.3)�t�1 t�j�,�
j�1

For notational simplicity and without loss of generality, 1/� is assumed to be an integer. Then, as

shown by Andersen and Bollerslev (1998), by the theory of quadratic variation the realized volatility

converges uniformly in probability to the increment in the quadratic variation process defined above,

as the sampling frequency of the underlying returns increases; that is,

t

2 2RV (�) → � � (s) ds � � (s). (2.4)�t�1
s�0 0�s�t

In the absence of jumps, the realized volatility consistently estimates the integrated volatility. Define

the standardized realized bi-power variation measure,

1/�

�2BV (�) � � �r ��r �, (2.5)�t�1 1 t�j�,� t�(j�1)�,�
j�2

where � Then, as the sampling frequency increases,�2� �2/�.1

t

2BV (�) → � � (s) ds. (2.6)t�1
s�0

Thus, the contribution to the quadratic variation process due to discontinuities (i.e., jumps) can be

consistently estimated by

2RV (�) � BV (�) → � (s). (2.7)�t�1 t�1
0�s�t

This is the fundamental insight upon which the estimation of the jump processes in this research is

based.

1 In our empirical work we divide each trading day into five-minute intervals. For example, in the case of individual stocks, each trading day
consists of 78 five-minute intervals. Thus, � � 1/78.
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Following Tauchen and Zhou (2006) we define the ratio statistic

RV � BVt t
RJ � , (2.8)t

RVt

which, when scaled by its asymptotic variance, RJt converges to a standard normal distribution in the

absence of jumps. That is, if no jumps occur on day t, then

RJt
ZJ � → N(0, 1), (2.9)t 2

� 1 TPt� � � 5 max 1,�� � 	 � �2
 2 m BVt

where m � 1/� and TPt is the tri-power quarticity robust to jumps as shown by Barndorff-Nielsen and

Shephard (2004). The tri-power quarticity measure is approximated by

m tm�3 4/3 4/3 4/3 4TP � m� �r � �r � �r � → � � ds, (2.10)�t 4/3 t, j�2 t, j�1 t, j s
t�1m � 2 j�3

where �k � 2k/2�((k � 1)/2)/�(1/2) for k � 0.

Based on the simulation and Monte Carlo experiments of Tauchen and Zhou (2006), we choose a

0.999 level of significance for the identification of jumps. Under this assumption, jumps occur on all

days for which �ZJt� � 3.0, though for robustness we also report results for threshold values of 2.0 and

4.0. We assume that at most one jump occurs per day, and calculate the actual jump magnitude as

Jt � sign(rt) � where It is an indicator variable equal to one if a jump occurs,�(RV � BV ) � I ,t t t

and zero otherwise.2

3. DATA

We collect intraday high-frequency bid-and-ask quote data both for individual stocks and for stock and

bond index futures contracts. The individual stock data cover the component stocks of the S&P 100

Index as of July 1, 2006, and are taken from the NYSE’s Trade and Quote (TAQ) database for the six-

year sample period January 1, 1999–December 31, 2005. We use only quotes from NYSE, AMEX, and

NASDAQ exchanges.3 Two component firms, United Postal Service and Goldman Sachs, went public

during the sample period, and therefore we have quote data from the IPO date through the end of the

sample period. Twelve firms in the S&P 100 Index changed tickers during our sample period, mostly

resulting from merger and acquisition activity, which required us to obtain TAQ data for both tickers.

In our regression analysis, we use the S&P 500 Index futures contract as a proxy for the market

portfolio.

We mitigate the degree of bid-ask bounce in our sample data by using the bid-ask midpoint for each

transaction. Our initial analysis of the TAQ quotes data revealed a number of erroneous quotes in the

database, and we therefore apply a number of filters to eliminate these bad observations. First, we

2 At a fundamental level, our methodology simply seeks to identify jump returns that cannot be adequately described by the continuous
diffusion-only model. Thus, one can think of jumps as significant ‘‘outliers’’ under the diffusion-only specification. Although other techniques
have been used to identify jumps or outliers in financial data, our methodology differs from many of these in both the nature of the jumps
as well as the high frequency of the financial data used. In particular, we use the term jump to describe a large, almost instantaneous return
deviation from an underlying continuous process. In other contexts the term jump has been used to describe a switch, or ‘‘jump,’’ from one
regime to another, where each regime has its own specification for the data-generating process. For example, Hardy (2001) considers a two-
regime model for monthly equity returns in which the return mean and variance differ between the regimes. Cao and Tsay (1992) apply a
Threshold Autoregression Model with two regime specifications also to monthly stock data. While one can think of ‘‘jumping’’ from one regime
to another, this differs from the type of jump we are describing.
3 The only S&P 100 Index component stock not included in the study is CBS Corporation, which replaced Viacom on the S&P 100 Index on
January 1, 2006, a date just outside our sample period.
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require that the offer/bid ratio be less than 1.10 for the quote to be included.4 Second, we utilize a

sandwich filter that eliminates quotations that are 10% or further in absolute value from surrounding

quotes on both sides. The latter filter eliminates the following type of erroneous quote sequence: a first

quote that is immediately followed by a significantly higher (or lower) second quote that is subsequently

followed by a third quote that is consistent with the first quote in the sequence.5 Visual inspection of

several firms revealed a number of these spurious quotes ‘‘sandwiched’’ between two otherwise consis-

tent quotes, and our filter eliminates the erroneous quote. Without this filter, our estimation model

might incorrectly identify a significant jump when prices jump to the erroneous quote and then jump

back to the correct price.

Daily tick-by-tick quote data for the stock and bond futures contracts are obtained from the Institute

for Financial Markets.6 The stock index futures include the Dow 30, Russell 2000, and S&P 500, while

the bond data are obtained for 2-, 10-, and 30-Year U.S. Treasury futures.

For each investment instrument, we include only quotes during regular trading hours and segment

each trading day into five-minute intervals; we then calculate interval price returns using the midpoint

of the bid-offer spread. We calculate the price return for an interval at time t as log(midpointt/

midpointt�1). For the first trading interval of each day, we utilize the opening daily midpoint quote and

calculate the first interval return using the midpoint quote calculated at the end of the first interval.7

Since trading hours vary across instruments, the number of five-minute intervals calculated each day

for each instrument is different.8 Some trading days in our sample period do not contain the full

number of intervals as a result of holiday-shortened trading, temporary stoppages in trading, or other

miscellaneous reasons. After creating the five-minute intervals for each of the component stocks, we

eliminate any daily interval with a five-minute return greater than 50% in an attempt to control for

stock splits.

4. EMPIRICAL RESULTS

4.1 Empirical Properties of the Data
Table 1 presents cross-sectional summary statistics for realized volatility and bi-power variation for all

99 individual firms in our sample. In addition, we report the average realized volatility and bi-power

variation for the S&P 500, Dow Jones Industrial Average, and Russell 2000 equity indexes; and the

2-, 10-, and 30-year U.S. Treasury Securities.

The realized volatility (RV) approximates the total daily return variance, while the bi-power variation

(BV) estimates the variance due to the continuous return component. We also report the square root

of each of these variables, which can be interpreted as standard deviations. For individual stocks, we

4 For example, on April 7, 2000, American Airlines had a TAQ record consisting of a bid quote of $68.125 and an offer quote of $80. All other
bid-offer spreads for the day were much narrower, typically less than $0.25, and thus our filter eliminated this bid and offer quote. We also
found occurrences in the TAQ quote data where a quotation appeared to be a typographical error or seemed inconsistent with surrounding
quotes. For example, a bid quote of $23.375 for HCA on August 17, 2000, is followed by a bid quote of $33.375, and surrounded by bid
quotes of $33 or greater throughout the trading day.
5 For example, a sequence of three midpoint quotes for American Airlines on December 7, 2000, are as follows: $31.03 for interval 1, $84.91
for interval 2, and $30.66 for interval 3. An examination of all other quotes for AA on December 7, 2000 suggested that the $84.91 quote
for interval 2 was invalid.
6 At any point in time, each index or bond has numerous futures contracts with different maturities. We always use prices and returns from
the outstanding futures contract with the shortest time to maturity.
7 In much of the empirical previous work we examined, we found that most studies calculated the first interval return by using the closing
midpoint quote from the previous trading day or just omitted the first interval from the daily jump calculation to prevent overnight factors
from influencing the first interval return.
8 For the component stocks of the S&P 100 Index, we calculate returns for 78 five-minute intervals during the regular trading hours of 9:30
a.m.–4:00 p.m. EST. Dow 30 Index futures regularly trade between 8:20 a.m. and 4:15 p.m. EST, resulting in 96 five-minute intervals. Russell
2000 Index futures and S&P 500 Index futures regularly trade between 9:30 a.m. and 4:15 p.m. EST, resulting in 82 five-minute intervals.
Treasury futures trade regularly between 8:20 a.m. and 3:00 p.m. EST, resulting in 68 five-minute intervals.



AN EMPIRICAL EXAMINATION OF JUMP RISK IN U.S. EQUITY AND BOND MARKETS 81

Table 1
Summary Statistics of Return Data

Cross-sectional Distribution for S&P
100 Firms

Mean Median Min Max

Sample Means Reported

S&P 500 DJIA
Russell
2000

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (a): Jump Model Parameters

RV 0.0718% 0.0616% 0.0285% 0.2118% 0.0145% 0.0142% 0.0201% 0.0003% 0.0025% 0.0058%
RV1/2 2.6791% 2.4819% 1.6885% 4.6018% 1.2024% 1.1913% 1.4187% 0.1646% 0.5008% 0.7635%
BV 0.0649% 0.0548% 0.0260% 0.1937% 0.0109% 0.0111% 0.0142% 0.0009% 0.0012% 0.0029%
BV1/2 2.5480% 2.3415% 1.6110% 4.4014% 1.0463% 1.0526% 1.1900% 0.0940% 0.3458% 0.5398%
BV/RV 0.9060 0.9087 0.8096 0.9313 0.8122 0.8250 0.7147 0.4446 0.7329 0.7755
(BV/RV)1/2 0.9518 0.9533 0.8998 0.9650 0.9012 0.9083 0.8454 0.6667 0.8561 0.8806

Panel (b): Risk Measures

Total risk 4.4416% 3.6975% 1.6638% 17.8787% 1.4348% 1.3504% 2.0840% 0.0227% 0.2543% 0.6011%
Continuous risk 4.0598% 3.4162% 1.5224% 16.9654% 1.0074% 1.0185% 1.3746% 0.0074% 0.1040% 0.2726%
Jump risk 0.3301% 0.2983% 0.1016% 1.3234% 0.2793% 0.2346% 0.4694% 0.0164% 0.1211% 0.2687%
Corr(jump,cont) 0.0069 0.0103 �0.2036 0.1398 0.1397 0.0995 0.1494 �0.0477 0.1302 0.1105

Notes: Jump days are identified, and jump magnitudes calculated, according to the methodology described in the text, using 5-minute returns
over the 1999–2005 sample period.

report the square root of each cross-sectional variance summary measure. Values for RV1/2 range from

0.16% for the two-year Treasury bond to 1.42% for the Russell 2000 Index. Not surprisingly, the volatility

levels are significantly higher for individual stocks than for the equity indices.

The ratio of bi-power variation to realized volatility (BV/RV), or the square root of this ratio, has

been used elsewhere in the literature to measure the fraction of total volatility generated by the con-

tinuous return component (Tauchen and Zhou 2006). From panel a one observes that, for the equity

indexes, roughly 70–80% of unconditional return variance is due to the continuous component of

returns. The percentage is similar for 10- and 30-year bonds, but for 2-year bonds only about 44% of

total variance is attributable to the continuous return component. Interestingly, the continuous return

component is largest among individual stocks, where approximately 90% of total return variance is

attributable to continuous returns.

In panel b total returns are decomposed into their jump and continuous components, and the sample

variances are calculated for each. Total risk is calculated as the variance of total daily returns.9 Con-

tinuous risk is calculated as the variance of daily continuous returns, where the daily continuous return

is equal to the total daily return minus the daily jump return. Jump risk is the variance of daily jump

returns, calculated using both jump and non-jump days.10 The percentage of total risk attributable to

jumps is calculated as the jump variance divided by the total variance. The results of Panel b in Table

1 indicate that, unconditionally, jumps contribute between 15% to 25% of the total variance for the

equity indexes, 5% and 10% of total variance for individual stocks, and anywhere from 45% and 75% of

the total variance for bonds.

Table 2, panel a, reports detailed statistics on the distribution of jumps across all firms and indexes

in our sample. The jump frequency, defined as the number of days with a jump divided by the total

number of days in the sample, varies considerably across firms, from a low of 7.7% for Exxon-Mobil to

a high of 26.6% for Lucent Technologies and Comcast. In the stock futures market, jumps occur on

31% of trading days for the Dow, 33.5% of trading days for the S&P 500 Index, and 51% of the trading

9 Returns are obtained from the Center for Research in Security Prices (CRSP) daily U.S. stock return database.
10 The value for the jump return is zero on nonjump days.
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Table 2
Distributional Properties of Jump Risk

Cross-sectional Distribution for Firms in
S&P 100

Mean Median Min Max

Sample Means Reported

S&P 500 DJIA
Russell
2000

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (a): All Jumps

Jump frequency 12.069% 11.421% 7.727% 26.591% 33.541% 31.005% 51.221% 70.417% 46.316% 38.207%
Jump size �0.0271 0.0030 �0.4045 0.4142 0.0517 0.0325 0.0315 �0.0059 �0.0218 �0.0236
Absolute jump size 1.3858 1.3579 0.8939 2.2273 0.7620 0.7237 0.8570 0.0954 0.2844 0.4243
Absolute daily return 1.5698 1.5169 0.9676 2.5632 1.0405 0.9772 1.1222 0.0948 0.3632 0.5392
Jump variance 2.7500 2.5208 0.9705 8.3446 0.8318 0.7569 0.9165 0.0233 0.2614 0.7035
Total variance 4.6501 4.2258 1.7224 11.4904 1.9543 1.6759 2.1822 0.0260 0.3882 1.0071

Panel (b): Jumps on Days of High Volatility

Jump frequency 12.283% 11.932% 6.932% 29.091% 39.253% 36.591% 51.818% 69.143% 49.029% 41.143%
Jump size �0.0411 �0.0370 �0.6229 0.5953 0.0508 0.0244 �0.0141 �0.0134 �0.0425 �0.0684
Absolute jump size 1.9114 1.8811 1.1627 3.0079 1.0076 0.9468 1.0964 0.1324 0.3860 0.5627
Absolute daily return 2.0887 2.0175 1.3047 3.6243 1.3808 1.2459 1.4699 0.1308 0.4882 0.7032
Jump variance 4.6658 4.2791 1.5026 16.1173 1.2917 1.1665 1.4351 0.0435 0.4663 1.2431
Total variance 7.5115 6.7129 2.5658 25.3116 3.0045 2.4760 3.4300 0.0474 0.6661 1.7098

Panel (c): Jumps on Days When Market Jump Occurs

Jump frequency 12.905% 12.137% 7.863% 29.231% 100.00% 59.658% 66.724% 74.055% 49.828% 41.753%
Jump size 0.0051 0.0063 �0.7183 0.5800 0.0517 0.0755 0.1124 �0.0129 �0.0712 �0.0689
Absolute jump size 1.3895 1.3618 0.8419 2.4620 0.7620 0.7983 0.9798 0.1055 0.3463 0.5152
Absolute daily return 1.5776 1.5441 0.7449 2.8094 1.0405 1.0521 1.2415 0.1088 0.4413 0.6624
Jump variance 2.6375 2.4826 0.7870 7.4906 0.8318 0.9318 1.2095 0.0432 0.5749 1.6396
Total variance 4.5432 4.4153 1.1687 14.8327 1.9543 1.9714 2.5097 0.0460 0.7631 2.1294

Notes: Jump days are identified, and jump magnitudes calculated, according to the methodology described in the text, using 5-minute returns
over the 1999–2005 sample period. Panel (a) includes all jumps. Panel (b) includes only jumps that occur on days of high realized volatility,
defined to be days on which an asset’s realized volatility is above that asset’s median realized volatility calculated over the entire sample period.

days for the Russell 2000 Index. Approximately 40% of trading days experience a jump in the 10- and

30-year bond markets, and the 2-year Treasury experiences price jumps on 70% of trading days.

The average jump size is not significantly different from zero in either stock or bond futures markets.

The absolute jump size provides a feel for the magnitude of jumps when they occur. Recall that on

days when a jump occurs, the jump size is calculated as the square root of the difference between

realized volatility and the bi-power variation measure. For stock indexes, the average absolute jump

size ranges from 72 basis points for the Dow to 86 basis points for the Russell 2000. Average absolute

bond jumps are smaller, ranging from 10 basis points for the 2-year bond to 42 basis points on the 30-

year bond. The average absolute jump size is highest among individual stocks, with a mean (median)

absolute jump of 1.39% (1.36%). Collectively, the summary statistics for individual stock jumps suggest

that the jumps are relatively symmetrically distributed.

While Table 1 reported the relative contributions of jumps and continuous returns to unconditional

risk, Table 2 breaks down total risk conditional upon a jump occurring. On days when jumps occur,

jumps contribute about 59% of total risk for individual stocks (2.75%/4.65%), and the jump contri-

bution is above 50% for all individual stocks in the sample. For stock indexes, about 40–45% of total

return variance is attributable to jumps on days when jumps occur, and the percentage is even higher

for bonds. These results suggest that even when jump risk is relatively small on an unconditional basis,

jumps can have a significant impact on volatility on days when they actually occur.

The methodology we use to identify statistically significant jumps does not require the jump to be

economically large. Indeed, jumps as small as 10 basis points are not uncommon if the realized volatility

is particularly low on a given day. This is because the methodology we use identifies jumps by ‘‘looking’’

for five-minute returns that are abnormally large when compared to the other five-minute returns on
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the same day. On days when the average five-minute return is very small, we may identify jumps that

are statistically, but not economically, significant.11

To try to isolate economically meaningful jumps, panel b repeats the calculations in panel a using

only those jumps that occur on high realized volatility days. We define a day to be a high-volatility day

for a particular asset if the asset’s realized volatility that day is above that asset’s median realized

volatility calculated over the entire sample period. Jumps occur slightly more frequently on high-

volatility days, as can be seen by comparing the frequencies in panels a and b. The percentage of total

risk attributable to jumps is slightly higher in panel b, but the percentages are fairly robust to whether

or not we eliminate jumps on days of low volatility.

Because the market is simply the aggregation of individual stocks, it is interesting to ask what factors

drive market jumps. To shed light on this question, panel c examines the distributional properties of

jumps on days when the market experiences a jump, where the S&P 500 futures contract is used as a

market proxy. The results suggest that individual stocks are no more likely to experience jumps on

days when the market jumps; and the average absolute jump size for individual stocks is roughly the

same, regardless of whether or not the market experiences a jump (1.3895% vs. 1.3858% in panel a).

Thus, it appears that market jumps are not driven by either more or larger jumps among individual

stocks.

What drives market jumps is an increased correlation in the jumps of individual stocks. On the 1,175

sample days when the market does not experience a jump, on average 49% of stocks experience a

positive jump and 51% have a negative jump, and these averages are not statistically different from

50%. Thus, the direction of individual firm jumps appears random on these days. However, on days

when the market experiences a positive jump, 60.2% of individual stocks also experience a positive

jump; on days when the market has a negative jump, 62.2% of stocks have negative jumps. Both of

these percentages are statistically different from 50% at all standard significance levels. In addition,

there is a strong positive correlation (0.56, p-value � 0.001) between average absolute market jump

size and average absolute firm jump size, indicating that on days when the market experiences a

particularly large jump, the average jump is larger for individual firms as well.

4.2 Decomposing Systematic Risk into Continuous and Jump Components
The distinction between systematic and nonsystematic risk has been explicitly recognized at least since

Sharpe (1964), and jumps have been explicitly recognized in stochastic volatility and option pricing

models for many years (Merton 1976; Bates 1991). To date, little work has examined the systematic

and nonsystematic characteristics of jumps (for a recent theoretical exception, see Baek 2006). This

section develops an empirical methodology that decomposes total jump risk into systematic and non-

systematic components.

It is common to express daily returns for an asset in terms of a factor model. Without loss of gen-

erality, consider the standard single-factor model (such as the CAPM) for the returns of asset i:

R � 	 � 
 R � ε . (4.1)it i i M it

Equation (4.1) does not distinguish between the continuous and jump components of total return, but

does decompose total return into systematic (
iRM) and nonsystematic (	i � εit) components. Any

11 More specifically, the idea behind the estimation methodology is that the realized volatility (RV) includes volatility from both the continuous
and jump processes and is estimated by summing squared returns. The bi-power variation (BV) measure captures only the continuous com-
ponent and is estimated by summing the product of absolute return times lagged absolute return. The difference of the RV and BV terms
reveals the relative contribution of jumps toward the day’s total realized volatility. If prices move very little on a given day, it is frequently the
case that there are multiple five-minute intervals with a return of 0%. On such days the BV measure will be particularly small relative to RV
(since BV involves products of lagged five-minute returns), and this can produce very large z-statistics even when an economically meaningful
jump does not occur. Intuitively, the methodology identifies a day as having a significant jump when there are numerous runs of 0% returns,
because any nonzero return is ‘‘large’’ relative to the surrounding 0% returns. Such days are eliminated by looking only at days with high
absolute volatility.
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Table 3
Decomposing Jump Risk into Systematic and Nonsystematic Components

Cross-sectional Distribution for Firms in S&P 100

Mean Median Min Max Std Dev.

Estimated parameter
Total return beta 0.679 0.667 0.190 1.297 0.275
Continuous beta 0.803 0.769 0.295 1.544 0.314
Jump beta 0.287 0.310 �0.191 0.828 0.218
Difference (Cont � Jump) 0.516** 0.471** 0.037 1.407 0.246

Percentage total risk
Systematic jump risk 0.769% 0.573% 0.000% 3.406% 0.749%
Systematic continuous risk 15.202 14.013 3.593 35.122 7.807
Nonsystematic jump risk 8.665 8.436 2.348 24.009 3.496
Nonsystematic continuous risk 75.364 76.883 53.023 90.646 8.430

** Significant at the 0.01 level.
Notes: Jumps for individual equities are decomposed into their systematic and nonsystematic jump components.

market jump is embedded in RM, while any nonsystematic jump unique to firm i is included in the error

term.12

In this section we further decompose each stock’s systematic risk into its continuous and jump

components.13 This decomposition is interesting because standard factor models of risk implicitly as-

sume that an asset’s systematic risk is uncorrelated with jumps in the market (i.e., that the asset’s

beta does not change on days when the market experiences a jump). To our knowledge, the validity of

this assumption has never been tested.

We first generalize equation (4.1) by decomposing each firm’s total systematic risk into its contin-

uous and jump components:

R � 	 � � �
 (R � J ) 
 J �it i 1i Mt Mt 2i Mt it}
, (4.2)continuous systematic jump systematic nonsystematic

return return return

JMt � sign(RMt) � �(RV � BV ) � It t twhere

1, if a jump occurs on day ‘‘t’’
I � .and �t 0, otherwise

Here, JMt is the signed magnitude of the jump return for the market. The single-factor model is nested

in equation (4.2) and corresponds to the special case of 
1i � 
2i. Table 3 reports cross-sectional

summary statistics on the estimated parameters from both equations (4.1) and (4.2).

The top half of Table 3 compares each firm’s total beta with its continuous and jump betas. The

total beta is estimated by regressing total daily returns for each stock on the total daily return for the

S&P 500 market index and corresponds to a standard single-index model regression. The continuous

and jump betas are estimated according to equation (4.2). For each firm we calculate the difference

between the continuous and jump betas and report sample statistics on this difference.

The average total beta for the firms in our sample is about 0.68, which suggests that these stocks

have, on average, about 68% of the systematic risk possessed by the average stock. The average con-

tinuous beta is 0.80, while the average jump beta is only 0.29; this difference between the average

continuous and jump beta (0.51) is statistically significant at the 1% level. The significantly lower jump

12 Although it would be interesting to explore jump and nonjump sensitivities to standard multifactor models, we are unable to obtain high-
frequency data on these factors, which limits our analysis to a single-factor model.
13 It is assumed that all jump risk for the diversified market indexes is systematic.
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beta relative to the continuous beta indicates that returns on individual stocks are most strongly

correlated with market returns on days when the market does not experience a jump.14

4.3 Decomposing Nonsystematic Risk into Continuous and Jump Components
The error term in equation (4.2), �it, contains all nonsystematic risk (both continuous and jump). This

section explicitly decomposes the total nonsystematic risk into its two components. Noting that the

nonsystematic jump for firm i is estimated by (Jit � JMt), we define the nonsystematic continuous
̂2i

return component as the residual from equation (4.2) minus the nonsystematic jump:

ˆ� � � � (J � 
 J ). (4.3)it it it 2i Mt

Thus, the methodology outlined above allows one to decompose the total return into its continuous

and jump components, and in turn express each of these as the combination of a systematic and

nonsystematic component.

We define total risk as the variance of total daily returns. The systematic risk can be decomposed

into continuous and jump components as follows: systematic continuous (jump) risk is equal to the

squared continuous (jump) beta times the variance of continuous (jump) market returns, or

and respectively. Nonsystematic jump risk is defined as the sample variance of2 2 2 2
 � 
 � ,1i Mkt,cont 2i Mkt, jump

[(Jit � JMt)], while continuous nonsystematic risk is estimated as the sample variance of �it from
̂2i

equation (4.3).

The bottom half of Table 3 decomposes unconditional total risk into the four components just de-

scribed. For the average stock in our sample, three-fourths of the total stock variance is continuous

nonsystematic risk, while an additional 9% of total risk is nonsystematic jump risk. Thus, nearly 85%

of total return variance is attributable to firm-specific factors.15 Interestingly, most jump risk is non-

systematic, with systematic jump risk contributing less than 1% of total return variance. This would

suggest that accounting for jump risk is most important in a nondiversified context where nonsyste-

matic risk is present.

4.4 Regime-Dependent Correlations across Asset Markets
Most investment and risk-management strategies depend on the correlations across different classes

of assets. It is natural to ask whether such correlations are affected by the presence of a jump in

financial markets. Table 4 reports cross-correlations between total daily returns for the three stock

index and three bond futures contracts. Because the absolute jump size is considerably larger for stocks

than for bonds (Table 2), we divide our sample based upon the presence or absence of jumps in the

equity market. Panel a reports correlations on days when no jump occurs for the S&P 500 futures

contract, and Panel b reports correlations on days when the S&P 500 futures contract experiences a

jump. Panel c reports differences and indicates which correlations differ significantly between jump

and nonjump days.

We find that stock-stock correlations are significantly higher on days when the equity market expe-

riences a jump, while correlations between the 2-year Treasury bond and the 10- and 30-year Treasury

bond are significantly lower. The 10-year–30-year Treasury bond correlation is also significantly higher.

14 The average beta is low for several reasons. First, the sample contains the largest capitalization stocks in the market, and large-cap stock
portfolios often have betas less than one. It is also low because we are using intraday returns. Including overnight returns for firms and the
market yields an average beta of 0.87. However, since the jump estimation methodology is not suited to incorporate overnight returns, we
utilize intraday returns for both the individual stocks and the market proxy.
15 These statistics decompose total variance, and not standard deviation, into its component parts because the variance components are additive
while the standard deviation components are not. As a rough check, we note that our result that 85% of total risk is nonsystematic is roughly
consistent with the well-documented empirical fact that the average U.S. stock has an annual return standard deviation of about 40% while
the annual return standard deviation for the market is about 20%. Using variances, this translates into approximately 202/402 � 25% of total
risk attributable to systematic factors.
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Table 4
Cross-correlations between Stocks and Bonds

DJIA
Russell
2000

S&P
500

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (a) No-Jump Correlations

DJIA 1.0000
Russell 2000 0.6508 1.0000
S&P 500 0.9216 0.7748 1.0000
2-year-bond �0.1339 �0.1597 �0.1377 1.0000
10-year-bond �0.1400 �0.1742 �0.1405 0.8181 1.0000
30-year-bond �0.1176 �0.1477 �0.1189 0.7077 0.9404 1.0000

Panel (b) Jump Regime Correlations

DJIA 1.0000
Russell 2000 0.7959 1.0000
S&P 500 0.9538 0.8659 1.0000
2-year-bond �0.1426 �0.1367 �0.1255 1.0000
10-year-bond �0.1693 �0.1460 �0.1511 0.3761 1.0000
30-year-bond �0.1443 �0.1089 �0.1200 0.3339 0.9798 1.0000

Panel (c) Difference in Correlations betweeen Regimes (Jump–No Jump)

Russell 2000 0.1451**
S&P 500 0.0322** 0.0911**
2-year-bond �0.0087 0.0230 0.0122
10-year-bond �0.0293 0.0282 �0.0106 �0.4420**
30-year-bond �0.0267 0.0388 �0.0011 �0.3738** 0.0394**

Notes: Table reports correlations between three stock indices and the 2-year, 10-year and 30-year U.S. Treasury securities. Panel (a) includes
only days on which no jump occurs for the S&P 500 index, and panel (b) includes all days on which the S&P 500 futures contract experiences
a jump. Panel (c) indicates which correlations differ significantly between jump and no-jump days. ** indicates statistically significant difference
between jump and no-jump days at the 0.01 level.

Table 5
Cross-correlations between Continuous and Jump Return Components

DJIA
Russell
2000 S&P 500

2-Year
Bond

10-year
Bond

30-Year
Bond

Panel (a) Continuous Correlations

DJIA 1.0000
Russell 2000 0.6085 1.0000
S&P 500 0.8579 0.7031 1.0000
2-year bond �0.1555 �0.1768 �0.1384 1.0000
10-year bond �0.1645 �0.1791 �0.1472 0.6348 1.0000
30-year bond �0.1247 �0.1377 �0.1099 0.5523 0.8643 1.0000

Panel (b) Jump Correlations

DJIA 1.0000
Russell 2000 0.4547 1.0000
S&P 500 0.6262 0.5071 1.0000
2-year bond �0.0540 �0.0491 �0.0596 1.0000
10-year bond �0.0690 �0.0225 �0.0633 0.2525 1.0000
30-year bond �0.0439 �0.1720 �0.0343 0.1607 0.8841 1.0000

Panel (c) Difference in Correlations (Continuous–Jump)

Russell 2000 0.1538**
S&P 500 0.2317** 0.1960**
2-year bond 0.1015** 0.1277** 0.0788**
10-year bond 0.0955** 0.1566** 0.0839** 0.3823**
30-year bond 0.0808** �0.0343 0.0756** 0.3916** �0.0198**

Notes: Table reports correlations for returns between three stock indices and the 2-year, 10-year and 30-year U.S. Treasury securities. Panel (a)
reports correlations of the continuous return component using all sample observations. Panel (b) reports correlations of the jump return
component using all sample observations. Panel (c) reports the difference in the absolute continuous and jump correlations and indicates
whether the difference is statistically different than zero. ** indicates statistically significant difference between continuous and jump correlations
at the 0.01 level.
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Moreover, the stock-bond correlations appear relatively stable in the presence of jumps, with none of

the differences significant at either the 1% or 5% levels. Thus, while intra-asset correlations seem

dependent on the presence of a jump, inter-asset correlations do not.

Table 5 breaks down the total daily return into continuous and jump components and examines

separately the cross-asset correlation for each. Panel a reports correlations for the continuous portion

of returns, and panel b reports jump correlations. Panel c reports the absolute difference between

continuous and jump correlations and indicates whether the difference is statistically different than

zero. Jump correlations are almost uniformly weaker, as indicated by the positive absolute differences

in panel c, and the differences between continuous and jump correlations are statistically significant

for all but the Russell 2000–30-year Treasury bond correlation. In addition, many of the jump corre-

lations between stock index and Treasury bond futures in panel b are themselves not significantly

different from zero (significance levels omitted for brevity, but available upon request). Taken together,

the results of Table 5 tell us that the majority of asset correlation is driven by the underlying continuous

return components, and that jumps appear relatively uncorrelated, particularly when looking across

different asset classes.

4.5 Robustness Checks
We examine the robustness of our results across several dimensions. First, we have repeated our analysis

excluding returns in the first and last 15 minutes of the trading day; the jump distribution statistics

are reported in Appendix Table 6. The average jump frequency for individual stocks is 6.07%, versus

12.069% when the first and last 15 minutes are included (Table 2). Thus, it appears that approximately

half of the daily jumps are concentrated in the first or last 15 minutes of trading. The average absolute

jump size and daily return are slightly smaller when these returns are omitted, but the distributional

properties are generally similar to the more general results reported in Table 2, which suggests that

although a large percentage of jumps occur in the first and last 15 minutes of trading, these jumps

are not materially different from the other jumps occurring throughout the day. Second, to examine

the sensitivity of our results to our choice of the significance level, we repeat the analysis in Table 2

for ZJt � 2.0 and ZJt � 4.0. The results are reported in Appendix Tables 7 and 8. Relative to the choice

of ZJt � 3.0, the jump frequency is slightly higher when ZJt � 2.0 (13.892%), and much lower

when ZJt � 4.0 (2.888%). Absolute jump sizes are lower under ZJt � 2.0 and slightly higher under

ZJt � 4.0.

Appendix Table 9 reports the variance decomposition for each of the three robustness specifications.

Although the actual numbers differ in each specification, the qualitative results are similar: approxi-

mately 75–80% of total variance is attributable to nonsystematic continuous risk, and 15–20% of the

remaining variance comes from systematic continuous risk. Nonsystematic jump risk contributes be-

tween 3% and 8% of total variance, and systematic jump risk is less than 1% of total variance in all

cases.

5. CONCLUSION

This study utilizes recently developed econometric techniques to separate the jump return component

from the underlying continuous diffusion process. We estimate and examine the distributional prop-

erties of jump risk across a large number of assets. Our results suggest that jumps contribute between

15% and 25% of the total unconditional intraday return variance for equity indexes, and between 45%

and 75% of the total unconditional intraday return variance for Treasury securities. Conditional on a

jump occurring, jumps contribute at least 50% of total intraday return volatility for individual stocks;

slightly less for stock indexes; and slightly more for bond indexes. In addition, jumps contribute between

80% and 90% of the total absolute intraday return on days when jumps occur.

When applied to the component stocks of the S&P 100 Index, our jump detection methodology

indicates that the mean continuous beta and the mean jump beta differ significantly in the cross

section. Specifically, the average continuous beta (0.80) is nearly three times the average jump beta
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(0.29), which indicates that intraday returns on individual stocks are most strongly correlated with

market returns on days when the market does not experience a jump.

For the average stock in our sample, three-fourths of the total stock variance is continuous nonsys-

tematic risk, while an additional 9% of total risk is nonsystematic jump risk. Thus, nearly 85% of total

return variance is attributable to firm-specific factors. Most jump risk is nonsystematic, with systematic

jump risk contributing less than 1% of total return variance.

We find that stock-stock correlations are significantly higher on days when the equity market expe-

riences a jump. In contrast, the stock-bond correlations appear relatively stable in the presence of

jumps. Thus, while intra-asset correlations seem dependent on the presence of a jump, inter-asset

correlations do not. In addition, we find that the majority of asset correlation is driven by the underlying

continuous return component, and that jumps appear relatively uncorrelated, particularly when looking

across different asset classes. On days of high realized volatility, jumps contribute between 70% and

80% of the total absolute daily return.

Oftentimes actuaries are concerned about the stochastic behavior of long-horizon market returns as

they relate to the long-horizon nature of insurance liabilities. While our analysis of the distributional

properties of high-frequency returns does not lend itself to long-horizon actuarial applications, our

findings do have at least two important implications for risk management. First, most jump risk is

nonsystematic, which suggests that accounting for jump risk is most critical in a nondiversified context

(such as hedging individual securities) where nonsystematic risk is present. Thus, for actuaries man-

aging diversified portfolios, our results suggest that the majority of jump risk in individual securities

is diversified away. At the same time, some of the jump risk does aggregate, and therefore our results

related to jump distributions at the market level are more broadly relevant for actuaries managing

investment portfolios.

We also find that jump betas are substantially lower than continuous betas. This finding has impli-

cations for actuarial risk management practices such as the calculation of Value at Risk (VaR), which

estimates the probability of a portfolio return falling below a critical threshold. VaR may be calculated

over various time horizons, and the most direct application of our results is to short-horizon VaR

calculations. Such calculations are most important for days on which the market experiences a down-

ward jump, and yet our results indicate that it is precisely on such jump days that individual asset betas

are lower. Failure to account for this property of stock returns may cause actuaries to overestimate

the risk of the underlying portfolio, and therefore overestimate their portfolio’s Value at Risk. This

could explain the results of Perignon, Deng, and Wang (2006), who find evidence of substantial con-

servatism bias in the VaR estimates of the six largest Canadian commercial banks.

APPENDIX
Table 6

Distributional Properties of Jump Risk (Exclude First and Last 15 Minutes, Z � 3)

Cross-sectional Distribution for Firms in
S&P 100

Mean Median Min Max

Sample Means Reported

S&P 500 DJIA
Russell
2000

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (a): All Jumps

Jump frequency 6.070% 5.625% 0.000% 17.841% 6.109% 9.256% 33.049% 53.341% 10.280% 7.767%
Jump size �0.0558 �0.0459 �0.5272 0.2871 �0.0010 �0.0083 �0.0092 0.0039 0.0041 �0.0219
Absolute jump size 1.2772 1.2300 0.7932 2.0812 0.5192 0.4879 0.8258 0.0608 0.1701 0.2566
Absolute daily return 1.3815 1.3666 0.6241 2.3741 0.8470 0.7137 0.6262 0.0611 0.2446 0.3498
Jump variance 2.4689 2.2300 0.7598 15.6740 0.0243 0.0303 0.1420 0.0024 0.0038 0.0061
Total variance 3.8737 3.4756 0.75516 21.6810 1.0164 0.9083 1.4862 0.8169 0.1025 0.2521
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Table 6
(continued)

Cross-sectional Distribution for Firms in
S&P 100

Mean Median Min Max

Sample Means Reported

S&P 500 DJIA
Russell
2000

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (b): Jumps on Days of High Volatility

Jump frequency 6.538% 5.852% 1.818% 15.682% 6.448% 7.841% 26.818% 46.057% 8.343% 6.514%
Jump size �0.0407 �0.0423 �0.8138 0.5368 0.0217 �0.0380 �0.0943 0.0050 �0.0085 �0.0602
Absolute jump size 1.7277 1.6650 1.0178 2.9395 0.7019 0.6872 0.7825 0.0800 0.2386 0.3430
Absolute daily return 1.7877 1.7256 0.7463 3.3613 1.1391 0.9174 1.0760 0.0808 0.3360 0.4620
Jump variance 4.0416 3.4210 1.1593 25.8736 0.0427 0.0483 0.1739 0.0034 0.0056 0.0086
Total variance 5.9894 5.3194 1.0676 39.7823 1.6082 1.4407 2.1912 0.0132 0.1604 0.3837

Panel (c): Jumps on Days When Market Jump Occurs

Jump frequency 7.632% 7.477% 0.000% 21.495% 100.00% 39.252% 30.556% 60.377% 12.264% 5.660%
Jump size �0.0032 �0.0051 �2.1739 2.1108 �0.0105 �0.0001 0.0781 �0.0013 0.0768 �0.0051
Absolute jump size 1.3264 1.2581 0.6624 3.4813 0.5192 0.6023 0.7149 0.0637 0.2218 0.4415
Absolute daily return 1.4219 1.2788 0.2477 4.4450 0.8470 0.8117 0.9525 0.0654 0.3195 0.8347
Jump variance 2.2481 1.7628 0.0676 24.6504 0.4020 0.5418 0.6525 0.0059 0.0780 0.3028
Total variance 3.4929 2.5443 0.0957 54.7856 1.3670 1.2233 1.7670 0.0080 0.1554 1.2432

Notes: Jump days are identified, and jump magnitudes calculated, according to the methodology described in the text, using 5-minute returns
over the 1999–2005 sample period. Panel (a) includes all jumps. Panel (b) includes only jumps that occur on days of high realized volatility,
defined to be days on which an asset’s realized volatility is above that asset’s median realized volatility calculated over the entire sample period.

Table 7
Distributional Properties of Jump Risk (Open to Close, Z � 2)

Cross-sectional Distribution for Firms in
S&P 100

Mean Median Min Max

Sample Means Reported

S&P 500 DJIA
Russell
2000

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (a): All Jumps

Jump frequency 13.892% 13.125% 7.330% 29.659% 47.059% 48.552% 67.291% 79.383% 60.937% 54.597%
Jump size �0.0409 �0.0503 �0.2335 0.1994 0.0337 0.0167 0.0310 �0.0044 �0.0129 �0.0193
Absolute jump size 1.0953 1.0538 0.7261 1.7915 0.6723 0.6181 0.7979 0.0930 0.2558 0.3739
Absolute daily return 1.3622 1.3230 0.6832 2.4286 0.9622 0.9171 1.1023 0.0964 0.3439 0.5137
Jump variance 1.7688 1.5882 0.6318 6.3210 0.6708 0.5645 0.7966 0.0214 0.2066 0.5142
Total variance 3.7483 3.4228 0.8912 14.3453 1.6928 1.5128 2.0595 0.0252 0.3262 0.8046

Panel (b): Jumps on Days of High Volatility

Jump frequency 14.416% 13.864% 7.273% 30.795% 51.584% 51.477% 65.568% 80.914% 61.714% 56.000%
Jump Size �0.0406 �0.0039 �0.4274 0.4432 0.0245 0.0050 �0.0161 �0.0112 �0.0297 �0.0578
Absolute jump size 1.4985 1.4457 0.9321 2.4643 0.9173 0.8464 1.0304 0.1261 0.3523 0.4993
Absolute daily return 1.7838 1.7104 0.8410 3.3585 1.3024 1.2115 1.4417 0.1305 0.4642 0.6782
Jump variance 2.9705 2.6612 0.9601 13.3538 1.0979 0.9427 1.2709 0.0385 0.3821 0.9425
Total variance 5.9499 4.9698 1.2378 30.2727 2.7041 2.3808 3.2510 0.0441 0.5714 1.4002

Panel (c): Jumps on Days When Market Jump Occurs

Jump frequency 14.318% 13.228% 7.160% 31.43% 100.00% 69.417% 76.485% 80.318% 63.692% 58.313%
Jump size �0.0111 �0.0106 �0.4411 0.3600 0.0337 0.0231 0.0988 �0.0091 �0.0317 �0.0307
Absolute jump size 1.0844 1.0401 0.7200 1.7326 0.6723 0.6793 0.8817 0.1010 0.2865 0.4108
Absolute daily return 1.3558 1.3142 0.6291 2.5433 0.9622 0.9692 1.1741 0.1071 0.3790 0.5579
Jump variance 1.7643 1.5417 0.6390 12.3277 0.6708 0.6910 0.9934 0.0342 0.3485 0.8903
Total variance 3.7363 3.2565 0.7580 12.9093 1.6928 1.6760 2.2751 0.0377 0.4940 1.2428

Notes: Jump days are identified, and jump magnitudes calculated, according to the methodology described in the text, using 5-minute returns
over the 1999–2005 sample period. Panel (a) includes all jumps. Panel (b) includes only jumps that occur on days of high realized volatility,
defined to be days on which an asset’s realized volatility is above that asset’s median realized volatility calculated over the entire sample period.
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Table 8
Distributional Properties of Jump Risk (Open to Close, Z � 4)

Cross-sectional Distribution for Firms in
S&P 100

Mean Median Min Max

Sample Means Reported

S&P 500 DJIA
Russell
2000

2-Year
Bond

10-Year
Bond

30-Year
Bond

Panel (a): All Jumps

Jump frequency 2.888% 2.614% 0.852% 11.364% 22.964% 20.500% 35.378% 61.508% 34.495% 27.756%
Jump size �0.0696 �0.0730 �0.9701 0.6496 0.1012 0.0115 0.0698 �0.0066 �0.0383 �0.0482
Absolute jump size 1.4689 1.4046 0.8431 2.4320 0.8658 0.8307 0.9146 0.0973 0.3147 0.4711
Absolute daily return 1.3743 1.3471 0.6344 2.4361 1.1479 1.0591 1.1086 0.0938 0.3819 0.5818
Jump variance 3.2839 2.8530 0.8065 37.9314 1.0454 0.9777 1.0101 0.0254 0.3342 0.9267
Total variance 3.8687 3.7016 0.7825 38.2807 2.2426 1.9577 2.1113 0.0273 0.4583 1.2641

Panel (b): Jumps on Days of High Volatility

Jump frequency 3.174% 2.841% 0.682% 7.386% 29.299% 26.705% 36.136% 58.629% 37.943% 31.771%
Jump size �0.0508 �0.0551 �1.5454 1.1117 0.1230 �0.0082 0.0442 �0.0149 �0.0631 �0.1074
Absolute jump size 1.9524 1.8839 1.0269 3.2192 1.0986 1.0404 1.1707 0.1378 0.4236 0.6121
Absolute daily return 1.7810 1.6743 0.7868 3.8171 1.4495 1.3030 1.4339 0.1322 0.5043 0.7498
Jump variance 5.1929 4.1676 1.1310 62.0134 1.5147 1.3954 1.5728 0.0490 0.5790 1.5530
Total variance 5.8910 4.9880 1.1450 61.7142 3.2131 2.7100 3.3082 0.0515 0.7671 2.0629

Panel (c): Jumps on Days When Market Jump Occurs

Jump frequency 3.045% 2.513% 0.752% 10.526% 100.00% 55.138% 58.500% 65.404% 40.404% 32.828%
Jump size 0.0186 0.0595 �0.0210 2.6258 0.1012 0.0875 0.2727 �0.0156 �0.0359 0.0068
Absolute jump size 1.4988 1.4018 0.7400 3.0305 0.8658 0.9376 1.0683 0.1109 0.3339 0.4792
Absolute daily return 1.5020 1.3796 0.3412 3.6671 1.1479 1.2045 1.2871 0.1072 0.3964 0.6085
Jump variance 3.0078 2.4463 0.3301 15.7715 1.0453 1.2451 1.2859 0.0596 0.1460 0.2764
Total variance 3.9199 3.0876 0.1413 44.6831 2.2426 2.4871 2.5106 0.0600 0.2646 0.5999

Notes: Jump days are identified, and jump magnitudes calculated, according to the methodology described in the text, using 5-minute returns
over the 1999–2005 sample period. Panel (a) includes all jumps. Panel (b) includes only jumps that occur on days of high realized volatility,
defined to be days on which an asset’s realized volatility is above that asset’s median realized volatility calculated over the entire sample period.

Table 9
Decomposing Jump Risk into Systematic and Nonsystematic Components

Percentage Total Risk

Excluding First and Last 15 Minutes

Z � 3.0 Z � 4.0 Z � 2.0

Systematic jump risk 0.704% 0.438% 0.826%
Systematic continuous risk 20.322 15.909 14.812
Nonsystematic jump risk 4.959 3.329 7.812
Nonsystematic continuous risk 74.014 80.323 76.549

Note: Jumps for individual equities are decomposed into their systematic and nonsystematic jump components.
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