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Asymptotic Stability of a Fluid-Structure Semigroup

George Avalos
Department of Mathematics

University of Nebraska-Lincoln, 68588

March 13, 2006

Abstract

The strong stability problem for a fluid-structure interactive partial differential equation (PDE) is
considered. The PDE comprises a coupling of the linearized Stokes equations to the classical system
of elasticity, with the coupling occurring on the boundary interface between the fluid and solid media.
It is now known that this PDE may be modeled by a C0-semigroup of contractions on an appropriate
Hilbert space. However, because of the nature of the unbounded coupling between fluid and structure, the
resolvent of the semigroup generator will not be a compact operator. In consequence, the classical solution
to the stability problem, by means of the Nagy-Foias decomposition, will not avail here. Moreover, it
is not practicable to write down explicitly the resolvent of the fluid-structure generator; this situation
thus makes it problematic to use the wellknown semigroup stability result of Arendt-Batty and Lyubich-
Phong. Instead, our proof of strong stability for the fluid-structure PDE will depend on the appropriate
usage of a recently derived abstract stability result of Y. Tomilov.

1 Statement of the Problem
In this paper, we show how a recently derived abstract operator theoretic result can be used to ascertain
the asymptotic decay of solutions for a so-called “transmission hyperbolic-parabolic problem”. A simplified
version of this model and its relevance to biological modeling is discussed in [11]; see also [7] and [8] for related
partial differential equations (PDEs). Because of the non-compactness of the resolvent for the associated
semigroup generator—see (5) below—the classical stability treatments involving the Nagy-Foias decomposition
and Lasalle Invariance Principle are not applicable (see [10] and references therein). Nor does the resolvent
of this fluid-structure semigroup admit an explicit, working expression which might allow an appeal to the
now wellknown abstract stability results in [1] and [13]. Instead, we will use the recently derived stability
result posted in [16] and [6] (see Theorem 2 below; see also a precursor of this result in [5]). This stability
result of Y. Tomilov is formulated as a necessary resolvent criterion; however, to use this result one does not
actually need to know what the resolvent looks like.
The methodology for the use of Tomilov’s abstract stability criterion was first developed in [3], in the

context of discerning strong stability for a given PDE dynamics. In fact, the game plan developed in [3], to
infer the asymptotic decay of a given PDE, can be generally applied to obtain the asymptotic decay of those
general PDE models under inserted dissipation. (Of course the details of proof will necessarily be intrinsic to
the model under consideration.) We sketch the general approach here: Let A : D(A) ⊂ H→H (Hilbert) be
the infinitesimal generator of a C0-semigroup of contractions

©
eAt
ª
t≥0 on H. We assume that the generator

models some PDE system under the influence of some (unbounded) dissipative mechanism, in which case
the question of stability naturally arises.
To infer stability for a given C0-semigroup of contractions

©
eAt
ª
t≥0, one would generally perform the

following sequence of steps: (i) Show that contraction semigroup
©
eAt
ª
t≥0 is “completely non-unitary”. (We
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recall that a contraction C0-semigroup
©
eAt
ª
t≥0 is completely non-unitary (c.n.u.) if H has no nontrivial

reducing subspace for eA(·) on which eA(·) is unitary.) (ii) Given arbitrary f ∈ H, one subsequently considers
the quantity

x(α) ≡ R(α+ iβ;A)f,
where R(λ;A) is the resolvent operator of A corresponding to complex λ, α > 0 and β is any element in
RÂS, where S is some (suitably chosen) set with zero Lebesgue measure. In applications, the function x(α)
will be the solution of a β-parameterized steady state PDE; moreover, S will (essentially) be the eigenvalues
of a particular elliptic operator. To infer strong stability of

©
eAt
ª
t≥0, we must show that

lim
α→0+

√
αx(α) = 0 for all β ∈ RÂS. (1)

(see [16]). To this end, the following steps (iii)-(iv). (iii) Establish a priori bounds for the damping
mechanism inherent in x(α). (iv) Use the result of (iii) to establish a priori bounds for

√
αx(α), initially

in a topology lower than that of H. (v) Now use the bounds obtained in (iii) and (iv) to recover a priori
bounds for

√
αx(α) in the full finite energy topology H. (vi) Use the a priori bounds in (iii) and (v) to

show that the weak limit of
√
αx(α) is actually a strong limit, with value zero. Of course each problem

will have its own intrinsic set of details, but in principle, this ostensibly simple algorithm can be applied
to any dissipative PDE system. In particular, this method can be applied to PDE systems in which there
is no compactness of the underlying semigroup generator resolvent—a situation which will obtain for many
coupled PDE systems where the coupling is accomplished via boundary interfaces—or for PDE’s in which an
explicit expression of the resolvent is not readily computable. Once the basic question of asymptotic decay
is addressed for a given PDE model, then of course one can proceed to consider other control theoretic issues
for the model.
We intend to use the aforesaid methodology to obtain the conclusion of strong decay for a particular

fluid-structure PDE system. Because of a lack of compactness of the resolvent of the associated generator (see
(5) below), this strong stability cannot be inferred by the classical Nagy-Foias approach; nor can one readily
write down this resolvent, thereby precluding the use of the stability result of Arendt-Batty/Lyubich-Phong.
So in answering the strong stability question for the fluid-structure PDE under present consideration, the
appropriate use of Tomilov’s stability criterion is indispensible.
We now describe this fluid-structure PDE: Let Ωf and Ωs be bounded open sets, with smooth boundaries

Γf and Γs, respectively; these geometries are configured as in Figure 1: On the “fluid portion” Ωf of the
geometry, we define the following spaces:

Null(div) =
©
u ∈ [L2(Ωf )]3 : div u = 0

ª
;

V =
n
φ ∈ [H1(Ωf )]

3 ∩Null(div) : φ|Γf = 0
o
.

With respect to the “solid portion” Ωs of the geometry, we define the following classic operators which
mathematically realize the 3-D system of elasticity (see e.g., [9]):

1. For w = [w1, w2, w3], the strain tensor {²ij} is given by

²ij(w) =
1

2

µ
∂wj
∂xi

+
∂wi
∂xj

¶
, 1 ≤ i, j ≤ 3.

2. Subsequently, the stress tensor is described by means of Hooke’s Law:

σij(w) = λ

Ã
3X

k=1

²kk(w)

!
δij + 2µ²ij(w), 1 ≤ i, j ≤ 3,

2
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Figure 1: The Geometry of the Problem

where λ ≥ 0 and µ > 0 are the so-called Lamé’s coefficients of the system. Moreover, δij denotes as
usual the Kronecker delta; i.e., δij = 1 if i = j and δij = 0 if i 6= j.
Letting

σ(w)= (σij(w))
3
i,j=1, ²(w) = (²ij(w))

3
i,j=1 ,

then by virtue of Korn’s inequality, [H1(Ωs)]
3 may be endowed with the following inner-product,

equivalent to the usual [H1(Ωs)]
3-norm:

(w, w̃)1,Ωs = (²(w),σ(w̃))Ωs + (w, w̃)Ωs ;

kwk21,Ωs = (²(w),σ(w))Ωs + kwk
2
Ωs

(2)

3. With this nomenclature, we denote the Hilbert space H (of wellposedness) as

H ≡ Null(div)× [H1(Ωs)]
3 × [L2(Ωs)]3; u0

w0
w1

 ,
 ũ0
w̃0
w̃1


H

≡ (u0, ũ0)Ωf + (²(w0),σ(w̃0))Ωs + (w0, w̃0)Ωs + (w1, w̃1)Ωs .

(Here, (·, ·)Ωf and (·, ·)Ωs denote the respective L2-norms on the two geometries.)

We will discern strong stability properties of functions [u(t), w(t), wt(t)] ∈ C([0, T ];H) which solve the
following problem:

(ut,φ)Ωf + (∇u,∇φ)Ωf − hσ(w) · ν,φiΓs = 0 on (0,∞), for all φ ∈ V ;
divu = 0 in (0,∞)×Ωf
u|Γf = 0 on (0,∞)× Γf

wtt − divσ(w) + w = 0 in (0,∞)×Ωs
wt|Γs = u|Γs on (0,∞)× Γs

[u(0), w(0), wt(0)] = [u0, w0, w1] ∈ H.

(3)
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Above, the divergence of the stress tensor is defined in the usual way; i.e.,

(divσ(w))i =
3X
j=1

∂

∂xj
(σij(w)) , 1 ≤ i ≤ 3;

see e.g., [15].

Remark 1 The fluid variational relation in (3) is the weak formulation of the following coupled Stokes
flow-elasticity system, with inhomogeneous Neumann boundary data:

ut −∆u+∇p = 0 on (0,∞)×Ωf ;
divu = 0 in (0,∞)×Ωf
u|Γf = 0 on (0,∞)× Γf

∂u

∂ν
= σ(w) · ν − pν in (0,∞)× Γs

wtt − divσ(w) + w = 0 in (0,∞)×Ωs
wt|Γs = u|Γs on (0,∞)× Γs

[u(0), w(0), wt(0)] = [u0, w0, w1] ∈ H

(4)

(Here, p is the associated pressure of the weak solution u). In fact, because of the “hidden regularity” enjoyed
by the displacement w—i.e., σ(w) · ν|Γs ∈ L2(0, T ; [H−

1
2 (Γs)]

3) (see [4])—one can justify that weak solutions
of (3) are classical solutions of (4), in the sense of distributions.

Because of the recent wellposedness result in [4], we have continuity of the solution map in the space H
of wellposedness; i.e.,

[u0, w0, w1] ∈ H⇒ [u(·), w(·), wt(·)] ∈ C([0, T ];H).
In fact, this problem admits (a nonpedestrian) semigroup formulation: To wit, as in [4] we define the

operator A : V × [H− 1
2 (Γs)]

3 → V 0 by

hA(u, z),φiV 0×V = (∇u,∇φ)Ωf − hz,φiΓs for all φ ∈ V,

where h·, ·iΓs denotes the duality pairing between [H−
1
2 (Γs)]

0 and its topological dual. Subsequently, we
define the operator A : D(A) ⊂ H→H by

A
 u0
w0
w1

 =

 −A(u0,σ(w0) · ν)w1
div(w0)− w0

 ,
D(A) =

©
[u0, w0, w1] ∈H : u0 ∈ V, [A(u0,σ(w0)), w1, divσ(w0)] ∈H, u0|Γs = w1|Γs

ª
(5)

(Note that as divσ(w0) ∈ [L2(Ωs)]3 in the definition of D(A), then σ(w0) · ν is well-defined in [H− 1
2 (Γs)]

3;
see e.g., Théorèm 1, p. 307 of [2]. Thus the first component of the operator A is well-defined.
It is shown in [4] that A generates a C0-semigroup of contractions

©
eAt
ª
t≥0 onH. Thus the weak solution

to (3) is given by  u(t)
w(t)
wt(t)

 = eAt
 u0
w0
w1

 ∈ C([0, T ];H).
4



From (3), we readily see that this semigroup is dissipative: For, if in (3) we take φ ≡ u , and multiply the
elastic equation by wt, we eventually obtain, for all 0 ≤ s < t, the relation°°°°°°

 u(s)
w(s)
wt(s)

°°°°°°
2

H

=

°°°°°°
 u(t)
w(t)
wt(t)

°°°°°°
2

H

+ 2

Z t

s

|∇u|2 dτ . (6)

This dissipation naturally gives rise to the question of strong stability: recall that a C0-semigroup
©
eAt
ª
t≥0 ⊂

L(H) is said to be strongly stable if for every x ∈ H, limt→∞ eAtx = 0. Moreover, since one can readily
infer that zero is not an eigenvalue of A : D(A) ⊂ H→ H, as defined in (5), the question of strong stability
for the fluid-structure dynamics is an unambiguous one, since there will be no complication presented by
“steady states”.
As we said at the outset, the definition of the domain D(A) means that the resolvent R(λ;A) is not

compact as a mapping into H. Nor does R(λ;A) admit of an explicit representation. Thus, the method of
solution for the stability problem, outlined respectively in [10] and [1] (and [13]), is not applicable. Instead,
we will appeal to the following operator theoretic result:

Theorem 2 (see See Theorem 8.7 of [6]; see also p. 75-76 of [16]) Let A generate a C0-semigroup of
completely non-unitary contractions on a Hilbert space H. If there exists a dense set M ⊂ H such that

lim
α→0+

√
αR(α+ iβ;A)x = 0 for every x ∈M and almost every β ∈ R,

then the semigroup is strongly stable.

Through the agency of this abstract result, we will establish the asymptotic decay of weak solutions to
(3):

Theorem 3 The fluid-structure semigroup
©
eAt
ª
t≥0 generated by A : D(A) ⊂ H → H (as defined in (5))

is strongly stable.

2 Proof of Theorem 3

2.1 A Preliminary Result

The proof will follow the algorthim devised in [3]. In what follows, we will have need of the following elliptic
operator Å: D(Å) ⊂ [L2(Ωs)]3 → [L2(Ωs)]

3, defined on the solid portion of the geometry Ωs:

Åω = −divσ(ω) + ω; D(Å) =
£
H2(Ωs) ∩H1

0 (Ωs)
¤3
. (7)

By Korn’s inequality, Å is positive definite and self-adjoint, with compact resolvent.

To justify the invocation of Theorem 2, we must first show the following:

Proposition 4 The contraction semigroup {eAt} ⊂ L(H) of the generator defined in (5) is completely
non-unitary.

5



Proof of Proposition 4: Let Hu denote a subspace of H on which {eAt} is unitary. Then by Stone’s
Theorem iA|Hu

is self-adjoint. Thus, if nonzero λ is a (real) eigenvalue of iA|Hu
, corresponding to eigen-

function [u0, w0, w1] in Hu, we have from (5) the following relations:

− (∇Reu0,∇φ)Ωf + hσ(Rew0) · ν,φiΓs = λ (Imu0,φ)Ωf for all φ ∈ V ; (8)

(∇ Imu0,∇φ)Ωf − hσ(Imw0) · ν,φiΓs = λ (Reu0,φ)Ωf for all φ ∈ V ; (9)

Rew1 = λ Imw0 and Imw1 = −λRew0; (10)

div(σ(Rew0))−Rew0 = λ Imw1; (11)

−div(σ(Imw0)) + Imw0 = λRew1. (12)

We now: (i) take φ ≡ −Reu0 in (8); (ii) take φ ≡ Imu0 in (9); (iii) multiply both sides of (11) by −Rew1
and integrate; (iv) multiply both sides of (12) by Imw1 and integrate. Upon an addition of these relations,
we then have,

k∇Reu0k2Ωf + k∇ Imu0k
2
Ωf
= 0 (13)

(in obtaining this relation, we have also implicitly used (10) and the fact that u0|Γs = w1|Γs). By Poincaré’s
inequality, we have then that

Reu0 = Imu0 = 0. (14)

In turn, from (8) and (9) and the definition of D(A) we have that

σ(Rew0) · ν = 0 on Γs;

σ(Imw0) · ν = 0 on Γs. (15)

In turn, since w1|Γs = 0 from the definition of D(A), then using (10), (11) and (15), we have that Rew0
satisfies ¡

λ2 −Å¢Rew0 = 0 in Ωs;

σ(Rew0) · ν = 0 on Γs,

where Å: D(Å) ⊂ [L2(Ωs)]3 → [L2(Ωs)]
3 is as defined in (7). From elliptic theory we have consequently

that Rew0 = 0. In turn, from (10) we have that Imw1 = 0. In the same way, Imw0 = 0 and Rew1 = 0.
These consequences and (14) now complete the proof of Proposition 4. 2

As
©
eAt
ª
t≥0 is c.n.u., we can now attempt to apply Tomilov’s resolvent criterion. In fact, we shall

eventually invoke Theorem 2 with therein, M = H and β ∈ RÂS, where

S = ©β ∈ R : β2 is an eigenvalue of Å : D(Å) ⊂ [L2(Ωs)]3 → [L2(Ωs)]
3
ª

(16)

(so S is a countable set).

2.2 Proof proper of Theorem 3

Step 1 (A priori bounds for the damping mechanism)
With λ = α+ iβ, where β ∈ RÂS, we look at the resolvent equation

(λI −A)
 u0
w0
w1

 =
 f0
g0
g1

 ∈ H. (17)

6



Since β = 0 is an easy case, as there is then no coupling between real and imaginary parts, we also assume
throughout that β 6= 0. By Theorem 2, it is enough to show that

lim
α→0+

√
α k[u0(α+ iβ), w0(α+ iβ), w1(α+ iβ)]kH = 0. (18)

Componentwise, (17) gives the following relations:

λ (u0,φ)Ωf + (∇u0,∇φ)Ωf − hσ(w0) · ν,φiΓs = (f0,φ)Ωf for every φ ∈ V ;
αRew0 − β Imw0 −Rew1 = Re g0 ∈ [H1(Ωs)]

3;

α Imw0 + βRew0 − Imw1 = Im g0 ∈ [H1(Ωs)]
3;

λw1 + w0 − divσ(w0) = g1 ∈ [L2(Ωs)]3. (19)

Subsequently distinguishing real and imaginary parts gives then

(αReu0 − β Imu0,φ)Ωf + (∇Reu0,∇φ)Ωf − hσ(Rew0) · ν,φiΓs = (Re f0,φ)Ωf for every φ ∈ V ;(20)
(α Imu0 + βReu0,φ)Ωf + (∇ Imu0,∇φ)Ωf − hσ(Imw0) · ν,φiΓs = (Im f0,φ)Ωf for every φ ∈ V ;(21)

(α2 + 1)Rew0 − 2αβ Imw0 − β2Rew0 − divσ(Rew0) = Re g1 + αRe g0 − β Im g0; (22)

(α2 + 1) Imw0 + 2αβRew0 − β2 Imw0 − divσ(Imw0) = Im g1 + α Im g0 + βRe g0. (23)

We now multiply (22) by −β Imw0, multiply (23) by βRew0, and integrate the two subsequent relations.
Integrating by parts and adding the two gives

2αβ2 kImw0k2Ωs + 2αβ2 kRew0k
2
Ωs
− β hσ(Rew0) · ν, Imw0iΓs + β hσ(Imw0) · ν,Rew0iΓs = F (1)α , (24)

where

F (1)α = −β (Re g1 + αRe g0 − β Im g0, Imw0)Ωs + β (Im g1 + α Im g0 + βRe g0,Rew0)Ωs . (25)

Using the second and third relations in (19) to rewrite the boundary terms in (24), we have then

2α2β2 kImw0k2Ωs + 2α2β2 kRew0k
2
Ωs

+α hσ(Rew0) · ν,Rew1 − αRew0 +Re g0iΓs + α hσ(Imw0) · ν, Imw1 − α Imw0 + Im g0iΓs
= αF (1)α . (26)

Moreover, we take φ ≡ αReu0 in (20); we take φ ≡ α Imu0 in (21). Integrating in space and adding the
subsequent relations, we then obtain,

α2 kReu0k2Ωf + α2 kImu0k2Ωf + α k∇Reu0k2Ωf + α k∇ Imu0k2Ωf
− α hσ(Rew0) · ν,Reu0iΓs − α hσ(Imw0) · ν, Imu0iΓs = F (2)α , (27)

where
F (2)α = α (Re f0,Reu0)Ωf + α (Im f0, Imu0)Ωf . (28)

Adding the relations (26) and (27) and using the boundary condition w1|Γs = u0|Γs , we have:
Proposition 5 The fluid component u0(α+ iβ) of the resolvent relation (17) satisfies the following:

α k∇ Imu0k2Ωf + α k∇Reu0k2Ωf + 2α2β2 kImw0k
2
Ωs
+ 2α2β2 kRew0k2Ωs + α2 kReu0k2Ωf + α2 kImu0k2Ωf

= α
¡hσ(Rew0) · ν,αRew0 − Re g0iΓs + hσ(Imw0) · ν,α Imw0 − Im g0iΓs¢+ αF (1)α + F (2)α , (29)

where the F (i)α are as given in (25) and (28).

7



We proceed now to estimate the first term on the right hand side of (29). To this end, we can refer to

the abstract trace result in Théor̀em 1, p. 307 of [2], in order to justify the following
h
H−

1
2 (Γs)

i3
-estimate:

kσ(Rew0) · νk− 1
2 ,Γs

≤ C
³
kRew0k1,Ωs + kdivσ(Rew0)kΩs

´
= C

³
kRew0k1,Ωs +

°°(α2 + 1)Rew0 − 2αβ Imw0 − β2Rew0 −Re g1 − αRe g0 + β Im g0
°°
Ωs

´
, (30)

where in the last step we have also used the relation (22).
Moreover, we also invoke the following basic result from semigroup theory: Given Banach space X, if

A : D(A) ⊂ X → X is the infinitesimal generator of a contraction semigroup, then for all λ = α+ iβ, with
α > 0, we have the estimate

kR(λ;A)kX ≤
1

α
(31)

(see; e.g., p. 11 of [14]). Using (30), the Sobolev Trace Theorem, and (31), we have now¯̄
α hσ(Rew0) · ν,αRew0 −Re g0iΓs

¯̄ ≤ α kσ(Rew0) · νk− 1
2 ,Γs

kαRew0 −Re g0k 1
2 ,Γs

≤ αC
³
kRew0k1,Ωs +

°°(α2 + 1)Rew0 − 2αβ Imw0 − β2Rew0 −Re g1 − αRe g0 + β Im g0
°°
Ωs

´
× kαRew0 −Re g0k 1

2 ,Γs

≤ Cβ k[f0, g0, g1]k2H . (32)

In the exact same way, we have

kσ(Imw0) · νk− 1
2 ,Γs

≤ C
³
kImw0k1,Ωs + kdivσ(Imw0)kΩs

´
= C

³
kImw0k1,Ωs +

°°(α2 + 1) Imw0 + 2αβRew0 − β2 Imw0 − Im g1 − α Im g0 − βRe g0
°°
Ωs

´
; (33)

which along with (31) gives rise to¯̄
α hσ(Imw0) · ν,α Imw0 − Im g0iΓs

¯̄ ≤ Cβ k[f0, g0, g1]k2H . (34)

Combining (29) with (32), (34) and the resolvent estimate (31), we have finally the following estimate for
the gradient of the fluid component:

α k∇ Imu0k2Ωf + α k∇Reu0k2Ωf + 2α2β2 kImw0k
2
Ωs
+ 2α2β2 kRew0k2Ωs + α2 kReu0k2Ωf + α2 kImu0k2Ωf

≤ Cβ k[f0, g0, g1]k2H . (35)

This estimate and Poincaré’s inequality gives now the following a priori bound for the fluid component of
(17):

Lemma 6 Given initial data [f0, g0, g1] ∈ H, the fluid variable of the quantity in (17), for all β ∈ R, satisfies
the estimate √

α ku0kΩf +
√
α k∇u0kΩf ≤ Cβ k[f0, g0, g1]kH , (36)

where Cβ is independent of α (small).

8



Step 2 (a priori bounds in a lower topology).
The estimate (36) can in turn be used to derive the following:

Lemma 7 For α > 0 and β ∈ RÂS, the elastic component [Rew0, Imw0] of (17) obeys the following
estimate: °°£√αRew0,√α Imw0¤°°Ωs ≤ Cβ k[f0, g0, g1]kH , (37)

where the constant C is independent of α (small).

Proof of Lemma 7: We define the elliptic operator D : [L2(Γs)]
3 → [L2(Ωs)]

3 by Df = g if and only
if g satisfies

−divσ(g) + g = 0 on Ωs
g|Γs = f on Γs.

By elliptic theory, see e.g., [12], we have D ∈ L([L2(Γs)]3, [H 1
2 (Ωs)]

3). Accordingly, we have for any smooth
enough function ω on Ωs,

−divσ(ω) + w = Åω −ÅD(ω|Γs), (38)

where Å : D(Å) ⊂ [L2(Ωs)]3 → [L2(Ωs)]
3 is the elliptic operator defined in (7) (of course, the equality here

is taken in [D(Å)]0).

Applying the expression (38) into (22), we have¡
β2 −Å¢Rew0 = −ÅD(Rew0|Γs) + α2Rew0 − 2αβ Imw0 − (Re g1 + αRe g0 − β Im g0) .

Since β ∈ RÂS, we can multiply both sides of this relation by αR(β2;Å)Rew0. Doing so and subsequently
integrating, we obtain

α kRew0k2Ωs = −α ¡R(β2;Å)ÅD(Rew0|Γs),Rew0¢Ωs + α
¡
α2Rew0 − 2αβ Imw0,R(β2;Å)Rew0

¢
Ωs

−α ¡Re g1 + αRe g0 − β Im g0,R(β2;Å)Rew0
¢
Ωs
. (39)

To handle the first term on the right hand side of (39), we use again the third relation in (19) to have

−R(β2;Å)ÅD(Rew0|Γs) =
1

β
R(β2;Å)ÅD([α Imw0 − Imw1 − Im g0]Γs).

Using w1|Γs = u0|Γs and the resolvent estimate (31), we have then°°R(β2;Å)ÅD(Rew0|Γs)°°Ωs ≤ Cβ ³k∇u0kΩf + k[f0, g0, g1]kH´ . (40)

Applying this estimate to the right hand side of (39), followed by use of the estimates (31) and ab ≤ δa2+Cδb
2,

give now

α kRew0k2Ωs ≤ α
°°R(β2;Å)ÅD(Rew0|Γs)°°Ωs kRew0kΩs + Cβ k[f0, g0, g1]k2H

≤ αCβ

³
k∇u0kΩf + k[f0, g0, g1]kH

´
kRew0kΩs + Cβ k[f0, g0, g1]k

2
H

≤ αδ kRew0k2Ωs + Cδ
°°√α∇u0°°2Ωf + Cβ k[f0, g0, g1]k2H .

Invoking Lemma 6 and taking δ < 1, we have now

α kRew0k2Ωs ≤ Cβ,δ k[f0, g0, g1]k
2
H . (41)
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By the means just employed, we can use (23) to obtain also

α kImw0k2Ωs ≤ Cβ,δ k[f0, g0, g1]k
2
H , (42)

which concludes the proof of Lemma 7. 2

Step 3 (a priori bounds in finite energy topology) Multiplying (22) by αRew0, and subsequently inte-
grating gives

α (σ(Rew0), ²(Rew0))Ωs + α (Rew0,Rew0)Ωs =

−α hσ(Rew0) · ν,Rew0iΓs + αβ2 kRew0k2Ωs
−α ¡α2Rew0 − 2αβ Imw0 −Re g1 − αRe g0 + β Im g0,Rew0

¢
Ωs
. (43)

Using the third resolvent relation in (19), we have

α hσ(Rew0) · ν,Rew0iΓs =
α

β
hσ(Rew0) · ν, Imu0 − α Imw0 + Im g0iΓs ; (44)

applying the estimates in (30), (36) (37) and (31), we have then¯̄
α hσ(Rew0) · ν,Rew0iΓs

¯̄ ≤ α

|β| kσ(Rew0) · νk− 1
2 ,Γs

kImu0 − α Imw0 + Im g0k 1
2 ,Γs

≤ α

|β|
³
kRew0k1,Ωs +

°°(1 + α2)Rew0 − 2αβ Imw0 − β2Rew0 −Re g1 − αRe g0 + β Im g0
°°
Ωs

´
× kImu0 − α Imw0 + Im g0k 1

2 ,Γs

≤ αCβ kRew0k1,Ωs k∇u0kΩf + αCβ kRew0kΩs k∇u0kΩf + Cβ k[f0, g0, g1]k
2
H

≤ δα kRew0k21,Ωs + Cβ,δ
°°√α∇u0°°2Ωf + Cβ k[f0, g0, g1]k2H .

Applying this estimate to the right hand side of (43) and subsequently invoking estimate (37) gives now,

α (σ(Rew0), ²(Rew0))Ωs + α (Rew0,Rew0)Ωs ≤ Cβ,δ k[f0, g0, g1]k
2
H . (45)

The analogous steps will give us a priori energy bounds for Imw0. That is, we can multiply both sides of
(23) by α Imw0 to obtain the relation

α (σ(Imw0), ²(Imw0))Ωs + α (Imw0, Imw0)Ωs =

−α hσ(Imw0) · ν, Imw0iΓs + αβ2 kImw0k2Ωs
−α ¡α2 Imw0 + 2αβ Imw0 − Im g1 − α Im g0 − βRe g0, Imw0

¢
Ωs
. (46)

Subsequently, we can estimate the right hand side of this expression by using the second resolvent relation
in (19), and then (33), (36) (37) and (31), so as to have

α (σ(Imw0), ²(Imw0))Ωs + α (Imw0, Imw0)Ωs ≤ Cβ,δ k[f0, g0, g1]k
2
H . (47)

Combining (45) and (47), with the equivalent H1-norm given in (2), now establishes the following:

Proposition 8 For α > 0, the elastic component [Rew0, Imw0] of (17) obeys the following estimate:°°£√αRew0,√α Imw0¤°°1,Ωs ≤ Cβ k[f0, g0, g1]kH , (48)

where the constant C is independent of α (small).
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Step 4. Conclusion of the proof of Theorem 3.
We first note that the a priori bounds and relations we have obtained will imply that

√
αReu0 and√

α Imu0 each converge to zero strongly in
£
H1(Ωf )

¤3
. In fact, from the a priori relation in (29), we have,

after using (30), (33) and (31), the estimate

α k∇ Imu0k2Ωf + α k∇Reu0k2Ωf
≤ α

³
kσ(Rew0) · νk− 1

2 ,Γs
kαRew0 −Re g0k 1

2 ,Γs
+ kσ(Imw0) · νk− 1

2 ,Γs
kα Imw0 − Im g0k 1

2 ,Γs

´
+
¯̄̄
αF (1)α + F (2)α

¯̄̄
≤ αC

³
kRew0k1,Ωs +

°°(α2 + 1)Rew0 − 2αβ Imw0 − β2Rew0 −Re g1 − αRe g0 + β Im g0
°°
Ωs

+ kImw0k1,Ωs +
°°(α2 + 1) Imw0 + 2αβRew0 − β2 Imw0 − Im g1 − α Im g0 − βRe g0

°°
Ωs

´
× k[f0, g0, g1]kH +

¯̄̄
αF (1)α + F (2)α

¯̄̄
,

where the F (i)α are as defined in (25) and (28), respectively. Letting α ↓ 0, we have after using the estimates
(36) and (48),

lim
α→0+

√
αReu0 = 0 in

£
H1(Ωf )

¤3
;

lim
α→0+

√
α Imu0 = 0 in

£
H1(Ωf )

¤3
(49)

(here, we also implicitly used Poincaré’s inequality).

Next, we use the elliptic operator defined in (7) so as to rewrite the relation in (22) as¡
β2 −Å¢Rew0 = −ÅD(Rew0|Γs) + α2Rew0 − 2αβ Imw0 −Re g1 − αRe g0 + β Im g0.

Using the fact that β ∈ RÂS and the third relation in (19) we have now
√
αRew0 = −

√
α

β
R(β2;Å)ÅD([Imu0 − α Imw0 + Im g0]Γs)

+
√
αR(β2;Å) £α2Rew0 − 2αβ Imw0 −Re g1 − αRe g0 + β Im g0

¤
.

To estimate the right hand side of this expression: we use the fact that D ∈ L([L2(Γs)]3,
£
L2(Ωs)

¤3
), Sobolev

Trace Theory and the estimate (31), so as to have°°√αRew0°°Ωs ≤ Cβ√α k∇u0k1,Ωf +√αCβ k[f0, g0, g1]kH .
Taking α ↓ 0 and invoking (49), we obtain

lim
α→0+

√
αRew0 = 0 strongly in

£
L2(Ωs)

¤3
. (50)

Using in the same way the relation¡
β2 −Å¢ Imw0 = −ÅD( Imw0|Γs) + α2 Imw0 + 2αβRew0 − Im g1 − α Im g0 − βRe g0,

from (23), we will have
lim
α→0+

√
α Imw0 = 0 strongly in

£
L2(Ωs)

¤3
. (51)
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Combining (50) and (51) with the second and third relations of (19) give, in turn,

lim
α→0+

√
αRew1 =

√
α(−β Imw0 + αRew0 −Re g0) = 0 strongly in

£
L2(Ωs)

¤3
;

lim
α→0+

√
α Imw1 =

√
α(−βRew0 + α Imw0 − Im g0) = 0 strongly in

£
L2(Ωs)

¤3
. (52)

Finally, we appeal to the elastic energy relation (43). Estimating this via (31), (30), and the third relation
of (19), we have

α (²(Rew0), ²(Rew0)) + α (Rew0,Rew0)Ωs

≤ α kσ(Rew0) · νk− 1
2 ,Γs

kRew0k 1
2 ,Γs

+ αβ2 kRew0k2Ωs + α kRew0kΩs k[f0, g0, g1]kH
≤ √

αC
³
kRew0k1,Ωs +

°°(α2 + 1)Rew0 − 2αβ Imw0 − β2Rew0 −Re g1 − αRe g0 + β Im g0
°°
Ωs

´
×√α

°°°° 1β (Imu0 − α Imw0 + Im g0)

°°°°
1
2 ,Γs

+ αβ2 kRew0k2Ωs + α kRew0kΩs k[f0, g0, g1]kH .

Letting α tend to zero on both sides of the inequality, while using (48), (49) and (50) and (31), we have
finally

lim
α→0+

√
αRew0 = 0 strongly in

£
H1(Ωs)

¤3
. (53)

We can deal in the same way with the elastic energy relation (46, so as to have

lim
α→0+

√
α Imw0 = 0 strongly in

£
H1(Ωs)

¤3
. (54)

The relations (49), (52), (53) and (54) now establish the limit (18). The proof of Theorem 3 is now
complete upon application of Tomilov’s resolvent criterion for strong stability; namely, Theorem 2. 2
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