November 1993

NUCLEATION FIELD AND ENERGY PRODUCT OF ALIGNED TWO-PHASE MAGNETS - PROGRESS TOWARDS THE '1 MJ/m³' MAGNET

Ralph Skomski
University of Nebraska-Lincoln, rskomski2@unl.edu

J.M.D. Coey
Trinity College, Dublin 2, Ireland

Follow this and additional works at: http://digitalcommons.unl.edu/physicsskomski

Part of the Physics Commons

http://digitalcommons.unl.edu/physicsskomski/3

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ralph Skomski Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
NUCLEATION FIELD AND ENERGY PRODUCT OF ALIGNED TWO-PHASE MAGNETS - PROGRESS TOWARDS THE '1 MJ/m³' MAGNET

R. Skomski and J. M. D. Coey
Department of Pure and Applied Physics, Trinity College, Dublin 2, Ireland

Abstract - Exchange hardening of nanostructured two-phase systems composed of an aligned hard phase and a soft phase with high magnetization is investigated using a micromagnetic approach which accounts for interactions between the soft regions. For Sm₂Fe₁₇N₃(2.5nm)/Fe₆₅Co₃₅(9nm) multilayers an energy product as high as 1 MJ/m³ (120 MGoes) is predicted, with a rare-earth content of only 5wt%. Giant energy products may also be achieved in suitable cellular and disordered structures.

INTRODUCTION

Due to the quadratic dependence of the theoretical energy product \( (BH)_{\text{max}} \) on the saturation magnetization \( M_s \), magnetic phases such as bcc iron with \( \mu_0M_s = 2.15 \, \text{T} \) should be excellent permanent magnetic materials. In fact, magnetocrystalline anisotropy and coercivity of bcc iron are very low so energy products of iron magnets are only of order 1 kJ/m³, compared to the theoretical value \( \mu_0M_s^2/4 = 920 \, \text{kJ/m³} \). In the past it was necessary to resort to cumbersome horseshoe shapes to avoid spontaneous demagnetization into a multidomain state by the magnet's own magnetostatic field.

Modern high-performance magnets such as Nd₂Fe₁₄B [1] and Sm₂Fe₁₇N₃ [2] overcome this problem by exchange coupling iron atoms to rare-earth atoms in sites with strong uniaxial anisotropy. The penalty, however, is a reduced magnetization due to the rare-earth and nonmagnetic elements. Additionally, there is nothing to be gained from a coercivity much greater than \( M_s \); the energy product cannot exceed \( \mu_0M_s^2/4 \), and the strong uniaxial is partly wasted. Nevertheless, it has been possible to use Nd₂Fe₁₄B which has \( \mu_0M_s = 1.61 \, \text{T} \) and \( \mu_0M_s^2/4 = 516 \, \text{kJ/m³} \) to achieve energy products as high as 405 kJ/m³ in laboratory-scale magnets [1].

The outlook for discovering new ternary phases with significantly higher magnetization than those available at present is poor. Interstitial modification with small atoms such as nitrogen or carbon is effective for enhancing Curie temperature and anisotropy, but the magnetization remains practically unchanged [2]. A new approach is needed if further progress is to be possible.

A possible way is to use nanocrystalline two-phase materials consisting of exchange-coupled hard-magnetic and soft-magnetic phases where the hard-magnetic phase assures the necessary coercivity. Recently enhancement of the comparitively low remanence \( M_r = M_o/2 \) has been achieved in the isotropic nanocrystalline composites Nd₂Fe₁₂B/Fe₃B and Sm₂Fe₁₇N₃/Fe produced by melt-spinning [3] and mechanical alloying [4], respectively. In these systems the energy product is improved by exchange hardening [5-7] but does not reach the level attained in oriented rare-earth magnets. To obtain energy products greater than those in aligned rare-earth intermetallics, aligned two-phase magnets have to be used.

Here we determine nucleation fields in three-dimensional aligned two-phase magnets and calculate the maximum energy product in suitable nanostructured composites.

MODEL AND RESULTS

Micromagnetic background

Assuming short-range exchange interaction and uniaxial anisotropy, the magnetic free energy can be written as (cf. eg. [8,9])

\[
F = \int \left[ A(r) \left( \frac{V M_i(r)}{M_o(r)} \right)^2 - K_1(r) \left( \frac{M_{\parallel i}}{M_o(r)} \right)^2 - \mu_0 M_i H_i \right] \, dr
- \frac{1}{2} \sum_{ij=1}^{3} \int \int \left( K_{ij}(r-r') \right) M_i(r) M_j(r') \, dr \, dr' \tag{1}
\]

where \( A(r) \) is the exchange stiffness, \( M_i(r) \) with \( \left| M_i(r) \right| = M_o \) denotes the local magnetization, and \( K_1(r) \) is the first anisotropy constant. The spatially constant unit vector \( \hat{n}_i \) of the easy-axis direction and the external field \( H_i \) are assumed to be parallel (aligned magnet), and the nonlocal kernel \( K_{ij}(r-r') \), describes the magnetostatic dipole interaction.

If we start from the perfectly aligned state where \( M_i(r) = M_o(r) \hat{n}, \) a sufficiently-high external nucleation field \( H_i = -\)
H_{2N}t is necessary to destabilize the aligned state and to induce magnetic reversal (nucleation). Nucleation is a necessary but not sufficient condition for magnetic reversal, since there is a possibility that the reversed nucleus will not propagate.

In sufficiently large homogeneous ellipsoids nucleation is realized by incoherent magnetostatic modes, e.g., curling in the case of a sphere. The corresponding nucleation field obeys \( H_{\text{N}} \geq 2 K_1/\mu_0 M_h - D M_0 \), where \( D \) is the macroscopic demagnetization factor of the ellipsoid [10,11]. This means that the so-called intrinsic coercivity \( H_c = H_{c}^{\text{int}} \approx D M_0 \) can not be smaller than the 'much-too-high' value \( 2 K_1/\mu_0 M_h \), which is known as Brown's paradox. In fact, real systems always show a certain inhomogeneity which gives, at least principally, the solution of Brown's paradox [11].

**Coercivity and energy product**

In the following we neglect the possible improvement of the coercivity due to pinning effects and restrict ourselves to the determination of \( H_{\text{N}} \). Substituting the identity

\[
M_i(r) = M_0(r) \left( m_x(r) e_{ix} + m_y(r) e_{iy} + \sqrt{1 - m_x^2 - m_y^2} e_{iz} \right)
\]

into Eq. (1) and expanding the free energy density with respect to the small transverse components \( m_i = (m_x, m_y) + 1 \) yields a quadratic form whose lowest eigenvalue corresponds to the nucleation mode. Two cases can be distinguished:

(i) The coercivity of modern rare-earth magnets is small compared to their large anisotropy field \( H_A \), which cannot be explained by magnetostatic fields. Neglecting magnetostatic contributions \( (M_0 < H_A - H_c) \) and spatial variations of \( A \) and \( M_0 \), the micromagnetic vector equation obtained from Eq. 1 reads

\[
-A \nabla^2 m_i + K_1(r) m_i = \frac{1}{2} \mu_0 M_0 H_{\text{N}} m_i
\]

The two components \( m_i \) are decoupled so Eq. (3) corresponds to Schrödinger's equation for a particle moving in a three-dimensional potential \( K_1(r) \). This allows us to apply ideas familiar from quantum mechanics to discuss micromagnetics; in particular, the nucleation field \( H_{\text{N}} \) corresponds to the quantum-mechanical ground-state energy, and the small transverse magnetization or nucleation mode has its analog in the the wave function. It turns out that the nucleation field calculated from Eq. (3) is extremely low if the material contains soft regions (cf. Fig. 1) whose size is much larger than the Bloch-wall width \( \delta_{\text{B}} \) of the hard matrix [9,11-14]. Fig. 2 shows the calculated nucleation field for the spherical inclusion Fig. 1 [14].

(ii) With increasing number of inhomogeneities the interaction between different soft inclusions becomes important. This interaction has its quantum-mechanical analog in the formation of bonding and antibonding states and tends to reduce the nucleation field. The determination of \( H_{\text{N}} \) now becomes difficult, but perturbation theory can be used for macroscopically homogeneous magnets if the soft inclusions are very small (plateau region in Fig. 2). In this case the exchange coupling between hard and soft regions is very strong which leads to a more or less homogeneous magnetization state. In lowest order perturbation theory [14], the unperturbed nucleation mode, i.e. the unperturbed wave function within the quantum-mechanical analogy, can be used to calculate the nucleation field.

\[
H_{\text{N}} = \frac{2 \langle K_1 \rangle}{\mu_0 \langle M_0 \rangle} - D \langle M_0 \rangle
\]

with \( \langle M_0 \rangle = m_3 M_h + m_4 M_h \). Note that this result does not depend on the shape of the inclusions.

If the saturation magnetization \( M_h \) of the soft phase is higher than the saturation magnetization \( M_h \) of the hard phase, and so long as the coercivity remains sufficiently high, the energy product of the two-phase system will be greater than that of the hard phase. The theoretical limit is given by

\[
(BH)_{\text{max}} = \frac{1}{4} \mu_0 \langle M_0 \rangle^2 \left( 1 - \frac{\mu_0 (M_h^2 - M_0^2)}{2 K_1} \right)
\]

where \( K_1 \) is the anisotropy constant of the hard phase. Due to the large \( K_1 \), the second term in the bracket is small so the energy product approaches the ultimate value \( \mu_0 \langle M_0 \rangle^2/4 \).

The corresponding volume fraction of the hard phase is \( f_h = \mu_0 \langle M_0 \rangle^2/4 K_1 \). If we consider the Sm2Fe17N3/Ne system and take values \( \mu_0 M_h = 2.15 \, \text{T} \), \( \mu_0 M_0 = 1.55 \, \text{T} \), and \( K_1 = 12 \, \text{MJ/m}^3 \) we obtain a theoretical energy product of 880 kJ/m3 (110 MGOe) for a volume fraction of only 8% of the hard phase. A further increase of the energy product is possible, if iron is replaced by Fe65Co35 with \( \mu_0 M_s = 2.35 \, \text{T} \); \( (BH)_{\text{max}} \) = 1090 kJ/m3 (137 MGOe). It is remarkable that these magnets consist almost entirely of 3d metals, with only about 2% samarium.

**CONCLUSIONS**

Eq. (5) shows that the energy product in aligned two-phase magnets is much larger than that of the corresponding
Fig. 3. Schematic hysteresis loop of a hypothetical 'MJ' magnet.

rare-earth intermetallics if the hard regions act as a skeleton to stiffen the magnetization direction of the soft regions. The practical problem however is to realize a structure where the soft regions are sufficiently small to avoid nucleation at small fields, and to have the hard regions crystallographically aligned. One conceivable solution is a disordered two-phase magnet (Fig. 4) with a common c-axis throughout the hard regions, but it is difficult to see how this might be achieved in practice.

A more realistic possibility is a multilayered structure of alternating soft and hard magnetic layers (Fig. 5). Using a slightly different theoretical approach (cf. [14,15]), an energy product of about 1000 J/m³ is obtained for a multilayer composed of alternating 2.5 nm Sm₂Fe₁₇N₃ and 9.0 nm Fe₆₅C₃₅ layers. (This structure contains 5 wt.% samarium).

Eq. (1) is based on classical micromagnetic considerations; the sizes of the hard and soft regions must be large compared to atomic dimensions (larger than about 1 nm). To compensate this size effect, and to ensure reproducible magnetic properties, the magnet must be stabilized by slightly increasing the volume fraction of the hard phase. Nevertheless, fₜ = 30% still yields an energy product of 800 kJ/m³ (100 MGOe) in the Sm₂Fe₁₇N₃/Fe system.

ACKNOWLEDGMENTS

This work forms part of the 'Concerted European Action on Magnets'. It was supported by the BRITE/EURAM Programme of the European Commission.

REFERENCES