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Comments and Corrections

On the n — x Distribution

Saralees Nadarajah and Samuel Kotz

Index Terms—Fast fading distribution,  —  distribution.

The recent paper by Yacoub ez al. [1] introduces what is referred to as
the n — k distribution to describe the statistical variation of the envelope
in a fast fading environment. The paper discusses several properties of
the distribution. Two of the properties discussed are the nth moment,
E(P"™), and the cumulative probability function (cpf), Fp(-), where
P is a random variable representing the normalized envelope. The ex-
pression given for E(P") (see equation (10) in Yacoub ef al. [1]) is
a doubly infinite sum of the Gauss hypergeometric function (which,
itself, is an infinite sum). That given for Fp(-) (see equation (11) in
Yacoub et al. [1]) is a triple sum of the incomplete gamma function.

We feel that the expressions in equations (10) and (11) of Yacoub et
al. [1] are too complicated for practical purposes. In the following, we
show how one can derive much simpler forms for E(P") and Fp(-).
Using equations (5)—(8) in Yacoub et al. [1], the probability density
function (pdf) of P can be expressed as
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where A = 2y/hs(l+k)cosf and B = (1 + xk)h + H(1 +
k) cos(2(8 + ¢)). Thus, the nth moment, E(P™), can be expressed as
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By equation (2.3.15.3) in Prudnikov et al. [2], I(6) can be calculated
as

where D, (-) denotes the parabolic cylinder function defined by
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Combining (2) and (3) yields the formula

27
L(n 4+ 2)vVI(1 + k) /B—(n/2+1)

BT = 2n/241 1 exp (k)

x AN p A N @
exp 3B —n—2 55 N CO)

This formula applies for any real number n > —2. If n is a positive
integer then, using equation (2.3.15.7) in Prudnikov et al. [2], I(#) can

be calculated as
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where erfc(-) denotes the complementary error function defined by
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Combining (2) and (5) yields the simpler formula

erfc(z) = exp(—t”)dt
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Various simple expressions can be obtained from (6) by setting specific
values for n. For instance, if n = 1, » = 3 and n = 5 then (6) can be
reduced to the simple forms
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and
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respectively, where erf(-) denotes the error function defined by

VI
erf(x) = \/7_1_/ p(—t7)dt.

If o is an even number then one does not need to use (6) since E(P") =

B(X* + Yz)n/2 VAE(X? + Yz)}n/z, where X and Y are indepen-

dent Gaussian random variables (see equation (15) in Yacoub et al. [1]).
The cpf of P, Fp(-), can be expressed as
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By equation (2.3.15.1) in Prudnikov er al. [2], I1(8) and I>(#) can be

calculated as
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Combining (10), (11) and (12) yields a formula for the cpf Fp(-).

Note that all of the formulas in (4), (6), (7), (8), (9) and (10) involve
just one integral (with respect to #) and are much simpler than those in
equations (10) and (11) of Yacoub et al. [1]. We feel that the formulas
given can help the readers and authors of this journal with respect to
modeling the statistical variation of the envelope in a fast fading envi-
ronment.
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