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Coherent control of stimulated Raman scattering using chirped
laser pulses

Evan S. Dodda) and Donald Umstadter
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109

~Received 15 March 2001; accepted 8 May 2001!

A novel method for the control of stimulated Raman scattering and hot electron production in
short-pulse laser-plasma interactions is proposed. It relies on the use of a linear frequency chirp in
nonbandwidth limited pulses. Theoretical calculations show that a 12% bandwidth will eliminate
Raman forward scattering for a plasma density that is 1% of the critical density. The predicted
changes to the growth rate are confirmed in two-dimensional particle-in-cell simulations. Relevance
to areas of current research is also discussed. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1382820#

High-intensity laser-matter interactions are of much
current interest because of their relevance to basic plasma
physics, advanced radiation sources,1,2 laser-plasma
accelerators,3,4 laser fusion,5 and relativistic nonlinear
optics.6 Many of these applications depend critically on the
amount of laser energy that can be propagated over long
distances through plasma without being lost to stimulated
Raman scattering~SRS! and electron heating. In the fast ig-
nitor fusion concept, these processes will prevent the high
intensity pulse from propagating through the underdense
plasma region and will pre-heat the core. In x-ray lasers,
which need long gain lengths, electron heating from SRS
reduces lasing efficiency.7,8 In self-modulated laser-
wakefield accelerators, Raman scattering can be either desir-
able or undesirable, depending on the parameter regime. The
laser system used in almost all of these studies is based on
the chirped-pulse amplification technique,9 which produces
large bandwidth light pulses with variable chirp~frequency
versus time!. Thus, a means to control the growth of SRS by
adjustment of the laser chirp could have a significant impact
on these applications.

SRS is a process in which light from an incident pump
pulse is scattered by the electron-density perturbations of a
plasma wave. If the wave has frequencyve

254pe2n/m,
with electron chargee, massm and number densityn and the
incident light’s frequency isv0 , then light will be scattered
from noise to frequenciesv15v02ve and v25v01ve ,

which are called the Stokes and anti-Stokes lines. The beat-
ing between thev0 light and that scattered tov1 resonantly
drives a plasma wave, which creates a feedback loop, since
the amount of scattered light is proportional to the plasma
wave’s amplitude. Therefore, the plasma wave can grow to
large amplitudes from noise, scattering light from a seem-
ingly quiet plasma.

The effect of finite-bandwidth on parametric instabilities
has been studied extensively.10 Of the most interest to laser
fusion has been bandwidth mismatch. An instability like SRS
has an associated bandwidth that the laser bandwidth may
exceed. Those frequencies of light outside of the instability
bandwidth will then be unable to drive density perturbations,
thereby reducing the effective growth rate whenDv.g0 ,
for growth rateg0 and laser bandwidthDv. Beam smoothing
techniques based on spatial and temporal incoherence have
also been studied and shown to reduce SRS in experiment.11

Density gradients can also reduce the growth of SRS.12 Wave
breaking saturation has been suggested as a mechanism to
control SRS.13 However, it only works under specific plasma
conditions.

In this paper, we discuss using a linearly chirped pulse to
control the reinforcement of density perturbations so as to
selectively enhance or eliminate SRS.14 From the previous
discussion on bandwidth mismatch and density gradients,
one might think that the growth rate can only be reduced.
However, our results will show that the spectral distribution
within the pulse is also very important. When group velocity
dispersion~GVD! of a chirped pulse is accounted for, the
same high bandwidth may either increase or decrease the
SRS growth rate. Although others have discussed the idea of
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using a chirp,15 to our knowledge, its effect on SRS has
never been examined theoretically. Including the chirp leads
to growth rates that differ dramatically from any previous
growth-rate calculation. Recent experiments16 have shown
effects similar to what will be presented here analytically and
numerically. Chirp has also been shown to affect
ionization.17

The unchirped growth rate has been calculated pre-
viously in Refs. 18–20 to beg05(kec/2&)(ve /v0)a0

for Raman forward scattering ~RFS! and g0

5kec/4(ve /Avev0)a0 for Raman backward scattering
~RBS!, where ke5ve /c and a05euAu/mc2 are the laser
pulse’s wave number and normalized vector potential. Ex-
periments have recently shown a reasonable agreement with
these theoretical calculations of SRS growth.21 However, in
the following calculation we will use the method of Mori
from Ref. 22, instead of a dispersion relation analysis.18 This
newer method includes the dependence of phase and group
velocities on longitudinal position within the pulse due to a
chirp more intuitively.

The laser pulse interacts with the plasma through the
index of refraction as it propagates. Perturbations from elec-
tron density, relativistic electron mass and frequency can
change the index. The group velocity (vg) and the phase
velocity (vf), may thus be expanded as

vg5cS 12
1

2

ve
2

v0
2 H 11

dn

n
2

^a0
2&

4
22

dv0

v0
J D , ~1!
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dv0
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wherec is the speed of light, the electron density isn with
perturbationdn, anddv0 represents perturbations to the la-
ser frequency.

The analysis of Ref. 22 starts with the action of the laser
pulse, a conserved quantity, and shows that only three types
of modulation can occur. These are longitudinal bunching,
self-focusing, and photon acceleration, which couple to-
gether to form the observed laser–plasma instabilities. Per-
turbations to the intensity may be written in the form

D^a0
2&5H 2

DL

L
22

Dr 0

r 0
2

Dv0

v0
J ^a0

2&, ~3!

where the three terms represent modulation to the: Longitu-
dinal dimensionL ~bunching!, spot sizer 0 ~self-focusing!,
and frequencyv0 ~photon acceleration!. In the particular
case of RFS, a one-dimensional phenomenon with no self
focusing, only the two remaining types of modulation con-
tribute. The method relates each type of modulation to dis-
persion of eithervg or vf . Longitudinal bunching then be-
comes 1/L(]L/]t)521/c(]vg /]c), and photon
acceleration 1/v0(]v0 /]t)51/c(]vf /]c), in the speed of
light framet5t andc5t2z/c for pulses propagating in the
z direction. By substituting these relations into Eq.~3! an
equation describing the growth of RFS was derived. How-
ever, instead of rederiving the growth rate, the amount of
chirp required to affect the growth of SRS can be estimated.

When a pulse propagates through a dispersive medium it
expands or contracts due to GVD of the different frequencies
within the pulse, with the bunching rate constant along the
length of a linearly chirped pulse. Using the above analysis,
in order to eliminate SRS, the bunching rate of the chirp
must be equal and opposite to the bunching that drives SRS,
or ]LSRS/]t52]Lchirp/]t. Substituting into this the previ-
ous relation for bunching, we get

Le

]vg

]c U
SRS

52Lp

]vg

]c U
chirp

, ~4!

the guiding equation for control of SRS through the use of a
chirped pulse, whereLe52pc/ve is the plasma wave length
and Lp is the pulse length. Therefore, a pulse undergoing
compression will act constructively and reinforce density
perturbations, while a pulse that is stretching acts destruc-
tively. The GVD due to density perturbations in Eq.~3! is the
change in group velocity from peak to trough of the wave. A
simple estimate indicates that the required chirp to cancel
SRS should have the sameDvg overLe/2. However, because
the bunching rate is uniform over the length of the pulse,
Dvg can be spread out over the entire pulse length, giving
the needed bunching rate with a smaller chirp. The two scale
lengthsLe andLp in Eq. ~4! act as leverage, amplifying the
effect of the chirp.

Laser pulses are not composed of a single frequency, but
a spread of frequencies with widthDv about a central fre-
quency v0 . A single frequency only exists as an infinite
sine-wave, and any finite length results in more complex
spectral content. The Fourier theorem23 states that any finite
signal with root-mean-square~rms! frequency spreadD f rms

and lengthDt rms must satisfyD f rmsDt rms>1/2. If a pulse
with Gaussian profile has a full-width-half-maximum length
of tp (Lp5ctp), then it may be described by an envelope
~first exponential! and a carrier~second exponential!: E

5E0e2ac2
eiF(c), wheretp5A2 log 2/a. Along the pulse’s

length, the frequency may have a sweep or chirp, meaning
that frequency may be position dependent. The total instan-
taneous phase of laser pulse with a linear chirp23 may be
written as F(c)5v0c1bc2, and the instantaneous fre-
quency v(c)5dF/dc5v012bc. The change in fre-
quency along the pulse’s length,]v/]c;2b, perturbs both
vg andvf , causing the pulse to contract or expand depend-
ing on the sign ofb. From the GVD dependence on chirp, the
effect of the sign will serve to either enhance or reduce the
growth of a perturbation. Therefore, a linear chirp can clearly
affect the growth of SRS.

Taking Eq.~4! and combining with Eqs.~1! and~2!, one
finds

2p
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The change in perturbation size over the length of the pulse
is related to the growth, or]/]c(dn/n);g0 , which can be
substituted into the left-hand side of Eq.~5!. This is not
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meant to be exact but only an approximation to the amount
of growth in the perturbations. The chirp perturbation is
characterized by]/]c(dv/v0);2b. These two substitu-
tions yield the desired estimate for the amount of chirp
needed to eliminate SRS

b52
1

4

v0

ve

g0

tp
. ~6!

The bandwidth for a chirped pulse can be written asDv0

.2btp , or Dv0. 1
2 (v0 /ve)g0 after substituting in Eq.~6!.

The use ofg0 maintains some generality, in that the growth
rates for either RFS or RBS may be applied to determine
how much bandwidth a chirped laser pulse needs in order to
eliminate either instability.

The bandwidth calculated from Eq.~6! is plotted in Fig.
1, for a051.0, as a function of density proportional to the
critical density (ncr5v0

2m/4pe2). Though the analysis is for
a0!1.0, terms typically appear asa0

2/2, reasonably small for
a0;1. As the plasma density approaches the critical value,
the bandwidth required for elimination of RFS grows larger.
At n/ncr;1/4, (gg51/A12vg

2/c2;v0 /ve52) the band-
width needed is;55%. But in more underdense regimes,
e.g., gg;10, a smaller bandwidth of;12% is needed to
affect propagation, making this concept better suited to these
conditions. In the case of direct RBS the amount of band-
width starts out large, but decreases near the critical density.

Particle-in-cell simulations were run to compare the ef-
fect of chirped and unchirped pulses on RFS with the previ-
ous calculation. The simulations used the two-dimensional
version of the codeTRISTAN,24 on eight processors of an IBM
SP2. A grid of 1024 by 512 cells was used with 8 particles
per cell in a frame co-moving with the pulse. Absorbing
boundary conditions were used on all sides so diffracted and
scattered light would leave the domain without interfering
with the simulation. Three runs were made to study this ef-
fect: ~A! An unchirped bandwidth-limited pulse with 1.3%
bandwidth;~B! negatively and~C! positively chirped pulses,
both with 20% bandwidth~;200 nm available in Ti:Al2O3!,
instead of 12%. All three were 120 fs half-sine shape pulses
with a051.0, and propagated through 800mm of n
;1019cm23 plasma, wherev0 /ve510 for a laser wave-

length of 1mm. This pulse is short enough to drive a small
wake that preferentially seeds direct RFS over near-forward
RFS. Also, during propagation the pulse length will change
only slightly, sinceDvg /c50.002 thenDL/L;4%, thus af-
fecting a0 only slightly.

The total energy of the field components in the simula-
tion is recorded at each time step and the time evolution of
the plasma is observed with a fine sampling. In Fig. 2, the
total energy in the RFS driven plasma wave is plotted as a
function of timet normalized to the plasma period,te , for
the three different runs: A, B, and C. Plotted in each is
**(Ex

2/8p)dx dy, where x is the direction of propagation
and y is the transverse direction, and should have an expo-
nential growth similar to the wave amplitude. The negatively
chirped pulse in B deposits consistently less energy in the
plasma wave when compared with the unchirped pulse A, as
predicted. The positively chirped pulse in simulation C leads
to increased RFS growth, which we see as curve C exceeding
A for the entire propagation.

The total energy remaining in the laser pulse is plotted in
the inset of Fig. 2. As expected, the negatively chirped pulse,
B, maintains the most energy in the pulse, while C experi-
ences the greatest loss in energy, consistent with an increased
growth rate. Since the simulation domain is a small box, the
pulse will diffract through the boundary, causing an energy
loss to the system and there is some heating of the plasma
even without RFS. Simulations with a pulse in vacuum and
another with only plasma were run to confirm that the shape
of the curve B is consistent with energy loss due to diffrac-
tion through the boundary. Therefore, qualitatively we see a
match between theory and simulation, and that a chirped
high-bandwidth pulse can be used to control the growth rate
of RFS.

From these diagnostics, the growth rate is found to be
reduced, in qualitative agreement with the analytic results.
After 800 mm of propagation, more that 90% of the light is
still in pulse B, compared with under 80% for the unchirped
pulse A. The plasma wave in A has saturated at the wave
breaking limit, so that the amount of light scattered from
such a wave is proportional to the square of the distance

FIG. 1. The amount of bandwidth needed to remove both RFS and RBS is
plotted. The triangle represents the 12% bandwidth needed to eliminate RFS
at n/ncr51%.

FIG. 2. The main figure shows the amount of energy in the plasma wave as
a function of time. The inset shows the energy contained in the laser pulse as
a function of time. Both are plotted for: A, an unchirped pulse; B and C,
negatively and positively chirped pulses.
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traveled. If the laser pulse had traveled for 1 cm instead of
800 mm, such as in an x-ray laser, the amount of light scat-
tered would be larger by a factor of (104/800)25156. There-
fore, after 1 cm pulse A would only have 0.5% of its initial
energy instead of 80%. Also the growth rate is proportional
to a0 making the growth rate very large at high intensities,
such as those required for the fast ignitor concept. In either
case, the pulse is expected to propagate many e-foldings of
the growth rate, scattering light and heating the plasma if
SRS is not controlled.

The density-wave amplitude was directly measured from
simulation results saved periodically during each run. In Fig.
3, the wave is seen to grow over time from an initial noise
level. The time dependence of the amplitude for short pulse
RFS from Ref. 20 is N5N0 exp@$4t*2`

1`g0
2(c8)dc8%1/2#

}exp@at1/2#, for growth rateg0 . The integral is performed
over the length of the pulse, giving a theoretical value ofa,
a th50.18. A least-square fit is plotted over each run, yielding
a for comparison. In A, the rate reasonably matchesa th with
aA50.1560.07. The line in B is consistent with a zero
growth rate,aB520.0160.04, as expected. Simulation C
givesaC50.2160.06 which is larger thanaA , but—within
the limits of error—is still consistent with the unchirped
growth rate. Pulses B and C are identical in all aspects except
the chirp and yet their results are remarkably different, illus-
trating that not only is spectral content important but also its
distribution within the pulse.

Fast electron production was also investigated. The
maximum oscillation velocity of an electron in the plasma
wave for all simulations was just undergb51. Any electron
with an energy larger than the maximum oscillation must
have been accelerated by the wave. The number of electrons
above this value were counted from the simulation and are:
NA553105, NB50 andNC563107. We see that not only
does a negative chirp reduce the growth of RFS, but it also
reduces fast electron production. For the increased growth
rate of run C, the number of fast electrons has increased by
two orders of magnitude. Therefore, this technique provides

an efficient means of controlling electron production, since
the same amount of pulse energy can yield a greater or lesser
number of electrons.

We have shown that large chirped bandwidth in a laser
pulse can have dramatic effects on the growth of SRS, not
just the simple reduction previously predicted for the case of
unchirped pulses. The necessary amount of chirped band-
width for this technique to work was calculated analytically,
also showing that the sign of the chirp determines the effect
of bandwidth on SRS. These predictions were verified with
particle-in-cell simulations of RFS. This technique seems
best suited for underdense cases with many e-foldings of the
instability, either for large values of the growth rate or where
the pulse must propagate long distances. The generation of
electrons was also affected, which is critical for the viability
of the fast-ignitor, x-ray-laser and wakefield-accelerator con-
cepts.
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