University of Nebraska - Lincoln Digital Commons@University of Nebraska - Lincoln

Faculty Publications, Department of Statistics

Statistics, Department of

9-1-2006

On the $\eta - \kappa$ Distribution

Saralees Nadarajah University of Nebraska - Lincoln

Samuel Kotz University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/statisticsfacpub

Part of the <u>Statistics and Probability Commons</u>

Nadarajah, Saralees and Kotz, Samuel, "On the $\eta - \kappa$ Distribution" (2006). Faculty Publications, Department of Statistics. Paper 2. http://digitalcommons.unl.edu/statisticsfacpub/2

This Article is brought to you for free and open access by the Statistics, Department of at Digital Commons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications, Department of Statistics by an authorized administrator of Digital Commons@University of Nebraska - Lincoln.

Comments and Corrections

On the $\eta - \kappa$ Distribution

Saralees Nadarajah and Samuel Kotz

Index Terms—Fast fading distribution, $\eta - \kappa$ distribution.

The recent paper by Yacoub $et\,al.$ [1] introduces what is referred to as the $\eta-\kappa$ distribution to describe the statistical variation of the envelope in a fast fading environment. The paper discusses several properties of the distribution. Two of the properties discussed are the nth moment, $E(P^n)$, and the cumulative probability function (cpf), $F_P(\cdot)$, where P is a random variable representing the normalized envelope. The expression given for $E(P^n)$ (see equation (10) in Yacoub $et\,al.$ [1]) is a doubly infinite sum of the Gauss hypergeometric function (which, itself, is an infinite sum). That given for $F_P(\cdot)$ (see equation (11) in Yacoub $et\,al.$ [1]) is a triple sum of the incomplete gamma function.

We feel that the expressions in equations (10) and (11) of Yacoub *et al.* [1] are too complicated for practical purposes. In the following, we show how one can derive much simpler forms for $E(P^n)$ and $F_P(\cdot)$. Using equations (5)–(8) in Yacoub *et al.* [1], the probability density function (pdf) of P can be expressed as

$$f_P(p)\frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{0}^{2\pi} p \exp(Ap - Bp^2) d\theta, \tag{1}$$

where $A=2\sqrt{h\kappa(1+\kappa)}\cos\theta$ and $B=(1+\kappa)h+H(1+\kappa)\cos(2(\theta+\phi))$. Thus, the nth moment, $E(P^n)$, can be expressed as

$$E(P^{n}) = \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{0}^{\infty} \int_{0}^{2\pi} p^{n+1} \exp(Ap - Bp^{2}) d\theta dp$$

$$= \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{0}^{2\pi} \int_{0}^{\infty} p^{n+1} \exp(Ap - Bp^{2}) dp d\theta$$

$$= \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{0}^{2\pi} I(\theta) d\theta.$$
(2)

By equation (2.3.15.3) in Prudnikov *et al.* [2], $I(\theta)$ can be calculated as

$$I(\theta) = \Gamma(n+2)(2B)^{-(n/2+1)} \exp\left(\frac{A^2}{8B}\right) D_{-n-2} \left(-\frac{A}{\sqrt{2B}}\right), (3)$$

where $D_p(\cdot)$ denotes the parabolic cylinder function defined by

$$D_p(x) = \frac{\exp(-x^2/4)}{\Gamma(-p)} \int_{0}^{\infty} \frac{\exp\{-(tx + t^2/2)\}}{t^{p+1}} dt.$$

Manuscript received February .

- S. Nadarajah is with the University of Nebraska, Lincoln, NE 68583 USA.
- S. Kotz is with the George Washington University, Washington, DC 20052 USA.

Digital Object Identifier 10.1109/TBC.2006.879862

Combining (2) and (3) yields the formula

$$E(P^{n}) = \frac{\Gamma(n+2)\sqrt{h}(1+\kappa)}{2^{n/2+1}\pi \exp(\kappa)} \int_{0}^{2\pi} B^{-(n/2+1)} \times \exp\left(\frac{A^{2}}{8B}\right) D_{-n-2}\left(-\frac{A}{\sqrt{2B}}\right) d\theta. \quad (4)$$

This formula applies for any real number n>-2. If n is a positive integer then, using equation (2.3.15.7) in Prudnikov *et al.* [2], $I(\theta)$ can be calculated as

$$I(\theta) = \frac{(-1)^{n+1}\sqrt{\pi}}{2\sqrt{B}} \frac{\partial^{n+1}}{\partial q^{n+1}} \times \left[\exp\left(\frac{q^2}{4B}\right) \operatorname{erfc}\left(\frac{q}{2\sqrt{B}}\right) \right] |_{q=-A},$$
(5)

where $\mathrm{erfc}(\cdot)$ denotes the complementary error function defined by

$$\operatorname{erfc}(x) = -\frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^{2}) dt.$$

Combining (2) and (5) yields the simpler formula

(1)
$$E(P^n) = \frac{(-1)^{n+1}\sqrt{h}(1+\kappa)}{2\sqrt{\pi}\exp(\kappa)} \int_0^{2\pi} B^{-1/2} \frac{\partial^{n+1}}{\partial q^{n+1}} \times \left[\exp\left(\frac{q^2}{4B}\right) \operatorname{erfc}\left(\frac{q}{2\sqrt{B}}\right) \right]_{q=-4} d\theta.$$
 (6)

Various simple expressions can be obtained from (6) by setting specific values for n. For instance, if n=1, n=3 and n=5 then (6) can be reduced to the simple forms

$$E(P) = \frac{\sqrt{h}(1+\kappa)}{8\pi \exp(\kappa)} \int_{0}^{2\pi} B^{-3} \exp\left(\frac{A^{2}}{4B}\right)$$

$$\times \left[2B^{3/2}\sqrt{\pi} + A^{2}\sqrt{B}\sqrt{\pi} + 2B^{3/2}\sqrt{\pi} \operatorname{erf}\left(\frac{A}{2\sqrt{B}}\right) + A^{2}\sqrt{B}\sqrt{\pi}\operatorname{erf}\left(\frac{A}{2\sqrt{B}}\right)\right]$$

$$+ A^{2}\sqrt{B}\sqrt{\pi}\operatorname{erf}\left(\frac{A}{2\sqrt{B}}\right)$$

$$+2AB \exp\left(-\frac{A^{2}}{4B}\right)d\theta, \qquad (7)$$

$$E(P^{3}) = \frac{\sqrt{h}(1+\kappa)}{32\pi \exp(\kappa)} \int_{0}^{2\pi} B^{-5} \exp\left(\frac{A^{2}}{4B}\right)$$

$$\times \left[12B^{5/2}\sqrt{\pi} + 12A^{2}B^{3/2}\sqrt{\pi} + A^{4}\sqrt{B}\sqrt{\pi} + 12B^{5/2}\sqrt{\pi}\operatorname{erf}\left(\frac{A}{2\sqrt{B}}\right) + 12A^{2}B^{3/2}\right]$$

$$\times \sqrt{\pi}\operatorname{erf}\left(\frac{A}{2\sqrt{B}}\right) + 20AB^{2} \exp\left(-\frac{A^{2}}{4B}\right)$$

$$+ A^{4}\sqrt{B}\sqrt{\pi}\operatorname{erf}\left(\frac{A}{2\sqrt{B}}\right)$$

$$+ 2A^{3}B \exp\left(-\frac{A^{2}}{4B}\right)d\theta \qquad (8)$$

412

and

$$\begin{split} E(P^5) &= \frac{\sqrt{h}(1+\kappa)}{128\pi \exp(\kappa)} \int\limits_0^{2\pi} B^{-7} \exp\left(\frac{A^2}{4B}\right) \\ &\times \left[120B^{7/2}\sqrt{\pi} + 180A^2B^{5/2}\sqrt{\pi} + 30A^4B^{3/2}\sqrt{\pi} \right. \\ &\quad + A^6\sqrt{B}\sqrt{\pi} + 120B^{7/2}\sqrt{\pi}\mathrm{erf}\left(\frac{A}{2\sqrt{B}}\right) \\ &\quad + 180A^2B^{5/2}\sqrt{\pi}\mathrm{erf}\left(\frac{A}{2\sqrt{B}}\right) \\ &\quad + 264AB^3\exp\left(-\frac{A^2}{4B}\right) + 30A^4B^{3/2}\sqrt{\pi}\left(\frac{A}{2\sqrt{B}}\right) \\ &\quad + 56A^3B^2\exp\left(-\frac{A^2}{4B}\right) + A^6\sqrt{B}\sqrt{\pi}\mathrm{erf}\left(\frac{A}{2\sqrt{B}}\right) \\ &\quad + 2A^5B\exp\left(-\frac{A^2}{4B}\right)\right]d\theta\,, \end{split} \tag{9}$$

respectively, where $\operatorname{erf}(\cdot)$ denotes the error function defined by

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-t^{2}) dt.$$

If n is an even number then one does not need to use (6) since $E(P^n) = E((X^2 + Y^2)^{n/2})/\{E(X^2 + Y^2)\}^{n/2}$, where X and Y are independent Gaussian random variables (see equation (15) in Yacoub $et\ al.\ [1]$). The cpf of $P, F_P(\cdot)$, can be expressed as

$$F_{P}(p) = 1 - \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{p}^{\infty} \int_{0}^{2\pi} x \exp(Ax - Bx^{2}) d\theta dx$$

$$= 1 - \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{0}^{2\pi} \int_{p}^{\infty} x \exp(Ax - Bx^{2}) dx d\theta$$

$$= 1 - \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)}$$

$$\times \int_{0}^{2\pi} \left[\int_{p}^{\infty} (x-p) \exp(Ax - Bx^{2}) dx + p \int_{p}^{\infty} \exp(Ax - Bx^{2}) dx \right] d\theta$$

$$= 1 - \frac{\sqrt{h}(1+\kappa)}{\pi \exp(\kappa)} \int_{0}^{2\pi} \left[I_{1}(\theta) + p I_{2}(\theta) \right] d\theta. \tag{10}$$

By equation (2.3.15.1) in Prudnikov et~al. [2], $I_1(\theta)$ and $I_2(\theta)$ can be calculated as

$$I_1(\theta) = (2B)^{-1} \exp\left\{\frac{A^2}{8B} + \frac{p(A - pB)}{2}\right\} D_{-2} \left(\frac{2pB - A}{\sqrt{2B}}\right)$$
(11)

and

$$I_2(\theta) = (2B)^{-1/2} \exp\left\{\frac{A^2}{8B} + \frac{p(A-pB)}{2}\right\} D_{-1}\left(\frac{2pB-A}{\sqrt{2B}}\right).$$
 (12)

Combining (10), (11) and (12) yields a formula for the cpf $F_P(\cdot)$.

Note that all of the formulas in (4), (6), (7), (8), (9) and (10) involve just one integral (with respect to θ) and are much simpler than those in equations (10) and (11) of Yacoub *et al.* [1]. We feel that the formulas given can help the readers and authors of this journal with respect to modeling the statistical variation of the envelope in a fast fading environment.

REFERENCES

- [1] M. D. Yacoub, G. Fraidenraich, H. B. Tercius, and F. C. Martins, "The symmetrical $\eta \kappa$ distribution: A general fading distribution," *IEEE Transactions on Broadcasting*, vol. 51, pp. 504–511, December 2005.
- [2] A. P. Prudnikov, Y. A. Brychkov, and O. I. Marichev, *Integrals and Series*. Amsterdam: Gordon and Breach Science Publishers, 1986, vol. 1.

Corrections to "A General SFN Structure With Transmit Diversity for TDS-OFDM System"

Jin-Tao Wang, Jian Song, Jun Wang, Chang-Yong Pan, Zhi-Xing Yang, and Lin Yang

In the above paper [1], the first author's name was misspelled in the byline: "Jian-Tao Wang" should have read: "Jin-Tao Wang".

The corrected byline should read:

Jin-Tao Wang, Jian Song, Jun Wang, Chang-Yopng Pan, Zhi-Xing Yang, and Lin Yang

REFERENCES

[1] J.-T. Wang, J. Song, J. Wang, C.-Y. Pan, Z.-X. Yang, and L. Yang, "A general SFN structure with transmit diversity for TDS-OFDM system," *IEEE Trans. Broadcasting*, vol. 52, no. 2, pp. 245–251, Jun. 2006.

Manuscript received June 7, 2006. Digital Object Identifier 10.1109/TBC.2006.883052