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ABSTRACT
Current measures used to estimate the risks of toxic chemicals are not relevant to

the goals of the environmental protection process, and thus ecological risk assess-
ment (ERA) is not used as extensively as it should be as a basis for cost-effective man-
agement of environmental resources. Appropriate population models can provide a
powerful basis for expressing ecological risks that better inform the environmental
management process and thus that are more likely to be used by managers. Here
we provide at least five reasons why population modeling should play an important
role in bridging the gap between what we measure and what we want to protect. We
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then describe six actions needed for its implementation into management-relevant
ERA.

Key Words: ecological risk assessment, population modeling, environmental man-
agement, extinction risk, extrapolation, socioeconomic analysis.

ERA CAN FAIL TO INFORM RISK MANAGEMENT

Ecological risk assessment (ERA) is not used as extensively as it should be as a
basis for cost-effective management of environmental resources (Landis 2009). One
fundamental reason for this is that our measures of risk are not relevant to the goals
of the environmental protection process. For example, the data used to estimate the
likelihood of adverse ecological effects of toxic chemicals in the environment typi-
cally include responses of survival, growth, or reproduction of individuals measured
after a specific exposure duration under constant and typically favorable laboratory
conditions. But these organism-level endpoints are far removed from the ecological
features that the process aims to protect (i.e., the long-term persistence of popula-
tions of species in space and time under naturally varying field conditions and in
the presence of other stressors). For toxic chemical assessments, the focus of this
article, ecological risk is most often characterized as a ratio of predicted or mea-
sured exposure to predicted no-adverse-effect level expressed as a concentration or
dose (in the EU this is specified as a risk characterization ratio—RCR). RCRs can
provide useful screening tools when exposure and no-effect levels are calculated
using appropriately conservative assumptions. However, they suffer from a number
of disadvantages, not the least of which is that their relationship to the likelihood
and degree of ecological impacts (i.e., risk) is unknown. Similarly, risk management
often involves socioeconomic analyses, and yet the hazard ratios that have dom-
inated risk assessment are not readily used or usable in the ecological valuation
process. For large classes of chemicals (e.g., pharmaceuticals, pesticides) and those
with specific chemical or biological properties (e.g., PBTs, endocrine disruptors)
the present paradigm is insufficient and may be either under or over protective.
But without a better assessment considering population-level effects in light of val-
ues ascribed from socioeconomic analysis, we cannot provide a sufficient level of
understanding/assurance that could make ERA relevant for management decisions.

Appropriate population models can provide a powerful basis for expressing eco-
logical risks that better inform the environmental management process and thus are
more likely to be used by managers. Whereas population modeling has been used
extensively in conservation biology and other types of ecological management, its
use in chemical risk assessment has been minimal. Several recent workshops have
focused on the potential for implementing population modeling in chemical risk
assessment. The LEMTOX Workshop, held in Leipzig (Germany) in 2007 focused
specifically on the use of modeling for pesticide registration and risk assessment in
the EU (Forbes et al. 2009; Thorbek et al. 2010); one important outcome of this
workshop was the EU-funded Marie Curie Training Network “CREAM,” where both
specific models and general guidance for good modeling practice will be developed
(Grimm et al . 2009; http://cream-itn.eu). The Risk Assessment Forum Technical
Workshop on Population-Level Ecological Risk Assessment, held in Washington
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(DC, USA) in 2008 was concerned with developing guidance for U.S. Environmen-
tal Protection Agency (USEPA) programs (USEPA 2009).

The present Perspective describes the outcome of the Roskilde Workshop on
Integrating Population Modeling into Ecological Risk Assessment (RUC09) that
specifically reviewed the current state of the science and identified research needed
to facilitate the implementation of population modeling in ERA. The key features of
RUC09 that made it different from the workshops listed above were: (a) it covered
industrial chemicals in general; (b) it was not specific for a particular jurisdiction;
and (c) it developed a set of concrete actions for the implementation of population
modeling in regulatory decision-making. In this Perspective we first explicitly address
how population modeling adds value to ERA and then describe the actions needed
for its implementation into management-relevant ERA.

POPULATION MODELING ADDS NEEDED VALUE TO ERA

ERA involves extrapolating from limited observations to ecological responses that
are broadly related to likely impairments in biodiversity and ecosystem processes and
services. A major theme in what follows is that population modeling should, for at
least the following five reasons, play an important role in bridging the gap between
what we measure and what we want to protect (Forbes et al. 2008):

Reason 1: Population modeling reduces uncertainty in extrapolation of standard
test results to ecologically relevant impacts. Standard toxicity tests typically measure
impacts of chemicals on individual survival, reproduction or growth. In many cases,
only one of these measures of effect is used to assess risk, and even when multiple
endpoints are used, attempts to integrate the results across endpoints are qualitative
or semi-quantitative (scoring) at best. Using results for multiple endpoints in even
a simple population model can lead to unexpected outcomes regarding the conse-
quences of impacts of toxicants on individual-level traits for population dynamics.
For example, Pedersen et al. (2009) found that exposure to the polycyclic musk,
HHCB, resulted in a 43% decline in reproductive output of the freshwater snail,
Potamopyrgus antipodarum, but that this decline in fecundity led to a less than 2% im-
pact on population growth rate. On the other hand, using matrix population models
incorporating density dependence, Hayashi et al. (2009) showed that population-
level effects as indicated by the percentage reduction in equilibrium population size
often exceeded the percentage reductions in vital rates of individuals.

Reason 2: Population modeling can identify high-risk scenarios for which testing
efforts can be prioritized. It is well established that the extent to which individual-
level responses impact population dynamics depends strongly on both the status of
the population (i.e., in growth phase, equilibrium or decline) and the degree of
density-dependence in survival, growth, and reproduction (Calow et al. 1997; Grant
1998; Hayashi et al. 2009). Hence, the same magnitude of effects on individual-level
endpoints under different conditions or in different species under similar condi-
tions is likely to lead to markedly different population outcomes. Also, extrapolating
from particular ecological settings (as in mesocosms) to other ecological settings
may be crucially influenced by features such as habitat complexity and various biotic
and abiotic conditions. In principle, such features can be manipulated in popula-
tion models and their relative importance for population risk determined (Grimm
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and Railsback 2005; van den Brink et al. 2007). For example, Wang and Grimm
(2010) used an individual-based population model of the common shrew to explore
population-level effects of a hypothetical pesticide under different application sce-
narios. Model organisms were exposed on one certain day every year over a period
of 30 years and as a result experienced 10 or 20% adult mortality on that day. If
exposure occurred on April 1, when the animals started to reproduce, populations
continuously declined to extinction in a landscape without hedges but stabilized
at a moderately lowered equilibrium in landscapes including hedges. Hedge habi-
tats provided greater food densities, which somewhat mitigated the effects of both
density dependence and pesticides. If exposure occurred on July 15, when the
population reached highest densities, populations also declined to extinction in
landscapes including hedges.

Reason 3: Population modeling provides outputs that are essential for choos-
ing among management alternatives and for facilitating cost-benefit assessments.
Population models can link the generalized protection goals stated in environmen-
tal legislation with more operational goals that aim to protect ecosystem services
(Maltby et al. 2009). These services invariably depend on particular populations,
and hence values are most directly ascribed to changes in population attributes (e.g.,
abundance, age/stage structure, population growth rate, realized equilibrium pop-
ulation size). Under the EU Existing Substances Regulation (precursor to REACH),
many of the risk reduction strategies for ecological protection could not be based
upon cost-benefit analysis because the ERAs did not lead to a specification of eco-
logical units that could be valued; that is, they were in terms of RCRs (IMV 2007). In
contrast to management of toxic chemicals, management decisions about natural
resource conservation and harvest rely on population-level endpoints and (at least
in the recent past) have made appropriate use of population models. For exam-
ple, conservation biologists have applied models for population viability analyses to
evaluate the status of populations and risk of their extinction. Output from these
analyses is directly related to the protection goals of legislation like the Endangered
Species Act in the United States.

Population modeling can integrate the effects of multiple stressors, which is im-
possible in any meaningful way with RCRs. For example, An et al. (2009) evaluated
the effects of male feminization due to exposure to endocrine disrupting chemi-
cals (EDCs) on roach (Rutilus rutilus) populations in European rivers. Changes in
population growth rate and extinction risk due to feminization were evaluated in
populations with and without fishing mortality. In the presence of selective fishing,
feminization of males significantly increased the extinction risk of modeled roach
populations and would cause population extinction in some rivers (e.g., the Volga
Delta and Ural Rivers) with high rates (>90%) of intersex. But without fishing
pressure, even 100% intersex would be unlikely to lead to population extinction in
modeled roach populations (An et al. 2009). These authors provided information
that could be used directly by managers of local fisheries.

Reason 4: Population modeling reduces the use of animal testing in a more ecolog-
ically sound manner than relying on in vitro or quantitative structure activity relation-
ship (QSAR) methods. There is enormous societal pressure to reduce animal testing
and yet reductionist in vitro and QSAR techniques may lead to outcomes that either
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underestimate or overestimate the effects of substances at relevant ecological levels
(Forbes et al . 2008; Hartung 2009). Population modeling can provide more realis-
tic outcomes by incorporating important mechanistic understanding. For example,
Dalkvist et al. (2009) simulated the impacts of a pesticide having hormone-disrupting
and epigenetic effects on vole populations. Using a sophisticated agent-based model
coupled to a geographic information system (GIS) database, they showed that the
long-term risk to vole populations was relatively insensitive to the toxicological sen-
sitivity of the voles to the pesticide (i.e., the lowest-observed-effect-level (LOEL))
and much more sensitive to assumptions about exposure. In addition, the model
allowed realistic simulations of population-level impacts over a much longer time
scale (i.e., >100 years) than could have been tested empirically.

It is often of interest to assess risks to protected or endangered species. For ethical
reasons there may be restrictions on the quantity and type of laboratory testing per-
mitted on such species, and in such cases application of population modeling can
make the most out of limited test data. For example, Baldwin et al. (2009) investigated
the population-level effects of acetylcholinesterase (AChE) inhibiting pesticides on
endangered Chinook salmon. Limited laboratory studies demonstrated that sub-
lethal reductions of AChE activity resulted in decreased swimming and feeding
behaviors. These observed relationships were built into an individual-based growth
model linking exposure to size. Field studies provided a size-dependent survival
relationship during the freshwater residence of juvenile salmon, where pesticide
exposure could occur. The resulting survival was fed into a life-history matrix model
to determine changes in population abundance due to the sublethal pesticide ex-
posures.

Reason 5: Population modeling can introduce ecological complexity into risk
assessment in a cost-effective manner. ERAs are often carried out in a tiered way and
move from simple laboratory tests to complex mesocosms/field tests incorporating
increased ecological realism and thus complexity. These kinds of high-tier tests are
not practical for all situations and are expensive and time consuming. Whereas
it can be costly to develop complex population models, once produced they can
be available for repeated use at minimal cost. For example, a number of studies
investigating the effects of spatial complexity in exposure scenarios indicate that
inter-individual variability in exposure can either increase (Palmqvist and Forbes
2008) or reduce (Dalkvist et al. 2009) risk compared to the standard homogeneous
exposure scenarios typically assumed in risk assessment. Likewise, by incorporating
realistic information on the species’ ecology into a population model, Baldwin et al.
(2009) were able to show that the change in size when fish migrated to the ocean
caused a reduction in individual survival over successive years and thereby reduced
the population growth rate.

Current approaches to ERA assume that the susceptibility of species to toxic
chemicals is defined entirely by toxicological responses whereas the importance of
life history is ignored. However, the same impact on individual-level traits in different
species may result in very different population-level outcomes due to differences in
life-history strategies (Calow et al. 1997; Stark et al. 2004). Thus simply comparing
mortality among species does not provide enough information to determine the
relative susceptibility of populations of different species when exposed to toxic
chemicals (or other stressors).
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In addition to their value in adding ecological complexity into risk assessments,
population models are amenable to probabilistic analyses. Outputs can be easily
converted to quantitative risk estimates. Uncertainties can be evaluated in a more
meaningful way than is currently done under the RCR approach.

THE PATH FORWARD—ACTIONS NEEDED

Although there are a number of good reasons (see above) for integrating popu-
lation modeling into ERA, so far its application has been limited due to a general
lack of guidance regarding what models of which species to use, coupled with a lack
of appropriate case studies demonstrating the added value of population modeling
for ERA (Thorbek et al. 2010). Another barrier to the use of population models
is uncertainty as to which population endpoints are most appropriate for risk as-
sessment and in particular as inputs into socioeconomic assessments. Actions 1 and
2, below, provide concrete examples of how guidance for population modeling in
risk assessment could be developed. Action 3 analyzes the relative strengths and
weaknesses of different population-level endpoints for risk assessment. Actions 4, 5,
and 6 provide a basis for case studies showing how population modeling can add
value in terms of extrapolating from individuals to populations, across species and
from laboratory to field, respectively.

Action 1: Develop a decision framework for applying population models in risk
assessment and risk management for chemical regulatory programs. There is a wide
range of models already available for deployment for ERA (Barnthouse et al. 2008;
Forbes et al. 2008; Pastorok et al. 2001; USEPA 2009; Thorbek et al. 2010). How-
ever, guidance is needed for applying population models in different regulatory
contexts. New tools for value-relevant decision-making and risk communication of
population risk expressions are required. A decision framework for selecting specific
types of models for defined risk management issues should be the focal point of such
guidance. In the decision framework, risk management issues should be linked to
regulatory and risk assessment objectives, ecological endpoints, population model
outputs, and related risk expressions. Model selection criteria need to be defined
to optimize the value added by population modeling. Support tools such as model
standardization, validation, and design protocols will also be required. As a com-
mon language for formulating these designs, the recently developed ODD protocol
(Overview, Design concepts, Details) for communicating individual-based models
(Grimm et al. 2006) would greatly facilitate model development. A generalized for-
mat for documenting not only models but also their development and analysis will
be developed in the CREAM project (http://cream-itn.eu; Schmolke et al., unpubl.
manuscript). Risk communication tools for use by managers in presenting the results
of population models used in an ERA should also be developed.

Action 2: Develop generic models of many species and environments. Many de-
tailed population models have been developed for particular species in particular
ecological circumstances. Risk assessment would be facilitated however by the de-
velopment of a suite of generic models that can be tailored for the range of circum-
stances that apply in various risk contexts. Such generic models have already been
developed in other management contexts, for example for stream fish (Railsback
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and Harvey 2002), coastal birds (Stillman 2008), and tropical forests (Huth et al.
2005). The common feature of these models is that they are based on what individ-
uals do, and this is known either directly from evidence or from “first principles.”
Examples include the ways in which individuals make adaptive decisions regarding
key behaviors like foraging or habitat selection, individual physiology (Peterson et al.
2008), and photosynthesis (Huth et al. 2005).

Stillman (2008) presented a general design for the individual-based modeling
of mortality in foraging animal populations that has been widely applied to coastal
birds (Stillman and Goss-Custard 2010). Similar designs, using the ODD approach
described under Action 1 could be developed for other species and guilds. The
effects of the chemical on individuals can be modeled using simple transparent
extrapolation from existing laboratory data, based on the individual’s metabolic
weight and life history. Model design should focus on first principles and on using
parameters that can directly be observed and measured. Then, the same approach
of identifying appropriate first principles, general model designs, and selecting rep-
resentative species and environments, might be applied to all the major taxonomic
groups included in ERA.

Action 3: Select value-relevant population endpoints for risk assessment. By value-
relevant endpoints we mean endpoints that relate to the long-term persistence of
populations. These are important because of their contribution to ecosystem services
and because they can therefore be given monetary value through socioeconomic
analysis. It will be necessary to define the most appropriate population-level end-
points in the context of the Decision Framework described earlier. A variety of
endpoints (e.g., population growth rate, equilibrium population density, age/size
structure, extinction risk) can be derived from the major classes of population mod-
els applied to different types of risk assessment scenarios. It will also be necessary
to validate the models by performing life table response experiments to identify
which population-level endpoints are best able to predict the long-term persistence
of populations in space and time. These kinds of experiments will inevitably involve
species with short generation times so that long-term responses over multiple gen-
erations can be estimated. For each species and model there should be a systematic
consideration of how the various population-level endpoints vary in terms of sensi-
tivity to chemicals (i.e., percent change relative to reference conditions), statistical
detectability of effect, ability to predict the dynamics of intact populations, and
their ease of use in socioeconomic analyses. For example, Wang and Grimm (2010)
compared different population-level endpoints (population growth rate, population
size, extinction risk) and explored the statistical detectability of population-level ef-
fects. One of their findings was that effects can be easier to detect in populations
that are in fact less at risk, simply because they live in a more benign habitat that
allows for higher and less variable population sizes.

Action 4: Use population models to facilitate the extrapolation from individual-
level endpoints to population-level effects. Standard toxicity tests usually focus on
effects on individual-level endpoints such as survival, growth and reproduction, after
a fixed exposure period. Simple summary statistics such as effect concentrations for
some fraction of the population differ between endpoints, depend on how the
endpoint is expressed (e.g., body weight or length), and change in time in a manner
that depends on the chemical, the species, and the endpoint of interest (e.g., Álvarez
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et al. 2006). It is therefore not surprising that the effects on a single endpoint, after a
single test duration, are not predictive of population-level effects (Forbes and Calow
1999). In many risk assessments the no observed effect concentration for individual-
level responses is used to characterize risk, and this is likely to be over-protective for
population-level effects. In order to improve the extrapolation from toxicity patterns
for all individual-level endpoints over the life cycle of the organism to impacts on
populations, the individual endpoints should be integrated into a population model.
In particular, prediction of the ecological consequences of substances such as EDCs
that have non-monotonic dose–response relationships, and substances that show
very different dose–response relationships for different individual-level traits, could
be substantially improved using population modeling techniques.

The use of population models does not necessarily imply an increased testing ef-
fort. To demonstrate the feasibility and benefits of various modeling approaches for
risk assessment, a systematic analysis of different types of population models—from
very simple to very complex—could be applied to standard toxicity test data. In this
way both the data requirements of different model types, and their performance
in terms of providing outputs relevant for ERA, can be assessed. As a start, data
gathered according to current test protocols could be used as input to very sim-
ple population models (e.g., Euler-Lotka, simple matrix models (Sibly and Calow
1986)) to quantify the links between individual-level responses and population-level
responses (e.g., Stark et al. 2004; Palmqvist and Forbes 2008). In fact, the input data
required for (simple) population models are already being provided by toxicity tests
performed according to several standard test protocols. For example, the OECD
(1998) 21-day Daphnia protocol prescribes that survival and reproduction should
be determined at least three times a week, input that can directly fuel a population
projection. Additional biological and ecological relevance could be incorporated by
using more complex models (e.g., density-dependent matrix models, metapopula-
tion models, and individual-based models). Based on the data needs of the models,
guidance may be necessary on optimizing the test protocols to provide the needed
parameters.

Action 5: Use population models to extrapolate from test species to untested
species. Each species evolves a life-history strategy adapted to sustaining viable popu-
lations in their natural habitat. Resource availability and survival potential influence
the time and energy invested in each life stage (i.e., embryo, larva, juvenile, and adult
stages). As an expression of adaptation, energy allocation tradeoffs between growth
and reproduction tend to maximize the individual’s reproductive contribution to
future generations. Adaptations to local environmental factors, such as seasonal
conditions and severity of stochastic impacts, occur over many generations and
lead to the evolution of numerous variations in life-history strategies (Winemiller
and Rose 1992). Each strategy provides for continuity of generations under normal
environmental conditions; however, some strategies may confer greater or lesser
susceptibility to anthropogenic perturbations that fall outside of the species’ adap-
tive history. A fish species that reproduces multiple times each year may more easily
compensate for a toxic impact than an annual spawner since it may have unaffected
fry from previous spawning events, or eggs to be spawned later in the season. This
illustrates how population responses to chemical stressors may differ depending on
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the various life-history characteristics exhibited (Stark et al. 2004; Spromberg and
Birge 2005).

Population models can be used to assess how differences in physiological sus-
ceptibility across life stages can translate into population-level impacts (i.e., change
in population growth rate, abundance, age/stage distribution, probability of ex-
tinction, time to recovery). The outputs of such models can investigate whether
commensurate impacts to juvenile stages, adult stages, or reproduction will result
in the same population-level impacts within and across life-history strategies. These
studies would also contribute to Action 2, above, to develop a set of general models
across invertebrates, plants, fish, birds, and mammals that include common toxicity
test species, commercially or culturally important species, and rare species. The out-
puts of such an effort could include a list of life-history or life-cycle characteristics
that confer susceptibility and a list of species within each class of organisms that
could be used as surrogates depending on the requirements of the risk assessment.

Action 6: Use population models to add ecological realism for laboratory-to-field
extrapolation. The distribution of chemicals in the environment is not homogenous.
Chemical concentrations in the field often, if not always, vary both in time and space.
However, current laboratory test procedures are designed to keep chemical expo-
sures constant over time and to expose all individuals to the same homogenous
chemical concentration. In fact, in standard procedures we go to great lengths to as-
sure that the chemicals are homogenously distributed in the exposure medium, and
to renew exposure media if the chemical concentration is expected to decrease over
time. This is in sharp contrast to the field where chemical inputs may vary seasonally
(e.g., pesticides), as pulses following runoff events or accidents, and spatially (e.g.,
with distance from point sources, due to preferential association with certain envi-
ronmental constituents such as organic matter in sediments). In addition to keeping
the exposure concentrations constant, both in time and space, standard laboratory
toxicity tests also aim to provide optimal conditions (except for the tested contam-
inant) for the exposed organisms. In a more realistic field scenario, conditions are
not optimal and, for example, organisms in the field will often be under the control
of density constraints, suppressing population growth even in the absence of con-
taminants. These density effects may or may not be compensatory to the effects of
chemicals.

Metapopulation simulations have shown that risk from chemicals or other stres-
sors may be underestimated when ignoring spatial heterogeneity in a chronic expo-
sure scenario, but that the degree to which this is the case is highly dependent on the
dispersal ability and habitat selection behavior of the species in question (Palmqvist
and Forbes 2008; Walters et al. 2008). The resulting patterns of risk are likely to be
scale dependent (i.e., to depend on how organisms with different sizes or mobility
experience differences in habitat complexity, and how such affect the risk assessment
of chemicals). It is obvious that the same landscape, and the patchiness within it, will
be perceived very differently by a skylark and a beetle (Nabe-Nielsen et al. 2010), but
also within a single population there may be differences in how different life stages
sense the environment. For example, a slowly moving adult polychaete or a sessile
adult bivalve in the subtidal zone will probably experience less habitat heterogeneity
compared to their free-swimming larvae. In contrast, the free-swimming larvae are
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better able to avoid suboptimal habitat compared to the slowly moving or sessile
adults. Therefore, laboratory tests that assume constant and identical exposure to
all individuals in a population lack ecological realism and potentially misrepresent
the risks associated with exposure to toxic chemicals.

A combination of metapopulation and individual-based models could be used
to explore the importance of spatial and temporal heterogeneity in chemical expo-
sure to population-level risk. Scenarios could be developed that are based on the
most common types of spatial and temporal heterogeneity in chemical exposure,
selected representative life-cycle types and different population densities to identify
the conditions under which ignoring exposure heterogeneity leads to overestimates
and underestimates of risk.

CONCLUSIONS

Current approaches for risk assessment typically have low ecological relevance
(e.g., the RCR approach), which can compromise regulatory decisions based on
such assessments and lead to either substantial underestimation or substantial over-
estimation of risk. The application of population models adds value to ERA by
providing outputs that are more directly related to management protection goals.
We note in particular that the susceptibility of populations to chemical stressors is
more complicated than predicted simply on the basis of the toxic properties of a
compound or the physiology of the exposed organisms. Also, utilizing population
models in ERA will provide regulators with value-relevant endpoints for decision-
making and protection—if done properly. Finally, whereas ecologically realistic ex-
periments are both expensive and time consuming, structurally realistic population
models (Wiegand et al. 2003; Grimm et al. 2005) that have been thoroughly designed,
tested, and analyzed (and that include uncertainty analysis) can be rerun numerous
times to test different hypotheses at very low cost (e.g., Dalkvist et al. 2009; Wang and
Grimm 2010)

There is no shortage of available and accessible population models. Recently,
there has been a considerable amount of activity to promote population modeling in
ERA (Akçakaya et al. 2008; Barnthouse et al. 2008), and as evidenced by the outcomes
of workshops discussed herein. Yet there has been inertia in the acceptance and
use of this approach by regulators. By developing guidance on using population
models that is relevant to regulatory programs (e.g., generic models and model
designs, with model selection criteria defined within a Decision Framework), it is
possible to provide tools ready for use in risk assessment for a wide range of species
and environments within a reasonable timeframe. Successful implementation will
require transparent, robust, and well-tested population models that are applicable
for assessing the risks of chemicals in different legislative contexts. The actions
outlined here are intended to facilitate the effective implementation of population
modeling in ERA by the development of specific guidance and concrete case studies.
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