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Candida albicans Czf1 and Efg1 Coordinate the Response to Farnesol
during Quorum Sensing, White-Opaque Thermal Dimorphism, and
Cell Death

Melanie L. Langford,a* Jessica C. Hargarten,a Krista D. Patefield,a Elizabeth Marta,a Jill R. Blankenship,b* Saranna Fanning,b

Kenneth W. Nickerson,a Audrey L. Atkina

School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USAa; Department of Biological Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USAb

Quorum sensing by farnesol in Candida albicans inhibits filamentation and may be directly related to its ability to cause both
mucosal and systemic diseases. The Ras1-cyclic AMP signaling pathway is a target for farnesol inhibition. However, a clear un-
derstanding of the downstream effectors of the morphological farnesol response has yet to be unraveled. To address this issue,
we screened a library for mutants that fail to respond to farnesol. Six mutants were identified, and the czf1�/czf1� mutant was
selected for further characterization. Czf1 is a transcription factor that regulates filamentation in embedded agar and also white-
to-opaque switching. We found that Czf1 is required for filament inhibition by farnesol under at least three distinct environ-
mental conditions: on agar surfaces, in liquid medium, and when embedded in a semisolid agar matrix. Since Efg1 is a transcrip-
tion factor of the Ras1-cyclic AMP signaling pathway that interacts with and regulates Czf1, an efg1�/efg1� czf1�/czf1� mutant
was tested for filament inhibition by farnesol. It exhibited an opaque-cell-like temperature-dependent morphology, and it was
killed by low farnesol levels that are sublethal to wild-type cells and both efg1�/efg1� and czf1�/czf1� single mutants. These
results highlight a new role for Czf1 as a downstream effector of the morphological response to farnesol, and along with Efg1,
Czf1 is involved in the control of farnesol-mediated cell death in C. albicans.

Candida albicans is a member of the microbial flora in the gas-
trointestinal and urogenital tracts of many healthy people, but

it can also cause both mucosal and disseminated opportunistic
infections when host defenses are compromised. Mucosal infec-
tions involve the formation of a biofilm at the site of infection. In
severely immunocompromised patients, disseminated infections
often result in death. C. albicans is a polymorphic fungus, and the
ability to transition between different morphologies is strongly
correlated with its ability to cause both disseminated and mucosal
infections (1, 2). C. albicans switches between yeast and filamen-
tous forms of growth, and it grows in two distinct yeast forms,
white and opaque, named for their colony morphology. Opaque
cells are the mating-competent form. C. albicans is also able to
form chlamydospores; however, the function of chlamydospores
is unknown. All of these cell types are affected by the quorum-
sensing molecule E,E-farnesol (referred to here as farnesol), which
emphasizes its influential role in C. albicans morphology.

Farnesol has multiple physiological effects. It blocks the tran-
sition from yeast to filaments once it accumulates above a thresh-
old level (3). It also has an inhibitory role in biofilm formation (4)
and a protective role against oxidative stress (5, 6). In addition,
very high levels of farnesol can increase chlamydospore formation
(7), while even very low levels of farnesol induce cell death by
necrosis in opaque cells (8). White cells can also be killed by farne-
sol under some environmental conditions; log-phase cells that are
energy deprived are particularly sensitive, while stationary-phase
cells in growth medium are quite farnesol tolerant (9–11). Given
its important role in physiology, it comes as no surprise that farne-
sol signaling is also relevant during an infection and that it has
distinct roles at different sites of infection. For example, farnesol is
a virulence factor in a mouse model of disseminated infection
(12), yet it protects mice from oral candidiasis (13). These results

highlight the need for a complete understanding of the signaling
response induced by farnesol in C. albicans.

Factors that play a role in the C. albicans farnesol response
include Tup1/Nrg1 (14), the Hog1-mediated mitogen-activated
protein kinase (MAPK) pathway (15), the Cek1 MAPK pathway
(16), and the cyclic AMP-protein kinase A complex (cAMP/PKA)
signaling pathway (17). C. albicans histidine kinase (Chk1) is also
implicated in the response to farnesol (18).

In this paper, we identified Czf1 (C. albicans zinc finger 1) as an
additional factor that is important for the response to farnesol.
The known roles of Czf1 include induction of contact-induced
filamentous growth (19) and regulation of both biofilm formation
(20) and the switch from white to opaque cell morphology (21,
22). CZF1 negatively regulates its own mRNA expression (23).
Czf1 also has ties to the cAMP/PKA pathway because CZF1 ex-
pression is regulated by Efg1, a transcription factor activated by
cAMP/PKA signaling (24). Further, the Efg1 and Czf1 proteins
interact in a yeast two-hybrid assay (25, 26). This regulation by
Efg1 and the interactions between Efg1 and Czf1 are intriguing
because these proteins have opposing roles in the cell with respect
to morphogenesis (22, 25, 26). Efg1 is required for filamentation
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under aerobic conditions, and it represses filamentation in hyp-
oxia. In contrast, Czf1 is required for filamentation in hypoxia.
Further, Efg1 and Czf1 are part of the transcriptional circuit that
regulates white-to-opaque switching where Czf1, with Wor1 and
Wor2, activates the switch to the opaque state while Efg1 represses
Wor2 expression to maintain the white state (20).

In this study, we identified Czf1 by screening a library for mu-
tants that did not respond to farnesol. We found that Czf1 was
essential for the response to farnesol and that it functions down-
stream of Efg1 in this response. Within the context of previous
work demonstrating that Czf1 promotes the white-to-opaque
switch even though opaque cells are very sensitive to farnesol, we
propose that Czf1 functions with Efg1 to coordinate farnesol reg-
ulation of two major pathways, yeast-to-mycelium transitions and
white-to-opaque switching.

MATERIALS AND METHODS
Strains and media. The C. albicans strains and plasmids used in this study
are listed in Table 1. Modified glucose phosphate proline (mGPP) me-
dium at pH 6.8 was prepared as described by Kebaara et al. (14). Yeast
extract-peptone-dextrose (YPD) medium contained 1% yeast extract,
0.5% peptone, and 2% dextrose, and solid medium included 2% agar.
Resting cells were prepared as described by Kebaara et al. (14), with mod-
ifications. Single colonies were grown in 25 ml YPD broth at 30°C for 22 to
24 h to the stationary phase, washed three times with 50 mM potassium
phosphate buffer (pH 6.8), resuspended in phosphate buffer, and stored
at 4°C overnight before use. For liquid farnesol response assays, resting
cells were inoculated at 106/ml into mGPP or mSPP (2% sucrose replacing
glucose) broth with the indicated farnesol concentrations. Cells were then
grown at 37°C while shaking in glass flasks for the indicated times. Farne-
sol (Sigma, St. Louis, MO) was stored under nitrogen and freshly prepared
as a 100 mM stock solution in methanol for each experiment.

Mutant library screening. The mutant libraries were obtained in 96-
well plates and plated on mGPP (with 40 �g/ml uridine, arginine, and
histidine added) agar plates containing 0, 10, or 50 �M farnesol. Plates
were incubated at 37°C for 2 days before colony morphology was assessed
and mutants were compared to the parental strain, BWP17, for farnesol
response. Colonies with a wrinkled/hairy morphology were considered to
be composed primarily of filaments, and colonies with a smooth mor-
phology were considered to be mostly yeast cells. Farnesol-nonresponsive
mutants identified by primary screening were restreaked onto individual
plates to rule out interference from neighboring mutant colonies and to

confirm the farnesol-nonresponsive phenotype observed. Liquid germ
tube assays (3) were used to further confirm that the colony morphology
was due to farnesol resistance.

Embedded cell growth. Embedded media were prepared by mixing
104 resting cells/ml in 30 ml GPP (no GlcNAc added) or SPP molten agar
(cooled to 50°C) with appropriate concentrations of farnesol and plated.
Embedded plates were incubated at 37°C for 12 or 17 h, as indicated. Only
colonies beneath the agar surface were examined. Embedded micrographs
were taken with a custom MVI TDM400 tetrad dissecting microscope and
a Sony Cybershot camera.

Microscopy and cell death determination. Cellular morphology dur-
ing the germ tube assays was determined with a Zeiss Stemi 2000-C light
microscope. Differential interference contrast micrographs were taken
with an Olympus BX51 microscope and a Photometrics CoolSnap HQ
charge-coupled device camera. Cell death was determined by methylene
blue staining as described by Gibson et al. (27).

DNA analysis and transformation. To create strain AAC2, CKY283
was plated on 5-fluoroorotic acid-containing medium to select for ura�

mutants. AAC2 was subsequently transformed with BsgI-digested
pDB212 to create and AAC7. Transformations were performed by the
lithium acetate method, and transformants were selected on medium
lacking uridine (28). Newly created strains were confirmed by PCR and
Southern blot analysis (data not shown); restriction digestion and South-
ern blotting were performed as described in the GeneScreen Plus hybrid-
ization transfer and detection protocols (DuPont NEN Research Prod-
ucts, Boston, MA).

Quantitative Northern analysis. Resting cells were inoculated into 75
ml mGPP broth at 5 � 106/ml, and 0, 50, or 100 �M farnesol was added to
each flask. Cells were incubated at 37°C and harvested at 40, 60, or 80 min.
Cells were harvested by passage of the cultures through glass fiber filters to
collect the cells, and then the cells were scraped off the filters. mRNA was
extracted with the RiboPure yeast kit (Applied Biosystems, Foster City, CA).

A 10-�g RNA sample was fractionated on 1.0% agarose-formaldehyde
gel and transferred to a GeneScreen Plus membrane (NEN Life Science
Products, Inc., Boston, MA) with NorthernMax transfer buffer (Applied
Biosystems/Ambion, Austin, TX). The membrane was probed with 32P-
labeled DNA probes in NorthernMax prehybridization/hybridization
buffer (Applied Biosystems/Ambion, Austin, TX). The template DNAs
for probe synthesis were prepared by PCR with primers CZF1 (5=-CGTC
AATCACAACCACAACC-3= and 5=-TACCAAACTCGGCATGTTCA-
3=) and ACT1 (5=-AGTTATCGATAAGCCTTCTG-3= and 5=-AGATTTC
CAGAATTTCACTC-3=). Probes were labeled with [32P]dCTP (GE
Health Sciences, Piscataway, NJ) with a RadPrime DNA Labeling system

TABLE 1 C. albicans strains and plasmids used in this study

C. albicans strain
or plasmid Parental strain Genotype/description or relevant markers Source or reference

Strains
SC5314 Clinical isolate Clinical isolate 47
CAF2 CAI-4 URA� derivative of CAI-4 48
CAI-4 SC5314 ura3::imm434/ura3::imm434 49
BWP17 RM1000 ura3::imm434/ura3::imm434 arg4::hisG/arg4::hisG his1::hisG/his1::hisG 50
HLC67 CAI-4 ura3::imm434/ura3::imm434 efg1::hisG/efg1::hisG 1
CKY101 CAI-4 ura3::imm434/ura3::imm434 ade2::pDB152 19
CKY230 CAI-4 ura3::imm434/ura3::imm434 czf1::hisG/czf1::hisG ade2::pMAL2-URA3 23
CKY116 CAI-4 ura3::imm434/ura3::imm434 CZF1/czf1::hisG-URA3-hisG Carol Kumamoto
CKY231 CAI-4 ura3::imm434/ura3::imm434 czf1::hisG/czf1::hisG ade2::pMAL2-CZF1-URA3 19
CKY283 CAI-4 ura3::imm434/ura3::imm434 czf1::hisG/czf1::hisG-URA3-hisG efg1::hisG/efg1::hisG Carol Kumamoto
AAC2 CKY283 ura3::imm434/ura3::imm434 czf1::hisG/czf1::hisG efg1::hisG/efg1::hisG This study
AAC7 AAC2 ura3::imm434/ura3::imm434 czf1::hisG/czf1::hisG efg1::hisG/efg1::hisG

ade2::pMAL2-CZF1-URA3
This study

Plasmid pDB212 pMAL2-CZF1 URA3 ade2= Ampr 19
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(Invitrogen, Carlsbad, CA). Northern blot assays were imaged with a
Storm phosphorimager (Amersham Pharmacia Biotech Inc., Piscataway,
NJ) and quantified with ImageQuant software (version 5.0; Molecular
Dynamics, Sunnyvale, CA). mRNA abundance was normalized to an
ACT1 loading control. All of the values reported are averages of three
independent experiments.

Characterization of white versus opaque-cell-like morphology.
Resting cells were prepared with single colonies selected from YPD plates
grown at 37°C for 48 h. Under these conditions, the cells are yeasts in the
white phase. These single colonies were inoculated into 25 ml YPD and
grown at 30 or 37°C for 24 h. At 30°C, but not 37°C, a high percentage of
the cells (�90%) switched from the white phase to an opaque-cell-like
phase between 21 and 24 h of growth. Cells were harvested at the 2- and
24-h time points, and RNA was extracted as will be described elsewhere
(J. J. Bunker, S. Ghosh, B. W. Kebaara, K. W. Nickerson, and A. L. Atkin,
unpublished data). Contaminating DNA was removed from the RNA
extracts with the TURBO DNA-free kit (Ambion, Inc.). The reverse tran-
scription (RT) reaction was performed by the two-step protocol of the
RETROscript RT-PCR kit (Ambion, Inc.), with a 20-�l volume and a final
total RNA concentration of 1 �g/�l. The same PCR primers used by
Miller and Johnson (29) were used to detect WH11 and OP4. The TUB2
mRNA RT product (5=-CAACTGGTCAATGTGGTAATCA-3= and 5=-C
AATGTTTGGGCTAAAGGTCATTAC-3=) was used as a positive control.
The PCR thermal cycling conditions used were an initial step of 94°C for
3 min, followed by 30 cycles of 30 s at 94°C, 30 s at the annealing temper-
ature (46°C for WH11, 52°C for OP4, and 49°C for TUB2), and 1.5 min at
72°C and a final step of 72°C for 7 min.

Whole-cell PCR was performed to verify the presence of the MTLa1
and MTL�1 genes in CKY283. WO-1 was used as a homozygous MAT�
control, and amplification of ERG8 was used as a positive control (data
not shown). PCR primers unique to MATa1 and MTL�1 were previously
described (30), and the primers used for amplification of ERG8 were 5=-

CCTGGAAAAGCATTTCTTGC and 5=-CAAGTCACCTTCTGTTTG
CTC. Initial denaturation at 94°C for 3 min was followed by 40 cycles of
94°C for 30 s, 55°C for 30 s, and 72°C for 3 min. The final elongation step
was 72°C for 3 min. All PCRs were performed in a Hybaid PCR Sprint
thermocycler. PCR products were analyzed by agarose gel electrophoresis.

Farnesol production measurements. Extracellular farnesol was ex-
tracted from cell-free supernatants of stationary-phase cultures grown in
GPP at 30°C and analyzed by gas chromatography-mass spectrometry as
described by Hornby et al. (3).

RESULTS
Identification of new genes required for the morphological re-
sponse to farnesol. The factors already known to play a role in the
response to farnesol, Tup1, Nrg1, Ras1, Cyr1, Efg1, Cek1, and
Chk1, are also regulators of morphogenesis. We set out to identify
additional regulators of the farnesol response in C. albicans by
screening a library of 507 unique homozygous insertion or dele-
tion mutants defective in only their morphological response to
farnesol (31, 32). C. albicans normally forms yeast at 30°C and
hyphae at 37°C. Thus, the response to farnesol was tested by plat-
ing the cells on mGPP medium at 30 or 37°C in the absence or
presence of farnesol. Under these conditions, wild-type cells form
smooth colonies at 30°C both with and without farnesol, whereas
at 37°C they form filamentous colonies in the absence of farnesol
and smooth colonies in the presence of farnesol (BWP17 in Fig. 1).
Mutants that formed smooth colonies at 30°C and filamentous
colonies at 37°C both in the presence and in the absence of farne-
sol were considered morphologically nonresponsive or resistant
to farnesol. The colony phenotype of the rlm1�/rlm1� mutant is
representative of the type of morphological response seen in the
farnesol-nonresponsive mutants (Fig. 1; Table 2). These farnesol-
nonresponsive mutants were of interest. In contrast, mutants that
formed smooth colonies at 37°C in the absence of farnesol or that
formed filamentous colonies at 30°C were not studied further be-
cause they were defective in morphological switching in general
and not the specific response to farnesol. Thirteen of the 507 mu-
tants were defective in filamentation, and 6 mutants did not grow
or grew more slowly on mGPP medium at 30 and 37°C in both the
absence and the presence of farnesol. Both of these types of mu-
tants were not considered further. In the remaining 488 mutants,
six farnesol-nonresponsive mutants were identified (Table 2). We
found no farnesol-hypersensitive mutants or mutants whose
growth was inhibited by farnesol.

Two of the farnesol-nonresponsive strains carried mutations
in the genes for Czf1 and Tpk1, two proteins involved in morpho-
genesis (Table 2). The identification of the tpk1/tpk1 mutant val-

FIG 1 Colony morphological response to farnesol (FOH) at 30 and 37°C.
Representative micrographs were taken of the colony morphology of the
parental strain (BWP17) capable of filamentation (rough/wrinkled) and
response to farnesol (smooth), as well as the farnesol-resistant rlm1�/
rlm1� mutant strain (rough/wrinkled colonies instead of smooth at 37°C
with farnesol).

TABLE 2 Summary of insertion mutants with an impaired farnesol response

Mutant S. cerevisiae ortholog Predicted or known biological process(es) (reference[s]) Reference(s)

czf1�/czf1� None Zinc finger transcription factor for filamentation under embedded conditions and
positive regulator of white-to-opaque switching; binds Efg1 and expression
controlled by Efg1 and Czf1

19, 21–23, 38

tpk1/tpk1 Tpk2 Catalytic subunit of cAMP-dependent protein kinase A, regulator of
morphogenesis; Tpk2 isoform; involved in multiple stress responses

51–54

rlm1�/rlm1� Rlm1 Transcription factor for genes involved in cell wall organization and biogenesis
and various stress responses

55, 56

stp2/stp2 Stp2 Transcription factor for amino acid permease genes 57
yck2/yck2 Yck2 Maintenance of cell polarity, antimicrobial peptide resistance, contributes to

epithelial cell damage
58

hap43/hap43 Yap3 Transcription factor, involved in iron limitation response 59

Czf1 Is Required for Response to Farnesol
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idates the results of our screening. Tpk1 is the catalytic subunit of
cAMP-dependent PKA, a component of the cAMP/PKA-depen-
dent pathway. We expected to recover mutants in this pathway
because it is known to be important for the response to farnesol
(17).

Mutations in RLM1, YCK2, and HAP43 also conferred resis-
tance to farnesol. These genes function in diverse stress responses.
These mutants are interesting because farnesol treatment leads to
increased survival after heat shock (17) and confers protection
from oxidative stress (5, 6, 32). Osmotic stress protection is also
mediated by the cAMP/PKA pathway (4, 5).

CZF1 is required for a wild-type morphological response to
farnesol under both liquid and embedded conditions. Czf1 was
selected for further study because it is a transcription regulator
that is critical for morphogenesis processes, including hyphal
growth, embedded growth, and white-to-opaque switching fre-
quency (19, 22), suggesting that it could have a role in the response
to farnesol. Further, Czf1 is unique to the Candida genus. It is a
zinc finger transcription regulator that is most similar to function-
ally distinct Ume6 in Saccharomyces cerevisiae. The C. albicans
homologs of UME6 are UME6 (orf19.1822) and UME7
(orf19.2745).

We determined that Czf1 is required for the response to farne-
sol under two additional growth conditions, liquid assays and em-
bedded assays. To test the role of Czf1, we compared five strains
(Table 1) in a liquid farnesol response assay (Fig. 2): The czf1�/
czf1� null mutant (CKY230) was compared with its parental
strain (CKY101), the heterozygous mutant (CKY116), and the
null mutant ectopically expressing CZF1 under the control of the
MAL2 promoter (CKY231), as well as with a wild-type clinical
isolate (SC5314).

In both glucose- and sucrose-containing media, the addition of
farnesol reduced germ tube formation by SC5314 and CKY101
(Fig. 2). However, in both mGPP and mSPP media, the czf1�/
czf1� mutant showed only a minimal reduction in the percentage
of cells forming germ tubes, even in the presence of 100 �M farne-
sol, while an intermediate, haploinsufficient farnesol response
phenotype was observed in the heterozygous mutant (Fig. 2). For
SC5314, CKY101, the czf1�/czf1� mutant, and the heterozygous
mutant, the results were similar regardless of whether glucose or
sucrose was used as the carbon source. However, ectopic comple-
mentation of the czf1�/czf1� mutant under pMAL2-inducing
conditions (Fig. 2B, sucrose-containing media) restored the
farnesol response to a level similar to that of the heterozygous
mutant, while there was only a minimal farnesol response under
noninducing conditions (Fig. 2A, glucose-containing medium).
Consistent with the phenotypes, we found that expression of
CZF1 from the MAL2 promoter was only partially restored rela-
tive to the wild-type level, as assessed by real-time quantitative
RT-PCR. Thus, CZF1 is critical to the ability of C. albicans to
respond to farnesol in liquid medium.

The first described role for Czf1 was to promote filamentation
under embedded conditions (19). As a consequence, we sought to
determine whether, under embedded conditions, (i) C. albicans
can respond to farnesol and (ii) Czf1 is needed for this response.
For consistency with our prior work with farnesol, we used de-
fined GPP and SPP agar plates incubated at 37°C for our embed-
ded condition assays even though these conditions are different
from those initially used to study Czf1’s role under embedded
conditions (19). We observed a strong filamentation response by

C. albicans SC5314 and CKY101 cells when they were grown em-
bedded in an agar matrix in that 50 �M farnesol prevented fila-
mentation by these cells (Fig. 3). As with the liquid germ tube
assays, glucose versus sucrose made no difference in either the
filamentation or the farnesol response of strains SC5314 and
CKY101 (Fig. 3). These results demonstrate that C. albicans re-
sponds to farnesol in an agar-embedded condition assay.

As expected, the czf1�/czf1� mutant exhibited a defective
growth pattern under embedded conditions; filamentation was

FIG 2 Czf1 is required for the morphological response to farnesol (FOH)
under liquid conditions. Resting C. albicans cells were inoculated into glass
flasks at 106/ml of either mGPP (A) or mSPP (B) broth, and 0, 50, or 100 �M
farnesol was added. Cultures were incubated for 1 h at 37°C with shaking at 225
rpm, and the percentage of germ tube formation was subsequently determined
(czf1�/czf1� � CKY230, czf1�/CZF1 � CKY116, czf1�/czf1� pMAL2-CZF1 �
CKY231). The data shown are from independent experiments performed in trip-
licate; these were repeated with similar results on at least two separate occasions.
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still observed, but far fewer colonies than those of the wild-type
and parental strains were present and colony morphology ap-
peared different as well (Fig. 3). When the czf1�/czf1� mutant was
grown in agar containing farnesol, only a moderate farnesol re-
sponse was observed; the filaments appeared shorter than in un-
treated samples, but the colonies were still filamentous (Fig. 3). As
in the liquid farnesol response assays, the czf1�/CZF1 heterozy-
gote maintained a haploinsufficient (intermediate) phenotype in
both farnesol-treated and untreated samples. On untreated plates,
the overall level of growth of the heterozygote was more similar to
that of wild-type strains, while on farnesol-treated plates, the col-
onies were reduced in hyphal formation but they were still more
filamentous than wild-type colonies treated with farnesol (Fig. 3).
Finally, the czf1�/czf1� pMAL2-CZF1 mutant strain exhibited a
response to farnesol similar to that of the heterozygote on both
GPP and SPP plates (Fig. 3), conditions that should turn the
MAL2 promoter off and on, respectively (Fig. 2). This similarity
on GPP and SPP suggests that under embedded conditions, the
MAL2 promoter is leaky in GPP, resulting in the partial expression
of CZF1 and partial complementation of the farnesol response in
both GPP and SPP. Leaky expression of the MAL2 promoter has
been previously reported (33).

In summary, these results indicate that Czf1 is required for
farnesol response under at least three distinct environmental con-
ditions, i.e., on agar surfaces, in liquid medium, and when embed-
ded in a semisolid agar matrix. This view is explored more fully by
characterizing an efg1�/efg1� czf1�/czf1� double mutant.

An efg1�/efg1� czf1�/czf1� double mutant exhibits a tem-
perature-dependent dimorphic morphology. Previous work on
the regulation of filamentous growth identified Efg1 as a major
transcription regulator and a central control point for the many
signaling pathways involved in filamentation (reviewed in refer-
ence 34). It is also known that Efg1 and Czf1 directly interact with
each other in these morphogenesis processes. Thus, we next tested
the genetic interactions between CZF1 and EFG1 to determine if
they work together in the response to farnesol. In the course of this
genetic analysis, we observed a novel temperature-regulated di-
morphic phenotype in the efg1�/efg1� czf1�/czf1� mutant (Fig.
4). In YPD broth at 30°C, this mutant formed small elongated cells
that resemble opaque cells (Fig. 4A), while in YPD broth at 37°C,
the cells appeared larger and more rounded, reminiscent of white
cells (Fig. 4B). This dimorphic phenotype was unexpected because
cells of mating type a/�, such as our efg1�/efg1� czf1�/czf1� mu-
tant, are normally maintained in the white phase by a1-�2 repres-
sion of WOR1 (22) and czf1�/czf1� mutant cells are known to
have decreased white-to-opaque switching (22), although switch-
ing does occur at a very low rate in MTLa/MTL� clinical isolates
under conditions mimicking aspects of the host environment
(35).

This morphological switch was observed in greater detail at a
constant 30°C (Fig. 4C). Following the inoculation of white-phase
cells (grown at 37°C) into YPD broth at 30°C, the conversion to an
opaque-cell-like morphology occurred between 21 and 24 h (Fig.
4C), at which time these cells form opaque colonies that stain with
phloxine B (data not shown). To test whether turning on opacity-
specific genes and turning off white-morphology-specific genes
accompanied the morphological switch from white to opaque, we
performed RT-PCR analysis of RNA extracted from cells har-
vested before and after the morphological change, i.e., at 2 and 24
h, respectively. Little change in white-morphology-specific gene
expression was observed, but the expression of OP4, an opacity-
specific gene, increased during the switch from a white to an
opaque-cell-like morphology (Fig. 4C) and was maintained fol-
lowing the switch (data not shown). We also confirmed that these
strains are still heterozygous for the mating type locus (Fig. 4D).

Next we confirmed the opaque nature of the efg1�/efg1�
czf1�/czf1� mutant grown at 30°C with respect to its farnesol
sensitivity. Earlier, we had showed that farnesol kills opaque cells
under aerobic conditions (8). Here we show that in liquid assays,
efg1�/efg1� czf1�/czf1� mutant cells pregrown at 30°C (opaque-
cell-like morphology) were more sensitive to farnesol killing, as
assessed by methylene blue staining, than cells pregrown at 37°C
(white cells) (compare Fig. 5A to B and C to D). In contrast, no
significant cell death was observed in parental strain CAI4 or the
efg1�/efg1� single mutant when it was pregrown at 30°C and as-
sayed in either mGPP or mSPP, even in the presence of 100 �M
farnesol (Fig. 5A and C). Further, only a small increase in cell
death was observed in the efg1�/efg1� single mutant when it was
pregrown at 37°C (Fig. 5B and D). We were unable to use meth-
ylene blue staining to assess the viability of CAI4 and the czf1�/
czf1� mutant pregrown at 37°C because they form germ tubes that
stain with methylene blue regardless of the presence of farnesol.
However, the CAI4 and czf1�/czf1� mutant strains are viable in
the presence of 50 to 100 �M farnesol because they grow in liquid,
on the surface of agar plates, and under embedded conditions
(Fig. 2). Ectopic expression of CZF1 did not rescue the cell
death phenotype in the presence of farnesol because the cells

FIG 3 Czf1 is required for the morphological response to farnesol (FOH)
under embedded conditions. Resting C. albicans cells were mixed with either
GPP (A) or SPP (B) molten agar and 0 or 50 �M farnesol as described in
Materials and Methods and incubated at 37°C for 12 h. Independent experi-
ments were repeated in duplicate with similar results.

Czf1 Is Required for Response to Farnesol

September 2013 Volume 12 Number 9 ec.asm.org 1285

 

http://ec.asm.org


were already opaque cell like at the time of farnesol addition
(Fig. 5A and C).

We conclude that these cells are opaque cell like; they resemble
opaque cells in that they have an elongated cell morphology, stain

with phloxine B, express OP4, and are killed by farnesol. However,
these cells also differ from opaque cells in that they are smaller
than normal opaque cells, still express WH11, and are heterozy-
gous for mating type. This combination of features suggests that
the genetic network regulating the white-to-opaque switch is mis-
regulated in the efg1�/efg1� czf1�/czf1� mutant.

Ectopic expression of CZF1 restores filamentation and the
farnesol response in an efg1�/efg1� czf1�/czf1� double mutant
under liquid conditions. We next expressed CZF1 ectopically in
the efg1�/efg1� czf1�/czf1� double mutant to test whether it
could restore filamentation and the farnesol response (which
blocks filamentation) under liquid conditions. Liquid germ tube
formation assays in combination with methylene blue staining
were performed with strain CAI4, the efg1�/efg1� mutant, the
efg1�/efg1� czf1�/czf1� double mutant, and the efg1�/efg1�
czf1�/czf1� pMAL2-CZF1 mutant (Fig. 6), and only viable cells
were counted in these germ tube assays. When the inocula were
pregrown at 30°C, only CAI4 was able to produce germ tubes and
those germ tubes were inhibited by farnesol in both mGPP and
mSPP (Fig. 6A and C). Resting CAI4 cells cannot be prepared at
37°C because under these conditions the cells are filamentous.
Inocula of the efg1�/efg1� and efg1�/efg1� czf1�/czf1� mutant
strains pregrown at 37°C were capable of producing low levels of
germ tubes with a slight reduction in the presence of farnesol (Fig.
6B and D). Significantly, ectopic expression of CZF1 in the efg1�/
efg1� czf1�/czf1� double mutant (mSPP) resulted in both an in-
crease in germ tube formation and the inhibition of those germ
tubes by farnesol (compare Fig. 6B and D). Thus, ectopic expres-
sion of CZF1 restores both filamentation and the morphological
response to farnesol.

Ectopic expression of CZF1 during agar-embedded growth
restores filamentation and the response to farnesol. Next we
tested whether ectopic expression of CZF1 could restore filamen-
tation and the response to farnesol in an efg1�/efg1� czf1�/czf1�
double mutant under embedded conditions. As a control, resting
CAI4 cells pregrown at 30°C were used for the embedded farnesol
response assays. CAI4 produced filamentous colonies when em-
bedded in both GPP and SPP media in the absence of farnesol, and
the presence of 50 �M farnesol dramatically decreased filamenta-
tion in both media (Fig. 7). The short hyphae seen in the CAI4
colonies treated with farnesol (Fig. 7) appear longer than those of
SC5314 and CKY101 (Fig. 3) only because the embedded colonies
were photographed at 17 h for Fig. 7 and at 12 h for Fig. 3. No short
filaments were observed in the farnesol-treated CAI4 samples at
12 h (data not shown). The 17-h time point was selected for con-
sistency with the other slower-growing mutant strains being
tested in Fig. 7.

The efg1�/efg1� mutant was capable of forming filamentous
colonies under embedded conditions, and shortened filaments
were observed in farnesol-treated samples regardless of whether
the inocula had been pregrown at 30°C (Fig. 7) or at 37°C (data
not shown). Similarly, the efg1�/efg1� czf1�/czf1� double mutant
produced filamentous colonies in the absence of farnesol (Fig. 6),
regardless of the growth temperature used for the inoculum (data
not shown). However, both the efg1�/efg1� czf1�/czf1� and
efg1�/efg1� czf1�/czf1� pMAL2-CZF1 strains did not produce
any colonies in the presence of 50 �M farnesol when the inocula
had been grown at 30°C (data not shown). This absence of colo-
nies under embedded conditions suggests that these cells were
killed by farnesol, just as they had been in the liquid assays (Fig. 5A

FIG 4 czf11�/czf1� efg1�/efg1� mutant morphogenesis from a white (B) to
an opaque-cell-like state (A). Representative micrographs of the different cell
morphologies of the czf1�/czf1� efg1�/efg1� double mutant grown in YPD
broth at 30°C (A) or 37°C (B) for 24 h (scale bars � 20 �m). (C) Timeline of
the morphological switch from a white to an opaque-cell-like state of the C.
albicans czf1�/czf1� efg1�/efg1� mutant strain following the inoculation of
white-phase cells originally grown on YPD plates at 37°C into YPD broth at
30°C with aeration at 225 rpm. The morphological switch from a white to an
opaque-cell-like state was noted between 21 and 24 h postinoculation into
30°C YPD broth. RT-PCR analysis of white-phase- and opaque-phase-specific
gene expression (switch from a white to an opaque-cell-like morphology; top
gel) by the czf1�/czf1� efg1�/efg1� mutant strain before (2 h) and after (24 h)
the morphological change. As a control, RT-PCR analysis of white-phase- and
opaque-phase-specific gene expression by cells of the mutant strain pregrown
on YPD agar at 37°C, inoculated into 37°C YPD broth, and grown for 24 h was
also performed (white cell maintenance; bottom gel). For both gels, total RNA
was extracted from cells harvested at 2 and 24 h and the expression of mRNA
for the white-phase-specific gene (WH11), the opaque-phase-specific gene
(OP4), and the TUB2 (	-tubulin) control gene was determined by RT-PCR
analysis as described in Materials and Methods. The negative control was no
cDNA (�). (D) Products of PCRs showing that the C. albicans czf1�/czf1�
efg1�/efg1� double mutant is heterozygous for mating type while the white-
to-opaque switching control strain, WO-1, is homozygous for MTL�.
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and C). Both observations are consistent with the double mutant
growing as opaque cells at 30°C. With inocula of the efg1�/efg1�
czf1�/czf1� double mutant grown at 37°C, farnesol reduced the
number of colonies but the colonies that did grow were filamen-
tous (Fig. 7). The efg1�/efg1� czf1�/czf1� double mutant with
CZF1 behaved the same as the efg1�/efg1� czf1�/czf1� double
mutant in noninducing (GPP) medium (Fig. 7A), but an increase
in colony size and filamentation was observed in inducing (SPP)
medium (Fig. 7B). In the presence of farnesol, these filaments
were slightly shorter (Fig. 7B). Thus, ectopic expression of CZF1
partially restores both filamentation and the morphological re-
sponse to farnesol under embedded conditions.

To summarize, ectopic expression of CZF1 in the efg1�/efg1�
czf1�/czf1� double mutant partially restores filamentation and
the morphological response to farnesol in both liquid and embed-
ded conditions, with a more prominent restoration occurring un-
der liquid conditions. However, ectopic expression of CZF1 was

unable to rescue the efg1�/efg1� czf1�/czf1� double mutant from
farnesol-mediated cell death when using an opaque-cell-like inoc-
ulum. These results indicate that Czf1 functions downstream of
Efg1 in both filamentation and the morphological response to
farnesol because Czf1 is sufficient for both responses, regardless of
whether Efg1 is present.

Farnesol treatment does not affect CZF1 expression. Previ-
ously, we showed that Tup1 is important for the response to farne-
sol and that TUP1 expression levels were increased upon treat-
ment with farnesol. We also showed that this increase in TUP1
expression corresponds to the commitment point, beyond which
added farnesol no longer blocks germ tube formation (14). Since
CZF1 can be regulated at the mRNA level in response to a diverse
set of growth conditions, we asked whether CZF1 mRNA levels are
also affected by the presence of farnesol. Thus, a time course ex-
periment was performed to measure CZF1 expression levels in the
presence of 0, 50, and 100 �M farnesol. Samples were taken 40, 60,

FIG 5 Czf1, Efg1, and temperature play a role in farnesol (FOH) tolerance. Resting cells were prepared from cells grown at either 30°C (A, C) or 37°C (B, D) in
YPD broth until stationary phase was reached (24 h, except 48 h for the CAI4 and efg1�/efg1� mutant strains) as described in Materials and Methods. mGPP (A,
B) or mSPP (C, D) broth was inoculated with 106 resting cells/ml, and 0, 50, or 100 �M farnesol was added. Cultures were incubated at 37°C with shaking at 225
rpm, and cell death was determined by methylene blue staining after 90 min (efg1�/efg1� � HLC67, czf1�/czf1� efg1�/efg1� � CKY283, czf1�/czf1� efg1�/efg1�
pMAL2-CZF1 � AAC7). The data shown are from independent experiments performed in triplicate; these were repeated with similar results on at least two
separate occasions.
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and 80 min after inoculation on the basis of previous studies
showing the importance of this time frame to the farnesol re-
sponse and the commitment effect (14). As shown by Northern
blot analysis (Fig. 8), CZF1 mRNA levels in wild-type SC5314
showed a slight increase in response to increased farnesol, yet
this increase was not statistically significant. In summary, CZF1
transcript levels are not significantly changed in the presence of
farnesol.

Overproduction of farnesol is not a general phenotype of
farnesol-resistant mutants. Two additional C. albicans transcrip-
tion regulators that play a role in the farnesol response are Tup1
and Nrg1, and we had previously shown that mutants defective in
the production of these regulatory proteins produced 17- and 19-
fold higher levels of farnesol, respectively, than did the wild-type
and parental strains (14). In order to determine whether farnesol
overproduction is a general quality of farnesol-resistant mutants,
we tested the farnesol production levels of the czf1�/czf1� mutant
(Fig. 9). Farnesol production levels were not significantly altered
in the czf1�/czf1� mutant, suggesting a more specific involvement

of Tup1/Nrg1 in farnesol production that does not require the
presence of Czf1.

DISCUSSION

In this study, we used genetic screening to identify additional
genes that are involved in the C. albicans morphological response
to farnesol. We showed that Czf1, in particular, plays a prominent
role in the morphological response to farnesol under both aerobic
(agar surface and liquid) and embedded conditions. The czf1�/
czf1� mutant responds poorly, if at all, to added farnesol, but these
response capabilities were restored by the ectopic expression of
CZF1. These observations add a new function for Czf1 in quorum
sensing. While the presence of Czf1 is required for filament inhi-
bition by farnesol in an embedded matrix, CZF1 mRNA levels are
not directly regulated by farnesol and Czf1 does not regulate
farnesol production levels in the cell. A genetic analysis of CZF1 in
combination with the known morphogenetic transcriptional reg-
ulator EFG1 revealed that CZF1 works downstream of EFG1 in its
response to farnesol. We used the efg1�/efgl�/czf1�/czf1� double

FIG 6 Ectopic expression of CZF1 in a czf1�/czf1� efg1�/efg1� double mutant partially restores filamentation and farnesol (FOH) response under liquid
conditions. Cells were grown at either 30 or 37°C until stationary phase was reached to prepare resting cells; 106 resting cells/ml were inoculated into mGPP (A,
B) or mSPP (C, D) broth; and 0, 50, or 100 �M farnesol was added. Cultures were incubated at 37°C with shaking at 225 rpm, and the percentage of germ tube
formation was subsequently determined. The data shown are from independent experiments performed in triplicate; these were repeated with similar results on
at least two separate occasions.
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mutant coupled with ectopic expression of CZF1 to show the
functional cooperation of CZF1 and EFG1 in three aspects of cel-
lular physiology, i.e., the morphological response to farnesol dur-
ing quorum sensing, sensitivity to killing by farnesol, and white-
to-opaque switching. CZF1 and EFG1 are the first specific genes
identified that control the ability of C. albicans to survive in the
presence of farnesol, through coordination of the response to
farnesol with inhibition of the switch from white to opaque cells.

The cAMP/PKA signaling pathway is proposed to be a direct
target for farnesol in C. albicans (5, 17), and our study provides
additional evidence supporting a primary role for this pathway in
farnesol signaling (Fig. 10). Here we showed that Czf1 and Tpk1
are required for filament inhibition by farnesol. Tpk1 is one of two
PKA (7) isoforms that function in the cAMP/PKA signaling path-
way. A mutant lacking the other PKA isoform, Tpk2, could not be
identified by farnesol resistance screening, as it was not present in
this mutant library. Similarly, adenylyl cyclase (Cyr1) could not
have been detected even though it is well known to interact with
farnesol directly (36). Czf1 has a tight regulatory relationship with
Efg1, which is consistent with the cAMP/PKA signaling pathway
being a central target of farnesol (Fig. 10). The tight regulatory
relationship between Czf1 and Efg1 in morphogenesis points to-
ward their pivotal role in intracellular signal integration in re-
sponse to a myriad of upstream stimuli. Incorporation of the
sometimes conflicting signals through the interactions of the tran-
scriptional regulators Efg1 and Czf1 gives C. albicans the ability to
rapidly fine-tune its response to temperature, adhesion to host
epithelial matrices, and even fluctuating farnesol concentrations,
resulting in the most appropriate morphology for each circum-
stance. This flexibility is particularly evident in the yeast-to-hy-
phal transition. Czf1 strongly contributes to the morphological

response to farnesol. In czf1�/czf1� mutant cells, farnesol was
unable to suppress filamentation while ectopic complementation
of CZF1 restored the ability of farnesol to block germ tube forma-
tion under both liquid and embedded environmental conditions.
Further, in efg1�/efg1� czf1�/czf1� double mutants, CZF1 ecto-

FIG 7 Czf1 and Efg1 are both required for a wild-type morphological re-
sponse and tolerance to farnesol (FOH) in embedded agar. Resting C. albicans
cells (prepared at 30 or 37°C) were mixed with either GPP (A) or SPP (B)
molten agar and 0 or 50 �M farnesol as described in Materials and Methods
and incubated at 37°C for 17 h. The colonies shown were from resting cells
pregrown at 30°C unless otherwise noted. Independent experiments were re-
peated in duplicate with similar results.

FIG 8 CZF1 mRNA expression is not significantly altered by the presence of
farnesol. Resting SC5314 cells were inoculated into mGPP broth for 40, 60, or
80 min (A to C, respectively) with 0, 50, or 100 �M farnesol and subsequently
harvested for RNA extraction. Quantitative Northern analysis was used to
measure relative CZF1 mRNA levels with ACT1 as a reference gene. CZF1
levels in the samples minus farnesol were set at 1, and fold changes in CZF1
levels in samples with farnesol added are shown below the relevant Northern
blot phosphorimages. The data are averages of three replicates.

FIG 9 The czf1�/czf1� mutant produces farnesol levels similar to those of the
wild-type and parental strains. Cells were grown in GPP broth at 30°C for 48 h
prior to farnesol (FOH) extraction and quantification as described in Materials
and Methods.
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pic expression partially restored both filamentation and the mor-
phological response to farnesol. These results are consistent with
the idea that Czf1 functions downstream of Efg1 during the farne-
sol response.

Unexpectedly, signal integration between Czf1 and Efg1 is also
evident in the temperature-dependent switch from a white to an
opaque-cell-like morphology exhibited by the Efg1 and Czf1 dou-
ble mutant. The double mutant grew as white cells at 37°C and as
cells with an opaque-cell-like morphology at 30°C. The 30°C cells
were judged to be opaque on the basis of their morphological
appearance (Fig. 4A), induction of the opacity-specific gene OP4
(Fig. 4C), and death on encountering farnesol (Fig. 5A and C). It is
known that Efg1 and Czf1 are part of the transcription circuitry
that specifies the white and opaque cell types and controls the
switching between them (22). Efg1 is a repressor of the opaque
state, while Czf1 functions with Wor2 to drive the switch from the
white to the opaque state. Without Efg1 and Czf1 within the cell,
regulation of the white-to-opaque transition favors Wor1 signal-
ing to promote the formation of an opaque phenotype (22). Dis-
ruption of normal interactions between these two transcriptional
regulators and their cofactors, even in an a/� mating type back-
ground, results in a high frequency of cells with an opaque-cell-
like morphology at stationary phase. This unusual morphogenesis
may not be coincidental.

Cooperation between Czf1 and Efg1 in that they coordinate the
response to farnesol during quorum sensing and the white-to-
opaque switch could potentially benefit C. albicans by preventing
opaque cell formation in the presence of farnesol. Alternatively,
white-to-opaque switching during stationary phase—a period
typically characterized by nutrient limitation and increasing con-
centrations of farnesol— could result in a unique altruistic coop-
eration within the culture where the subpopulation that switches
to opaque is killed by farnesol (8), resulting in the release of nu-
trients into the surrounding medium. Unicellular algal species,
such as Chlamydomonas reinhardtii, release beneficial nutrients
into the surrounding medium during programmed cell death
(37), but this type of altruistic behavior has yet to be seen in a
Candida species. A mechanism for triggering cell death within a

subset of the Candida community, for example, within the matrix
of a biofilm, could improve survival within a host. The observa-
tion that Czf1 and Efg1 play critical roles in both the response to
farnesol and white-to-opaque cell switching is probably not a co-
incidence (21, 22, 38–40), since both are also critical for biofilm
formation (20, 41). The hypothesis that intentional dysregulation
of Efg1 and Czf1 occurs in biofilms is intriguing, particularly be-
cause of its implications for the maintenance of the persistence
and virulence of C. albicans within the host.

CZF1 mRNA levels do not change in response to farnesol treat-
ment. This is in contrast to previous work demonstrating that
CZF1 transcriptional expression is regulated (23). This result also
contrasts with the expression patterns of Tup1, a negative regula-
tor of filamentation, whose mRNA levels are increased upon treat-
ment with farnesol (14). Instead, Czf1 expression is more consis-
tent with the trend seen with the expression of Nrg1 and Efg1,
which saw no change in mRNA levels in the presence of farnesol
(14). Together, these data suggest that CZF1 is regulated post-
translationally at the protein level, thus allowing rapid signal in-
tegration by Efg1 and Czf1 in response to farnesol.

The many effects of farnesol tolerance and signaling in C. albi-
cans are unique to this fungus (reviewed in reference 42). Al-
though other Candida species can respond to farnesol, specifically,
by preventing the yeast-to-pseudohyphal switch in Candida dub-
liniensis (43) and inhibiting biofilm formation by Candida parap-
silosis (44), these two Candida species contrast with C. albicans by
being highly sensitive to lysis by micromolar levels of farnesol. The
finding that Czf1 plays a central role in the unique morphological
response of C. albicans to farnesol is consistent from an evolution-
ary point of view because Czf1 is uniquely found within the Can-
dida clade (23). As an example, the CZF1 gene in C. dubliniensis,
the Candida species that produces the second highest level of
farnesol, also has the highest homology to the C. albicans CZF1
gene, with 81% identity at the nucleotide level (data not shown).
Furthermore, the unusually long 5= untranslated region of CZF1,
the CZF1 gene itself, and the neighboring genes at the CZF1 locus
(23) all appear to be conserved to various degrees in other Candida
species whose genomic sequences have recently become available,
i.e., Candida tropicalis, Lodderomyces elongisporus, Candida lusita-
niae, and Candida guilliermondii (data not shown).

In conclusion, we have identified new roles for Czf1 in medi-
ating the C. albicans tolerance of farnesol, as well as farnesol-me-
diated filament inhibition. While the connection of Czf1 to other
factors known to play a role in the C. albicans farnesol response,
such as the cAMP pathway, is apparent, other links remain un-
clear. For example, cross-regulation among many of the farnesol
response pathways was recently summarized (5) but little is
known about the regulation of Tup1/Nrg1 and how these factors
fit into the farnesol signaling network. Furthermore, other pro-
teins involved in cAMP signaling, such as Ras2, Cap1, and G-actin
(36, 45, 46), have not been tested for possible roles in farnesol
signaling and may yet prove to be involved. Similarly, the three
additional genes identified by the mutant library screening in this
study, i.e., RLM1, YCK2, and HAP43, are potentially important for
the farnesol response. All three of these genes function in different
stress responses, while farnesol, acting through the cAMP/PKA
pathway, also confers resistance to oxidative stress. Thus, these
mutants would be useful for identifying specific connections be-
tween different stress responses and the cAMP/PKA pathway. This
idea suggests that farnesol can be an extremely useful tool to dis-

FIG 10 Proposed model of farnesol signaling in C. albicans. Dotted lines
represent unconfirmed regulatory relationships, black lines represent active
regulatory relationships, and gray lines represent regulatory relationships that
are inactive because of upstream inhibition.
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sect the intertwined pathways in C. albicans. Although farnesol
was initially discovered as a quorum-sensing molecule that regu-
lates morphogenesis, its many other effects produced in the cell
may allow a more complete understanding of C. albicans signaling
as a whole.
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