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TECHNICAL NOTES

Efficient Algorithm for Computing Einstein Integrals
Junke Guo1 and Pierre Y. Julien2

Abstract: Analytical approximations to Einstein integrals are proposed. The approximations represented by two fast-converging series
are valid for all values of their arguments. Accordingly, the algorithm can be easily incorporated into professional software like HEC-RAS
or HEC-6 with minimum computational effort.
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Introduction

The Einstein bed load function is a landmark of modern sediment
transport mechanics. It provides the first theoretical framework
for sediment transport calculation, which guided many of the fol-
lowing researchers. Nevertheless, the computation of Einstein bed
load function requires an estimation of two integrals J1 and J2,
which cannot be integrated in closed form for most cases and are
very slowly convergent for direct numerical integration because
of singularity of the integrands near the bed (Nakato 1984). Ein-
stein (1950) provided a numerical table and graphs to facilitate
the calculation. Some mathematical software, such as MatLab and
Maple can also be used to integrate them numerically. However,
both methods cannot be easily implemented in professional soft-
ware. For example, the widely used HEC-RAS and HEC-6 do not
include Einstein bed load function (U.S. Army Corps of Engi-
neers 1993, 2003) probably because of the complexity. The pur-
pose of this article is to provide a fast-converging algorithm to
estimate Einstein integrals J1 and J2.

Einstein Integrals

In his bed load function, Einstein (1950) defined

J1�z� =�
E
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where E=relative bed-layer thickness to water depth. Eq. (1)
originates from Rouse’s sediment concentration distribution; and
z=Rouse number that expresses the ratio of the sediment proper-
ties to the hydraulic characteristics of the flow (Julien 1995, p.
185). Eq. (2) comes from the product of the logarithmic velocity
profile and Rouse sediment concentration distribution. For the
purpose of manipulation, the above two integrals can be rear-
ranged as
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Integral J1

After using Beta function, Guo and Hui (1991) and Guo and
Wood (1995) found that for z�1,
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On the other hand, the second term on the right-hand side of Eq.
(3) is defined as

F1�z� =�
0

E �1 − �

�
�z

d� �6�

It can be solved using integration by parts as

F1�z� = E�1 − E

E
�z

+ zF1�z� + zF1�z − 1� �7a�

or
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Multiple applications of the above recurrence formula results in
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Thus, from Eqs. (3), (5), (6), and (8), one can get J1 for z�1
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Similar to Eq. (7b), applying integration by parts to Eq. (1), one
gets
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Therefore, for 1�z�2, one obtains
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which is identical to Eq. (9). Furthermore, one can recognize the
self similarity of Eq. (9) for any noninteger value of z.

For any integer z=n, a closed solution can be obtained by
applying the binomial theorem to the integrand
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For example, when n=3, it gives

J1�3� = − 3 ln E +
1

2E2 −
3

E
+

3

2
+ E �13�

To avoid computational overflow, it is suggested to apply Eq. (9)
to any noninteger z value, and use Eq. (12) for any integer z
value. In practice, an integer z can be considered z=n±10−3. For
example, if z=2.998, Eq. (9) is used; if z=2.999, it can be con-
sidered z	3 and Eq. (12) is then applied. Besides, from Fig. 1,
one can see that Eq. (9) converges to Eq. (12) when z tends to an
integer n. In fact, this convergence can also be analytically dem-
onstrated, the proof being beyond the scope of this note.

Integral J2

Guo and Wood (1995) and Guo (2002) also showed that for z�1,
one has
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where �=0.577 215. . . =Euler constant; and ��z�=psi function, a
special function (Andrews 1985). Defining
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in Eq. (4) and applying integration by parts gives
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or

Fig. 1. Plot of integral J1 �z ,E�, Eq. (9)
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This result is similar to Eq. (7b). After a complicated derivation,
one can show that
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in which F1�z� is estimated by Eq. (8). Finally, Eq. (4) becomes
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Like Eq. (9), Eq. (18) is valid for any noninteger z although it is
derived for z�1. For integer z=n, the following closed solution
exists
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For the interest of application, the convergence of Eq. (18) to Eq.
(19) is only shown in Fig. 2.

Proposed Algorithm and Convergence

Eqs. (9) and (18) include three infinite series. Series (8) and (17)
are rapidly convergent as soon as k−z	1, because Ek−z quickly
tends to zero. In practice, taking the first 10 terms in Eqs. (8) and
(17) is accurate enough since there is no sediment transport under
z	10. The convergence of the first series in Eq. (18) is compara-
tively slower. For calculation, the following approximation can be
used in a program
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6

z
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which is shown in Fig. 3 where the maximum relative error is
0.26% for 0
z
6.

The above analysis can be summarized in the form of a com-
putational algorithm. First, for an integer value z, i.e., 
z
−round�z�
�10−3, Eqs. (12) and (19) are directly applied. Other-
wise, the following algorithm is used.
• Step 1: Estimate F1�z� from Eq. (8) using a maximum of 10

terms, k=10.
• Step 2: Estimate J1�z� from Eq. (9).
• Step 3: Estimate the first series in Eq. (18) by using the ap-

proximation (20).
• Step 4: Estimate F2�z� from Eq. (17) using k=10 terms.
• Step 5: Estimate J2�z� from Eq. (18).

A Fortran subroutine or Excel spreadsheet can be downloaded
from http://courses.nus.edu.sg/course/cveguoj/ce5309/pierre.html
for the above algorithm. The results of applying this algorithm are
plotted in Figs. 1 and 2 where the symbol of a cross indicates the
exact values from Eqs. (12) and (19). In addition, the exact values
of J1 for z=n+1/2 can be found with Maple and are also plotted
in Fig. 1. For example,
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Fig. 2. Plot of integral J2 �z ,E�, Eq. (18) Fig. 3. Approximation of Eq. (20)
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One can see that Eqs. (9) and (18), respectively, converge to Eqs.
(12) and (19), the results for integer z values from Eq. (21) also
coincide with those from Eq. (9). Thus, one can consider that Eqs.
(9) and (18) correctly represent the accurate vales of J1 and J2,
respectively. The numerical calculation shows that the presented
approximations are computationally efficient and can avoid com-
putational overflow. Therefore, they can be incorporated into pro-
fessional software like HEC-RAS or HEC-6.

Conclusions

This note presents an effective approximation to Einstein integrals
J1 and J2 that are valid over the entire range of the Rouse number

z and the relative bed-layer thickness E. The approximations can
be readily implemented using widespread tools such as program-
mable calculators, spreadsheets, Fortran, or MatLab. In particu-
lar, it may provide a simple way to incorporate Einstein bed load
function into widely used hydraulic software. The numerical ex-
periment shows that the proposed algorithm rapidly converges to
the exact values of J1 and J2.
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