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Course Information

Office Hours: 11:30-1 MWF
Optional Meeting Time: Thursdays at 5pm

Assessment
Homework 6 34pts
Midterm 33pts
Final 33pts (Dec 13 : 1 — 3pm)
1 Chapter 1

Drawbacks to Riemann Integration

1.

2.

3.

4.

Not all bounded functions are Riemann Integrable.
All Riemann Integrable functions are bounded.
To use the following theorem, we must have f € R[a, b].

Theorem 1 (Dominated Convergence Theorem for Riemann Integrals, Arzela). Let {f,}°; C R[a,b] and f € R]a,b]
be given. Suppose there exists g € Rla,b] such that |fn(z)| < g(z) for all x € [a,b] and lm f,(z) = f(x) for all

b b
x € [a,b], then lim fn(x)da :/ f(z)dz.

L —
n (oo} a

1 if 2 = in lowest terms with 1 < ¢ < n on [0,1],
Example. Define f,(z) = 1

0 otherwise.

Then f,(x) — Xgnjo,1) =: f- Notice here |f,,(z)| < 2 for all z € [0,1] but f is not Riemann Integrable. Thus we can

not use the theorem.

The space R]a,b] is not complete with respect to many useful metrics.

Good Properties of Riemann Integration

1.

2
3

4

1.1

Rla, b] is a vector space
The functional f +— f: f(z)dz is linear on Rla,b].
f: f(xz)dz > 0 when f(x) > 0 for all z € [a,b].

Theorem 1 holds.

Measurable and Topological Spaces

Definition (p 113,119). Let X be a nonempty set.

1.

2.

A collection T of subsets of X is called a topology of X if it possesses the following properties:

(a) DeT and X e T.

(b) If {Uj};‘z:l - T, then Q?Uj eT.

(¢c) If {Us}toaeca €T, then UpeaUy € T.
If T is a topology on X, then (X,T) is called a topological space. If T is understood, we may just call X itself a

topological space. The members of T are called open sets in X. The complements of open sets in X are called closed

sets.



3. If X and Y are topological spaces and f : X — Y, then f is called continuous if f=1(V) is open in X for all V that

are open in Y.
Examples.
1. If X =R, then {(, R} is a topology on R.

2. If X =R, then the power set {P(R)} is a topology on R.

w

. {0,Us=0{(—a,a)}, R} is a topology on R.
4. {0,Us<per{(a,b)},User{(—00,a), (a,00)}, R} is a topology on R = R U {+o0}.
Definition (pg21,25,43). 1. A collection M of subsets of X is called a c—algebra if

(a) D e M and X € M.
(b) If E € M, then E€ € M.
(c) If{E;}3, €M, then UX E; € M.

2. If M is a o—algebra on X, then (X, M) is called a measurable space. If M is understood, then we may just call X

itself a measurable space. The members of M are called measurable sets.

3. If X, M) and (Y,N) are measurable spaces, then f : X — Y is called (M, N)—measurable or measurable if
f71(E) € M whenever E € N.

Examples.
1. (R,{0,R}) is a c—algebra
2. (R, {0,{1},R\ {1}, R}) is a o—algebra
3. (R,{E C R|E or EY is countable}) is a o—algebra

Lemma 1. If{E;}%2, C P(X), then {F;}32,; C P(X) defined by F; = Ej; \U{;iEk is a sequence of mutually disjoint sets
and U2 Ej = U2, Fj.

Note. As a result of Lemma 1, we can actually modify part (c) of our definition of a o—algebra to say
(c) If {E;}° C M is a sequence of mutually disjoint sets, then U E; € M.
Remarks.

1. Property (1a) of our definition for o— algebra could be replaced with “} € M or X € M.”

2. If {E;}52, € M, then {EF}%2, € M and N2, E; = [U52, ES]C C M.

3. If E,F € M, then E\F=ENF®¢c M.

Theorem 2. If £ is a collection of subsets of X, then there exists a unique smallest c—algebra M(E) that contains the

members of £. Note: By smallest, we mean any other o—algebra will contain all the sets in M(E).

Proof. Let € be the family of all o—algebras containing £. Note Q # () as P(X) € Q. Define M(E) = NapeaM. We want to
show M(€) is a o—algebra.

1. 0,X € M(E) since B, X € M for all M € Q.
2. Let E € M(E). Then E € M for all M € Q which implies E¢ € M for all M € Q which implies E¢ € M(E).

3. If {E;}52, € M(E), then {E;}2, € M for all M € Q which implies UPE; € M for all M € Q which implies
U E; € M(E). O



Remark. M(E) is called the o—algebra generated by £.

Definition. Let (X,7) be a topological space. The o—algebra generated by T is called the Borel o—algebra on X and is

denoted Bx. The members of a Borel c—algebra are called Borel sets.
Proposition 1 (p 22). By is generated by each of the following:

1. & ={(a,b) : a < b}

2. & ={la,b] : a < b}

3. & ={(a,b] : a < b} or & ={[a,b) : a < b}

4. & ={(a,0) :a € R} or & = {(—0,a) : a € R}

5. & ={la,00):a €R} or & = {(—00,a] : a € R}
Proof. In text. O
Remark. The Borel c—algebra on R is By = {E CR: ENR € Bgr}. It can be generated by £ = {(a, 00| : a € R}.
Proposition 2. If (X, M) is a measurable space and f : X — R, then TFAE

1. f is measurable

2. f~Y((a,00)) € M for alla € R

3. f7Y([a,0)) € M for all a € R

4. [7H((—oc,a)) € M for alla € R

5. f71((—o00,a]) € M for alla € R

Proposition 3 (p 43). Let (X, M) and (Y,N) be measurable spaces. If N is generated by € C P(Y), then f: X — Y is
(M, N)—measurable if and only if f~(E) € M for all E € £.

Proof. (=) Since & C N, if f is measurable then f~!(E) € M for all E € £ by definition.
(<) Define O = {E € Y : f~}(E) € M}. Want to show O is a o—algebra. Then since & C O and N is generated by &,
we will be able to conclude V' C O. Recall (p4 of text) f~1(EY) = [f~1(E)]¢ and f~H(USPE;) = USC f~L1(E)).

Claim: O is a o—algebra.
Proof:
1. Since f~1(0)) = 0 and f~1(Y) = f~1(0°) = (f71(0))¢ = (0)° = X € M, we have 0, Y € O.
2. Suppose F € O. Then f~1(F) € M by definition of O and f~}(F¢) = [f~1(F)]¢ € M since M is a o—algebra.
3. Suppose {F;}32, € O. Then {f~'(F})}52; € M and f~'(U52,F)) = U2, f~1(F;) € M as M is a o—algebra.
Thus U72, Fj € O.

Hence O is a o—algebra on Y, which contains £. Then A € O implies f is measurable. O

Definition. Let X be a nonempty set and let {Y o, No} be a family of measurable spaces. If fo : X — Y4 is a map for all
a € A (some index set), then the o—algebra on X generated by {fo}aca is the unique smallest c—algebra on X that
makes each f, measurable. It is generated by {f~1(E):a € A and E € N, }.

Proposition 4. If (X, M) is a measurable space, then f : X — R is measurable if and only if f~'((a,o0]) € M.

Theorem 3. Let (X, M) be a measurable space, let Y,Z be topological spaces. Let ¢ : Y — Z be a continuous function. If
f:X =Y is (M, By)—measurable, then ¢ o f is (M, Bz)—measurable.



Proof. By definition, we need to check (¢ o f)~1(E) € M for all E € By. By Proposition 3, we need only to check
(¢po f)"1(E) € M for all E open in Z. Let E be open in Z. Then ¢~ !(E) is open in Y since ¢ is continuous. Since f is
(M, By )—measurable and ¢~1(E) is open in Y, we have f~1(¢~1(E)) € M. O

Fact. If V is an open set in R?, then there exists a family {R; }321 of open rectangles in R? satisfying
1. R; CVforall j =1,2,3..
2. US4 R =V

Proposition 5. Let (X, M) be a measurable space. Let u,v : X — R be (M, Bg)—measurable. If ¢ : R? — R is continuous,
then h : X — R defined by h(z) = ¢(u(zx),v(z)) is (M, Br)—measurable.

Proof. Define f : X — R? by f(z) = (u(z),v(x)). Since h = ¢ o f and ¢ is continuous, by Theorem 3 it is enough to show
that f is (M, Br2)—measurable. First we show that if R C R? is an open rectangle, then f~(R) € M. Let (a,b), (c,d) C R
be open intervals such that R = {(y,2) € R?*|a < y < b,c < z < d}. If (u(z),v(z)) € R, then u(z) € (a,b) and v(z) € (c,d)
implies z € u=1((a,b)) Nv~™!((¢,d)). Hence f~1(R) = u=!((a,b)) Nv~1((c,d)). Since u,v are (M, Bg)—measurable, we see
f~YR) € M as M is closed under countable intersections Now let V be an open set in R2 By the above fact, there

is a family {R;}72, of open rectangles such that UR =V.So f! (UR ) Uf ) € M. Thus f is
(X, Brz)—measurable. By Theorem 3, h = ¢ o f is (X Br)—measurable.
Proposition 6 (p45). Let (X, M) be a measurable space. If c € R and f,g: X — R are (M, Br)—measurable, then
1. ¢f is (M, Br)—measurable
2. f+g is (M, Br)—measurable
3. fg is (M, Br)—measurable
Proof. 1. Define ¢ : R — R by ¢(y) = cy. Then ¢ o f = c¢f and by Theorem 3, cf is measurable.

2. Define ¢ : R? — R by ¢(y,2z) = y + 2. Then ¢(f,g) = f + g and since ¢ is continuous, by Proposition 5, f + g is

measurable.

3. Define ¢ : R? — R by ¢(y, z) = yz. Then ¢(f,g) = fg and since ¢ is continuous, by Prop 5, fg is measurable. 0

Note. In the above proposition, points (1) and (2) imply its a vector space and adding on point (3) implies it is an algebra.

Also, the proposition is true if we consider f,g: X — R.
Proposition 7. If {f;}32, is a sequence of R—valued measurable functions on (X, M) then
g1(x) = sup;>, f;(x) gs(x) = limsup, >, f;(x)
g2() = infj>1 f;(2) ga(x) = liminf;>, f;(2)
are all (M, Bg)—measurable. Moreover, if f(x) = lim f;(x) exists for all x € X, then f is measurable.
j—o0

o0
Proof. Let a € R be given. Then {z € X : g;(x) > a} = U{:U € X : fj(z) > a} implies g; " Uf
j=1

since f; is measurable. Thus g; is measurable. Also {z € X : g3(z) > a} = ﬂ U {x € X: fi.(x) > a} implies g5 ' ((a, ]) =

J=1k=j
ﬁ U i ) € M. So g3 is measurable. Since ga(v) = inf;>1 f;(z) = —sup;>, —f;(v) and g4(x) = —limsup — f;(z),
J=1lk=j
we see g and g4 are measurable. O

Corollary 1. If f,g: X — R are measurable functions, then max{f, g} and min{f, g} are also measurable.



Corollary 2. If f : X — R is measurable, then so are f+ = max{f,0} and f~ = —min{f,0}.

Corollary 3. If f : X — R is measurable, then so is |f| = fT + f~.

1.2 Simple Functions (Generalized Step Functions)

Recall that for £ C X, the characteristic function of E is

1 ifzekF,
0 ifx¢E.

XE(T) =

Definition (p46). A simple function on X is a measurable function whose range consists of a finite number of values in
R.

If ¢ is a simple function with range {a1,...,a,}, then for all j = 1,2,...,n, the set E; = ¢~!(a;) is measurable. The

standard representation for ¢ is ¢(z) = Z a;xg, ().
j=1

Theorem 4 (p47). Let (X, M) be a measurable space.
1. If f : X — [0,00] is a measurable function, then there exists a sequence {¢n}52 of simple functions such that
e 0<¢go<h <..<f
o ¢p(x) — f(z) forallz € X

e ¢, converges uniformly to f on the sets where f is uniformly bounded.

2. If f: X — C is measurable, there is a sequence {¢,} of simple functions such that 0 < |p1] < |pa| < -+« < |f|, o — f

pointwise and ¢, — f uniformly on any set on which f is bounded.

Proof. (of 1) For alln =0,1,2,... and k =0,1,...,22" — 1, set E¥ = f~1((k27", (k+ 1)27"]) and F,, = f~((2", o0)).

A A

2 2 o
&
oo
1 1
H ﬁ
‘ | T = o—o >
ey £ By | E}
£, EY F,
22n g
Define ¢, (x) = Z k27" xpr +2"xF, (z). We see that
k=0

1 1
En=f" <<k2” (k + 2) Q"D uft <(<k - 2) 27" (k+1) 2”)) = E2 U B2

On the set EF, we see ¢,, = k2 "xgr and ¢, 11 = (2k)2_n_1XE21j_1 +(2k+1)27" x ok = k27" X 2k | + (k+3)27"x gorsr.
n n n+1 n n+1

So ¢pt1 > ¢, on each EZ Also, we can see ¢,11 > ¢, on F,. Therefore ¢, 11 > ¢,. Since ¢, < f, on each E’; we see

0< f—o¢n < (k+1)27" — k2™, It follows that ¢, — f and on the sets where f is bounded, it converges uniformly (as

these sets fall into some E¥.) O



Definition. Let (X, M) be a measurable space.

1. A positive measure on M is a function p : M — [0,00] with the properties p(0) = 0 and if {E;}32, € M is a
o0 o0
sequence of mutually disjoint sets, then u U Ey | = Z w(E;). To avoid trivialities, we assume p(E) < oo for some
j=1 j=1
E C M. Usually, we refer to a positive measure as just a measure.

2. A measure space is a triple (X, M, u) where p is a measure on M.

Theorem 5. Let (X, M, ) be a measure space. Then

1. p(@) =0
2. (monotonicity) If E,F € M and E C F, then u(E) < u(F).
3. (subadditivity) If {E;}52, € M, then p U E;| < Z/,L(Ej).

4. (continuity from above) If {E;}32; C M and By C Ep C ..., then p(UE;) = lim; o0 p(E;).

&

- (continuity from below) If {E;}52, € M and E1 2 Ea D ... and p(E1) < oo, then p(NE;) = lim; o0 pu(Ej).

Proof. 1. Since there exists E € M such that pu(E) < oo, we see u(E) = p(EUQ) = u(E) + p(d) since E and @ are
disjoint. Now, subtracting u(E) from both sides, we see () = 0.

2. Let E,F € M such that E C F. Then FF= EU (F \ E). Since E and F'\ E are disjoint, we see
W(F) = u(E U (F\ E)) = u(E) + u(F \ E) > u(E).

3. Use Lemma 1

4. Let {E;}22, C M satisfying By C Ey C -+ with Ey = . Define F; = E; \ U]_E}, = E; \ E;_1. By Lemma 1,
Us2, Fy = Uj2, Ej. Thus

W(UE;) = n(UFy) = > u(Fy) =Y p(E; \ Ejo1) = Y p(Ey) — p(Ej—1) = lim pu(E,)

n—oo
as 1(Ep) = 0.

5. Similar O

Definition. 1. Let (X, M, u) be a measure space. Then a u—null set, or simply null set, is a set in M that has

measure 0.

2. If some statement P is true for all points in X except possibly those points in a null set, then we say P holds almost

everywhere (a.e.) or we may say P holds for almost every x € X or P holds p—a.e.

1.3 Integration

Let (X, M, i) be a measure space. We set Lt = {f : X — [0,00] : f is measurable}.

Definition. Let ¢ € LT be a simple function. Then there exists {ay,az,...,an} € [0,00) and {E;}j_; € M such that
¢ = Z;-lzl a;Xe,;.- We define the Lebesgue Integral of ¢ with respect to p by fX ody = Z;’:l a;u(E;). More generally,
if A € M is measurable, then we define the Lebesgue Integral of ¢ over A with respect to u as fA odp = fX oxadp =
Yo ain(E; N A).



Definition. Let f € L™ be any function. Then the Lebesgue Integral of f with respect to p is

/ Fdu = sup {/ bdu0< 6 < foe Lt o is sz'mpZe} .
X X

Also, if A € M is measurable, then the Lebesgue Integral of f over A with respect to p is given by [, fdu = [y fxadp.
Proposition 8. Let f,g € L™ and ¢ € [0,00|. Then

1. If f < g, then [y fdu < [ gdp.

2. If A,Be M and AC B then [, fdu < [, fdp.

3. If Ae M, then [, cfdu=c [, fdu.

4. If f(x) =0 for allz € AC M, then [, fdu=0.

5. If Ae M and pu(A) =0, then [, fdu =0.
Proposition 9. Let ¢ € Lt be a simple function. Define A : M — [0, 00] by A\(E fE ¢du. Then X is a measure on M.

Proof. Since ¢ is simple, there exists {a1,az,...,a,} € [0,00) and {E;}]_; C M such that ¢ = Z?Zl ajxg; - Let {Ar}° C

M be mutually disjoint sets. Then
A (U Ak) = /S ddu
k=1 k=1 Ar

DX Se | a,dp

Sl (50)

) iw(@mk)

k=

= ZGJZ E ﬂAk
] 1 k=1

= ZZaj,u(EjﬁAk)
k=1 j=1

= > ddu=) AAp)
=1 Ak k=1

—_

Theorem 6 (Monotone Convergence Theorem). Let {f,}5°, C LT be given. Suppose that
1. fj < fjw forall j =1,2...
2. f(z) =limy, o fu(x) for allz € X

Then f € LT and [y fdp = lim,_. [ fndp.

Proof. Since f(x) = sup,>; fu(z), by Prop 7, f € L*. By Prop 8(1), we see { [ fndu}nz; C [0,00] is a nondecreasing
sequence of real numbers and thus by the MCT for R, there exists M € [0, o] such that lim,, s fx fndp = M. Since f, < f
for all n, Prop 8(1) also tells us [y fndp < [ fdp. Thus M < [ fdu. Thus we just need to show M > [y fdpu.

Let a € (0,1) and ¢ € L be a simple function such that 0 < ¢ < f. Set E, := {z € X|fn(z) > a¢(z)}. Since f; < fj41,
we see By C Ey C -+ . Since a¢ < f, we also have U5, E,, = X. Thus

/X fudps > /E > o /E o (1)



By Prop 9 and Thm 5(4), limy, .o [, ¢dp = [y ¢dp. Thus, taking the limit of Equation 1 M = lim, . [ fudp > o [y ddp.
By definition of the Lebesgue Integral for f, taking the sup over ¢ and « gives us M > fx fdu. O

Proposition 10. Let ¢, € L™ be simple functions. Then [y (¢ +¢)dp = [y ¢du + [ bdp.

Proof. Let 377, ajxg; and >;" | brxr, be the standard representations for ¢ and 1 respectively. Clearly, E; = UL, (E; N
Fy,) for each j and Fy, = U?_, (E; N Fj,) for each k. So

/(¢+w)du = D (aj +bp)u(E; N Fy)
X j=1 k=1
j=1 k=1 k=1 j=1
= ZGJN<UkaEJ>+Zb’““ (UkaEJ
j=1 k=1 k=1 J=1
j=1 k=1
= d d
X¢ /Hr/xd) 1

Theorem 7. If {f,}52, C LT and f(z) = i fn(x) for all x € X, then /de,u = Z /X frdp.
n=1

n=1

Proof. First we will show for a sum of two functions, then n functions, then an infinite series of functions. So let fi, fo € L™,
then by Theorem 4, there exists {¢;}52, {1;}52; C L* such that ¢;,v; are simple with

e 0<1 <po<...<frand0< Yy <Py <. < fy
e lim¢; = fi and lim; = fo.
From these it follows that
e 01+ Y1 <at2<...<fit+fa
e limg; +v; = f1 + fa.

By the Monotone Convergence Theorem and Proposition 10,

/X(f1+f2)dﬂ=jlggo/x(¢j+¢j)du=jlir{30/><¢jdu+/>(wjduZ/Xfldu+/xf2du

Using Induction, we can show for n functions. To show for an infinite series, note that

1 oo
¢ 0<D <D fa< o S> fa
n=1 n=1 n=1

Thus, applying the Monotone Convergence Theorem again, we see
N N 00
fdp = lim / fndp = lim /f dp = /f du.

Lemma (Fatou’s Lemma- P.52). If {f,}>2, C LT, then [, (liminf f,)dp < liminf [ frdp.



Proof. Define gi(z) = 1r>1fk fn(z) for all k and for all = € X. By Proposition 7, g, € L for all k. Also (gx)72; is a monotone

sequence with g(z) := klim gx(z) = liminf f, (x). By the Monotone Convergence Theorem,
— 00 n—oo

lim gkd,u:/ lim gkduz/liminf frndu.
k—oo Jx X k—oo X n—oo
We also see
lim /gkduzliminf/ grdp gliminf/ frdp
k—oo [Jx k—oo Jx k—oo [x
since g < fx for all k. Combining these two equations, we get what we wanted. O
Proposition 11 (P 51). If f € L™, then fX fdp =0 if and only if f =0 a.e.

Proof. First, we will show for simple functions. Let ¢ € LT be a simple function and say ¢ = 2?21 a;jXEe,- Suppose ¢ =0
a.e. Then either a; = 0 or u(E;) = 0 for all j = 1,...,n. Thus [y ¢du = 377, a;u(E;) = 0. Now suppose [y ¢dp = 0. Then
a;u(E;) =0 for all j =1,...,n, which implies either a; or u(E;) = 0 for all j. Thus ¢ =0 a.e.

Now let f € L*. Suppose f = 0 a.e. Then for all simple ¢ € LT such that 0 < ¢ < f, ¢ = 0 a.e. Then [y ¢pdpu =0
and by the definition of a Lebesgue Integral, fx fdu = sup{fx ddu:¢p e LT,0< ¢ < f, and ¢ is simple} = 0. Now suppose
f # 0 a.e. Then for sufficiently large n, u({z € X : f(z) > 1}) > 0. Set E = {2 € X : f(z) > 1}. Then p(E) > 0. Consider
the simple functions %XE- We see 0 < %XE < f. By Proposition 8(1),

1 1
/ fdu > / L pdn = 2u(E) > 0.
X X n n

O
Remark. This shows for f € L, the Lebesgue Integral does not see values of f on the null sets.
Corollary 4. If {f,}52, C LT and liminf f,(z) > f(z) a.e. with f € LT, then | fdu < liminf/ Sfndi.
n—oo X n—oo X
Proof. Set E = {z € X : liminf f,(z) < f}. By hypothesis, u(F) = 0. Thus we have
liminf f,xgc > fxgc for all x € X, and (%)
fxe =0 ae. implies/ fxedp=0. ()
X
Using these together with Fatou’s Lemma, we see
liminf [y fodp > liminf [y f,xgedp by Proposition 8(1)
> [ liminf f, x pedp by Fatou
> [ fxgcdp by Proposition 8(1) and (x)
= Jx fxgedu+ [y fxmdp by Prop 11
=[x [xme + fxpdu by (xx)
=[x fdp.
O

Definition. Let (X, M, u) be a measure space. Then the measure p is complete if whenever E € M is a nullset, we find
FeMforall FCE.

Note. If y is complete, then for E € M with u(E) =0 and F C E, we must have p(F) = 0.

Theorem 8. Suppose (X, M, p) is a measure space. Set N = {N € N|u(N) = 0} and M = {EUF|E € M,F C
N for some N € N'}. Then M is a o—algebra and there exists a unique extension of i to a measure i on M. Say Ji is the

completion of u.



Proof. 1. Clearly 0,X € M.

2. Let G € M. Want to show G¢ € M. Find E € M and F’ C N’ € N such that G = EU F’. Define N = N’ \ E
and FF = F'\ E. Then G = EUF and ENN = ENF =0. Also F C N € N. Then EUF' = EUF =
(ENNCYUF = ((EUN)NNE)U((EUN)NF) = (EUN)N(NYUF).So G = (EUF")¢ = [([EUN)N(NCUF)|¢ =
(EUN)U(NCUF)¢ =(EUN)°U(NNF®). Now EUN € M which implies (EU N)¢ € M. Also NN F® C N.
So GY € M by definition.

3. If {G;}32, € M, then there exists {£;}52, € M and {N;}32, € M and {F};}32, such that F; C N; and G; = E;UF).
Then U G, = U E;UF; = U E;|U U F; | . Notice that U F; C U Nj and p(UN;) < > p(N;) = 0. So

=1 j=1 j=1 j=1 j=1 j=1
o0

UF; CNeN.So | JG; CM.
= O
j=1

Definition. Define fi : M — [0,00] by i(E) = p(E) for all E € M and i(EUF) = u(E) for all E€ M and F C N € N.
Notes.

1. 7 defines a measure. (prove)

2. 7 is well-defined and unique.

e Well-defined: Suppose E; UF| = F3 U F, with Ey, Fs € M and F; C Ny € N, F, C Ny € N. Then u(E, U F)) =
w(Er) < u(Es U No) = p(Ey) = fi(E2 U Fy). Similarly, > . So u(E; U Fy) = (Es U Fy).

e Unique: Suppose 7 : M — [0,00] is another completion. Let EU F € M. Then 7(EUF) < 7(EUN) =
WEUN)=uE)=m(EUF)=uE)=7(F)<v(EUF). Thus7(EUF)=0a(EUF).

Definition. Let (X, M, ) be a measure space. If E = U Ej with {E;}52, € M and p(Ej) < oo for all j, then E is
j=1
o—finite.

Proposition 12 (p. 52). If f € L" and [y fdu < oo, then {x € X|f(x) = oo} is a null set and {x € X|f(z) > 0} is a

o—finite set.

Proof. Set E = {z € X|f(x) = oo}. Then oo > [y fdu > [, fdp = co- p(E), which implies u(E) = 0. Also for all j > 1, set
E; ={z eX|f(z) > %} Then {z € X|f(z) > 0} = UE; and oo > [y fdu > ij fdu > %M(Ej), which says p(E;) <oco. O

Definition. Let (X, M, u) be a measure space. Define z’(X, M, 1) to be the collection of all measurable functions f : X — R
such that [ |f|dp < co.

Note. If f is measurable, so is |f| € LT and |f| = fT + f~. Thus [ ffdu < [|fldu < 0 if f € L.
Definition. If f € L'(X, M, 1), then f is integrable and define Jx fdp = [ frdp— [y fdp.
Proposition 13 (p. 53). If f € L'(X, M, ), then | Jx fdul < 5 [fldp.

Proof. By Theorem 7,

o=

tdu — —d
[ rean /Xf u‘é

/Xﬁdu+/xfdu’ < ‘/XIfdu’:/X|f|du.

Proposition 14 (p. 54). If f,g € L'(X, M, ), then TFAE
1. [y fdu= [, gdp for all E € M.

2. Jx|f —gldu=0



3. f=g ae
Proof.  (2)=(3) By Prop 11
(3)=(2) If f =g a.e., then f — g =0 a.e. which implies |f — g| =0 a.e. and thus fx |f — gldp = 0 by Prop 11.

(2)=(1) If [\ |f — gldu =0, then for all E € M

-

Thus [, fdu = [, gdp.

(1)=(3) Contrapositive. Then u({z € X|f(z) — g(x) # 0}) > 0. Define By = {z € X|f(z) —g(z) > 0} and Ez = {z €
X|f(z) — g(z) < 0}. Then either u(E1), u(E2) or both are > 0. Suppose u(E;) > 0. Then (f — g)xg, € LT and so
S, (f = g)du > 0. This implies [, fdu > [ gdu and so(1) does not hold. Similarly for u(Ez) > 0. O

_ d - d —gldu = 0.
|u g)xEu‘S/le slxedn < [ 1f = gldu=0

Note. We say f and g are related if f = g p—a.e. This defines an equivalence relation between functions in L (X, M, ).

Definition. Let (X, M, u) be a measure space. Define L' (X, i) to be the collection of all equivalence classes of integrable

functions with respect to the relation just described.
Notation. If we write f € L'(u), then we really mean f is a representative for its equivalence class.
Proposition 15 (p.47). Suppose u is a complete measure. Then

1. If f is measurable and g = f p—a.e., then g is measurable.

2. If {fn}22, is a sequence of measurable functions and lim,, . fn(z) = f(z) a.e., then f is measurable.

Proposition 16 (p.48). Let (X, M, u) be a measure space and (X, M, Ti) be its completion. If f : X — R is (M, Bg)—measurable,
then there exists an (M, Bg)—measurable function g such that f = g i—a.e.

Note. We identify L!(u) with L!(f).

Definition. Let (X, M, u) be a measure space. Define p1 : L'(u) x L*(u) — [0,00) by pi(f,g) = fx|f— gldu where
f,’j € z’(X,M,,u) are representatives for the equivalence classes f and g.

Proposition 17. The function p; is a metric on L' ().
Proof. Clearly, pi(f,9) = pi(g, f). Also if f,g,h € L} (1), then
ooy = [ 1f=gldu= [ 17 =hh—gldn < [ 1f = b+ | gldu = pr () + pa(h9).
X X X
Finally, let f,g € L'(u) and f,ﬁ € E’(X,M,u) be representatives for f and g. Then p1(f,g) = [ \f— gldu = 0 if and only

if f: g a.e. which happens if and only if f, g are in the same equivalence class. O

Definition. If { £}, C L'(4) and f € L} (i) satisfies limy oo p1 (fu, f) = 0, then we write fo — [ in L'() and soy fo
converges (strongly) to f in L(p).

Theorem (Lebesgue’s Dominated Convergence Theorem). Let {f,}°%, C L(u) be a sequence such that lim f,(z) =

f(z) p—a.e. and there exists g € L'(u) such that |f,(z)| < g p—a.e. for alln. Then f € L'(u) and/ fdp = lim / fadp.
X e Jx



Proof. By Propositions 15 and 16, we may assume f is measurable. By hypothesis, we see |f(z)| < g(x) p—a.e. which
implies [ |fldp < [y gdp < 0. So f € L* (). Since | f, ()] < g(z) p—a.e., we also see that g+ f, > 0 and g — f, > 0 p—a.e.

for all n. Notice that since le fn=f pu—ae., liniinf(g—i—fn)(x) =g(z)+ f(z) p—a.e. and linnl)inf(g — fa)(@) =g(z) — f(x)

u—a.e. By the corollary to Fatou’s Lemma (Corollary 4) / (g+ fdu < hm 1nf/ (g+ frn)dp = / gd,u,+hm 1nf/ fndp and

/(g—f)dug liminf/(g—fn)du:/gdu—hmsup/ fndp. Thus limsup/ frdu < / fdu < hmlnf/ frndp. Since >
X n—oe Jx

n—oo n—o0

is obvious, we see they are all = and thus / fdp = lim f,du. O
X n—oo

Corollary 5. Suppose {f,}5°, C L'(u) satisfies the hypotheses of the LDC Theorem. Then f, — f in L'(u), that is,
Proof. Notice

o limy oo [fn(2) = f(2)] = 0 p—ace.

o |fn(z) — f(2)] <2¢(x) p—a.e. for all n.
Then by the LDC Theorem, [y |fn — fldp = [y 0dp = 0. O

Theorem 9 (p 55). Suppose {fn}o>) C L*(u) satisfies Y oy [y [fuldp < 0o. Then 07 | fn converges p—a.e. to some

] . o0 B o0
function f C L'(u) and /X;fnd/i = ;/andu.

Proof. Define g(x) = Y07, | fn(z)| for all € X. By Theorem 7 and our hypotheses

/xg(x)du:/xg'f"'du:i/x'f"'d“<OO'

Then g € L*(u). By Proposition 12, >°° | f,(z)| < co p—a.e. Hence Y. f,, convergence absolutely u—a.e. So we may put

f(z) = 307, fa(z) for those z where the series converges and f(z) = 0 everywhere else (i.e., on a null set). Moreover,

N
IS Fa@) < S 1fl@)] < (o) mace. By the LDC Theorem, f € L) and [ s = [ tim 3" (o) =
n=1

ngnooﬁj / fn(x)—i:: | e 0

Types of Convergence

e f, — f pointwise if 71113;() fn(x) = f(x) for all z € X.

o f, — fae. if nlLIIOlO fo(z) = f(z) p—ae.

e f, — f uniformly if for all € > 0 there exists N, such that for all n > N, we have |f, — f| < € for all z € X.
o f, — fin L' if nan;O/ |fn. — fldu = 0. (strong convergence)

e f, — f in measure if for all € > 0 we have nlin;o p({z € X||fu(z) — f(z)| = €}) = 0.

Definition. We say that {f,}2>, C L*(u) is Cauchy in measure if for all ¢ > 0 we have lim p({z € X||fu(z) —
fm(z)] = €}) = 0.
Proposition 18. Suppose {f,}5°, C L' (u) and f € L' (). If f, — f in LY, then f, — f in measure.

Proof. Let € > 0 be given. Set E,, = {x € X||fn(x) — f(z)| > €}. Now
1
0=- lim / |fn — fldp > hm f/ |fro — fldp > lim 7/ edp = lim p(E,) > 0.
B n—oo € Jp

€ Nn—0o0 o0 € " n—00

Thus u(E,) = 0. O



Theorem 10. Suppose that {f,}22, is a sequence of measurable functions that are Cauchy in measure. Then there exists

a measurable function f such that f, — f in measure.

Proof. Choose {g;}32; = {fn;}521 € {fn}32; such that for all j we have

p({z e X:gj(x) — gjar(x)| = 277}) <277,

E;

Set Fi. = UjZy, Bj- Then p(Fi) < 3277, n(Ej) < > 277 =217k For & ¢ F, we have for all i > j > k |g;(z) — gi(x)] <
Zz;i lge+1(z) — ge(x)] < ZZ;; 27 < 2177 Tt follows that {g;}32, is pointwise Cauchy on EF for all k. Then there exists
f:X — R such that g; — f on FC for all k, that is, g; — f pointwise on X \ (N F%) and f = 0 on the null set.

Since p(F1) = > w(E;) < 277 =1and F; O F» D F3 D -+, we find that 0 < u(ﬂ(fo Fy) = lim p(Fy) < lim21—*% = 0.
Thus p(J;° Fx) = 0. Thus g; — f p—a.e. and by Proposition 15, f is measurable.

For each « ¢ F; we see

i—1 i—1
l9j () = f(@)] < lim |g;(z) — gi(x)| + lim [gi(z) — f(2)] < Zligloz lges1(z) — ge(x)] < }E&ZQ—Z <2'7,
t=j

l=j5

(We know lim |g;(z) — f(z)| = 0 as = ¢ F} implies x ¢ F;.)Thus g; — f in measure.
Observe |fn(z) — f(z)] < |fu(z) — gj(@)| + |gj(x) — f(z)]. So if |fu(x) — f(z)] > € then either |f,(z) — g;(z)] > § or
lg;(z) — f(z)] > §. Thus

iz e X fal@) = f@) 2 ) < p({zexi 1@ = @) 2 5 1) + o ({z e X1 lgs@) - fl2)] 2

N
DN ™

So taking the limit of both sides as n,j — oo, we get
Tim (o € X [fue) ~ f@)] 2 ) =0

since limp ({2 € X : |fu(z) — gj(z)] > §}) = 0 for f, is Cauchy in measure and limp ({z € X : |g;(z) — f(z)| > £}) =0

for f, converges in measure.

Theorem 11. Suppose {f,}52, is a sequence of measurable functions such that f, — f in measure with f measurable.
Then there exists { fn,}521 C {fn}ner such that fn, — f p—a.e.

Proof. Choose a subsequence {f, }32, such that p({z € C: [f,, — f| > 277}) < 277, Setting Fr = U2 By p(Fy) < 2175,

EJ
For = ¢ Fy, and j > k we see that |f,,; (z) — f(z)] < 277, It follows that fn; — f pointwise in X\NP2, Fy. Thus f,,, — fu—a.e.
since p(U2 , Fy) = 0. O

Theorem 12. Suppose {f,}52, is a sequence of measurable functions and f, — f and f, — g in measure for some

measurable f and g. Then f =g p—a.e.

Corollary 6. If {f,}2, € L*(p) and f € L*(p) with fo, — f in L', then there exists a subsequence {fn;}52, such that
fo, = f n—ae.

Examples. Take X = N, M = P(N), u(F) = the number of elements in E. (that is, the counting measure).
o If fe LT (), then [y fdu=>37 f(k)
o If f e L'(p), then Y77 | |f(K)| = [y |fldu < oo. So =02, f(k) is absolutely convergent.

e Suppose that f,(k) = % Then f,(k) — 0 pointwise (and thus g—a.e.), but not uniformly (as for all € > 0, % > € when
k > ne) and not in measure (as p({k € N: £ > €}) = o0)

e Suppose that f,(k) = L. Then f,(k) — 0 pointwise, uniformly, in measure, and p—a.e., but not in L'.



£ for k <n,
e Suppose that f,(k) = n* = " Then f,(k) — 0 pointwise, uniformly, y—a.e., and in measure, but not in L*.

0 otherwise.

Theorem (Egoroff’s Theorem). Suppose u(X) < oo and fi, fa,..., f are complex valued and measurable functions on X
such that f,, — fa.e. Then for all e > 0 there exists E C X such that u(E) < € and f,, — f uniformly on X\ E.

Proof. Let N be the set of all points where f,(z) - f(z). So p(N) = 0. For each k,n € N, define E,, ), = US> {z € X\ N :
|fm(z) — f(z)| > £}. Observe for all k that E, 1% C Enx and N5, B, = 0. Since pu(Ey ;) < p(X) < oo, we may use
Theorem 5 to conclude that 0 = p(N, B, k) = lim u(E, k). So for all k there exists ny, such that u(E,, ) < 27*e. Set
E=NU(UZ, By k). Then p(E) < u(N) + p(UEn, k) < € peq 27% < e If & & E, then for all n > ng, | f(x) — f(z)] < 7.
that is, f, — f uniformly on X\ E. O
1.4 LP Spaces

Definition. A function F : (a,b) — R is convex on (a,b) C R if
Fv + (1 - \)y) < AF(2) + (1 - N F(y)

for all X € [0,1] and =,y € (a,b).

Theorem 13. If F' is convex on (a,b) C R, then for all [x,y] C (a,b) with x < y, we find that there exists M < oo such
that F'(s) > —M for all s € [x,y].

Proof. Suppose there does not exist M < co. Then for all n € N there exists s,, € [z,y] such that F(s,) < —n. Since [z, y]
is compact, there exists a subsequence (call it s,, for simplicity) such that s,, — s* for some s* € [z,y]. Let s € [z,y] \ {s*}

be given. For each A € [0,1), we have
FAs+ (1 =XN)sp) < AF(s)+ (1 =N F(sp) < AF(s) + (1 = A\)(—n) — —o0.

It follows that Fi(As+ (1 — A)s*) = —oo for all A € [0,1). So F(s) = —oo for all s € [z,y]\ {s*}, which contradicts the fact
that F : (a,b) — R. O

Theorem 14. If F is convex on (a,b) C R, then F is continuous on (a,b).

Proof. We will first prove a claim.

Claim: For each z,y, z € (a,b) satisfying z < y < z, we have
Proof: Let y = Ax + (1 — A\)z with A = 2=%. Then

zZ—T

F(y)—F(z) F(z)—F(y)
y—x < z—y

Fly) < =2 r@) + L=2F(z)

Z—T Z—x

as F' is convex. This implies

z2—x y—
F F
@2 = F) - L= F()
and thus ) )
— Z—X
F(x) < F(z F(y).
y—x (=) z—y (=) (y—2)(z —y) )
Thus
F(y)—F(x) 1 1 z—x _ 1 1 _ F»)-F(y)
e S =P W+ PG - gt FW) = 5 FW) + 5 F () = — =

Let [z,y] C (a,b) with < y be given. Then F is uniformly bounded from below by Theorem 13. Let s € (z,y) and

t € (s,9). Sox <s<t<y. Then
P(s)~ F(z) _ F(t) - F(s) _ Fly)~ F()
s—x - t—s - y—1




which implies

L=5P(s) — F(x)] + F(s) < F(t) <

S§—x

= [F(y) = F()] + F(s).

< |
~

Since F is uniformly bounded, the RHS does not blow up, so as t — s we see F(t) — F(s). Similarly for ¢ € (z,s). Thus
lim; s F(t) = F(s). O

Theorem 15 (Jensen’s Inequality). Suppose that (X, M, 1) is a measure space with u(X) < oo. If F' is a convex function

on R and f € L'(u), then
1 1
— d — o fdu.
(g f 1) = gy foo

Proof. Since f € L(u), fx |flduw < co. By Proposition 12, {x € X : |f| = +o0} is a nullset. So WLOG we may assume f
is R—valued (just redefine it to be 0 on the nullset). Put t = ﬁ Jx fdu. For each s € (—o0,t) and u € (t,00), the claim

above gives us

F(t) - F(s) _ F(u) - F(t)
t—s - u—t

Let 8 = sup M.ThenﬂgwwhichimphesFU > F(t)+ B(u—1t) for u € (t,00). If u € (—o0,t), then
s t—s u—t

w < 8 by definition of supremum. Thus F'(¢) < F(u)+ (¢t — u) which implies F(u) > F(t) + 8(u —t). Let u = f(z).

Then F(f(z)) is measurable and F(f(x)) > F(t) + B8(f(x) — t) which implies

Uz | F(t)du+ﬂ< [ s@au - [ 1an) :F(t)u(X)+ﬁ< / f(x)du—tu(X))-

Note that if F/(f(x)) is not in L' then it integrates to oo, in which case this inequality is still true. Substituting the value

[ Pz F (M&) / fdu> u(X).
O

Let X = [n], M = P(X), u(k) = ax where Y ;' ar =1 and a > 0. So [y fdu =Y f(k)ag. Put F = €', which is convex on
R. Then by Jensen’s Inequality, since u(X) = 1, we have

exp (Z f(k)ak) = exp (/X fdﬂ> < /Xefdu = " arexp(f(k)).

Put y, = e/ that is, f(k) = Inyg. Then exp(>_ In yp*) < 3 agexp(Iny) which implies

n n
[Tvis =" au.
k=1

for t, we see

Theorem (Young’s Inequality). Let % + % =1 with p,q > 1. Then |ab| < %|a\1’ + %\b|q.
Proof. Use the above with a; = %,042 = é,y1 = |a|?,y2 = [P O

Theorem (Holder’s Inequality). Let % + % =1 with p,q > 1. Let f,g € L*. Then

e () ()

Proof. If [ fPdu = 0, then f = 0 a.e. which implies fg = 0 a.e. and thus [ fgdu = 0. Similarly if [ ¢g%dp = 0. So assume
[ fPdp, [ g%dp > 0. If [ fPdp = oo or [ g9du = oo, the inequality is clear. So assume 0 < [ fPdp, [ g%dp < co.Put

/ and G = g

Fe———0 —
(f frdu)'’” (f g7dp) "



Observe [ FPdu = Rf%du J fPdp = 1. Similarly, [ G%p = 1. Using Young’is Inequality,

1 1 1 1 11
/FGdug/prdu+7quu:f/deu+7/GQdu:7+7:1.
X p q p q p q

dp <1 which implies

om ([ )" (fo)"

Theorem (Minkowski’s Inequality). Suppose p > 1. Let f,g € L™ be given. Then

(frsora) "< )"+ (fra) "

Proof. If p =1, then it is trivial. So assume p > 1. Then

R f9n
S0 [x F e gram 7

ST+ 9P tdu+ [g(f +g)P dp
(J £ P ([ (f + g)Pdp)P=1 7 + ([ gPdp)' /P (f (f + g)Pdp)P /7.

J(f +g)rdu

IN

If [(f+ g)Pdp =0, clear. If it is co then (f + g)P = 2P(5f + g)P < 2P~ fP 4 2P~ 1gP = 201 (fP 4 gP) (since 2P is convex)
which implies one of [ f? and [ gP is co. Thus we can divide by ([(f + g)Pdu)?~'/? to get Minkowski’s Inequality. O

Definition. For eachp € [1,00) and each measurable function f, define || f||, = ([ |fIPdp)' /P and || f||oo = ess sup,ex|f(z)| =
J{a>0:pu({zeX:|f(z)] > a}) =0} (whereinf() = co. This is called the essential supremum.

Definition. For each p € [1,00] define LP(X, ) = {f € L' (u) : || f||, < oo}

1.5 Normed Vector Spaces

Let K denote R or C. Recall that a vector space X is a set of elements with addition and scalar multiplication. By a
subspace, we mean a vector subspace of X. If z € X, denote by Kx the subspace {kz € X : k € K}. If M and N are
subspaces of X, then M &N ={z+yeX:2 € M,y e N}.

Definition. 4 seminorm on X is a function || - || : X — [0,00) such that
o lfz+yll < llall + llyll for all 2,y € X.
o [[Xz|| = |\ ||z|| for all z € X and X € K.
If || - || also satisfies
e ||z|| =0 if and only if z =0
then || - || is called a norm on X. A pair (X,||-||) is called a normed vector space.
Examples.
e R” is a VS and the function ||z||, = (3 p_; |zk|P)!/? for p € [1,00) is a norm. So is ||2||ee = max{|z1], |z2], ..., |7s|}.
e For each p € [1, 0], the space L¥ (1) is a VS and the function || - ||, is a norm on LP.

Fact. If (X, || -]|) is a NVS, then p).(z,y) = ||z — y|| for z,y € X is a metric on X. The topology induced by this metric is

called the norm (or strong) topology.



Definition. If p is a metric on a set X, the topology induced by p is generated by € = {U € X : there exists € > 0,z €
X such that p(y,z) < € for ally € U}. (In Euclidean Space, these are the open balls of radius €.) If £ C P(X), then the
smallest topology T (E) containing & is called the topology generated by E.

Note. Each set in £ is open in the topology generated by £ by definition.

Definition. Two norms || - || and || - ||1 are equivalent if there exists constants 0 < ¢1,ca < 00 such that c1]|z|| < ||z]]; <
collz|| for all x € X.

Examples.
e If X = R™, then for all p,q € [1, ], the norms || - ||, and || - ||, are equivalent.
e If X = RY (that is, the space of infinite sequences of real numbers), then for each p # g € [1,00), the norms || - ||, and

|| - Hq are not equivalent.

Definition. If (X,|-|) is a NVS that is complete with respect to pj.||, then we say that (X, || -||), or just X, is a Banach
Space.

Definition. Let {z,}22, C X be given. The series y ., x, converges to r € X if limn_ oo Zgzl T, = x (ie.,

limy oo || Zi:;l z, — || =0). The series Y | x, is absolutely convergent if 3~ ||z,|| < oc.
Theorem 16 (p. 152). A NVS (X,]|| - ||) is complete if and only if every absolutely convergent series is convergent.

Proof. (=) Suppose (X,||-|]) is complete. Let {x,}5°; C X such that Y 7, ||z,]| < co. Then for all N we can define
Sy = ZnN:1 x, € X. Want to show Sy is Cauchy. Let M > N be given. Then [|Sy — Sn|| = ||X:J]\\,4_~_1 Tal|| <
Z%H l|zn]| — 0 as M, N — oco. Thus {Sn}3_, is a Cauchy Sequence in X and since X is complete there exists z € X

such that limy_. ||Sy — || = 0. Thus >~ | z,, converges to = € X.

(<) Suppose every absolutely convergent series converges. Let {z,}52; C X be a Cauchy Sequence. Select a subsequence
{an, }52, such that for all j and n,m > nj, we have ||z, — @,,|| < 277. Put y1 = @, and y; = x,; — ,,_, for all
j > 1. Then z,, = Z?Zl y;. Also,

o0 o0 o0 oo
D Myl = Nl + 3 Myl = Nl + D lln, = @n, |1 < 2[4+ 0279 < lon, || +1 < oo,
j=2

j=1 =2 =2

Then, by hypothesis, there exists € X such that limj_, Z'jjzl y; = «. Then lim;_. o z,, = x. Of course ||z,, — z|| <

|@n — @n, || + ||2n, — 2| and for n > n;, ||z, — z,,|| <277 and ||z,, — z|| — 0. Thus ||z, — z|| — 0. O

Corollary 7. If (X, M, u) is a measure space, then (L'(u),|| - ||) is a Banach Space.
Theorem 17 (p. 183). For p € [1, 00|, the space (L¥ (i), || - ||,) is a Banach Space.

Proof.  Case 1: p € [1,00). Suppose that {fx};2, C LP(u) satisfying > 77, [|fx|]| < co. Put AP = > °7°[|fe|[2 and
Gpn =27 1fkl, with G = >°7° | fx|. Clearly, G} < G5 < --- < GP and by Minkowski’s inequality

n p n n
ety [ (S215) <3 [ =3y <
1 1 1

By the Monotone Convergence Theorem,

n p n p 00 p
nlggo||0n|5=nlggo/x<2|fk|) = [ 1im (Zm) du=/X<Z|fk|> dp = [[GII% < AP < o0
1 1 1



since |G |5 < AP for all n. This implies that (3-7° [f|)? < oo a.e. and so Y 7° |fx| < 00 a.e. Thus for almost every
x there exists F(z) < oo such that F(x) = limy_ oo Zjlv fi(z). Define F(x) = 0 for those x where the sum is infinite.
We need to show F € LP(u) and lim||F — Zf[ fxll = 0. We have

o P
[ 1eran= [ du< | (Zm) di = |[GI[2 < AP < co.
X x \ 3

Thus F € LP(p). Finally, for all n, [F =377 fe|P = | 3205, fil? < (27 [fel)? = G € LY. Also limy, o0 F(2) =3 fio(2) =

0 a.e. So by the Dominated Convergence Theorem,

00 P

> ful@)
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n n
i 1 =30 el = i [ 17 =3 plrdn =0
1 1
Thus by Theorem 16, LP(u) is complete.

Case 2: p = oo. Let {fr} C L*>(u) satisfying > 7" || fe]|lc < co. For each k, set Ay = {z € X : |fu(x)| > || fll}- By
the definition of || - ||, each Ay is a null set. Also A = |J° A is a null set. For each z € X\ A, Y 17 |fu(z)] <
S frlloo < 00. So there exists F such that F(z) = .77 fr(z) < oo for all z € X\ A. Put F(z) =0 for all z € A.
So F = limy oo 20 fr(2) p—ae. Now for z € X\ A, |F(z)] = |7 fu(@)] < 5 [fr(@)] < 25 [ falloo < 00. So
F e L* as pu(A) = 0. Finally

D [[F =3 fille = Tim |3 fille < lim S|l =0
1

n+1 n+1
. o0
since > 7 || frlloo < 00. O
Proposition 19. Let S = {simple functions on X}. For each p € [1,00], the set SN LY is dense in LT .

Proof. The case p = oo is covered by Theorem 4. Suppose p € [1,00) and let f € LP(u) be given. Want to find a sequence
{fn}2y € SNLP such that lim,, .o || fr — ||, = 0. By Theorem 4 (applied to f* and f ), there exists a sequence { f,,}52; C
S such that |f,| < |f| and lim,, o fn(z) = f(z) for all 2 € X. Since f € L?, we find that [y [fn|Pdp < [y |f|Pdp < oo which
implies f,, € L? for all n. So {f,}5%, C SN LP. Moreover, |f, — fIP < (|ful + | f])? < 2P|f|P € L' and |f, — f|P — 0O for all

x € X. By the LDC, lim, oo [y |fn — f[Pdp = 0 which implies lim || f,, — f|[, = 0. O

Proposition 20. If1 <p <q<r <ooc, then LP N L™ C L and ||f|lq < [|fI)]|fII5~" where % = % + =2,

Proof. If p=¢q =1r = oo, trivial. If p < 0o and ¢ = r = oo then clearly LP N L*>° C L*> and if we take A = 0, then we see
£lla < [1f1lr = IF1[pILf]]7- So suppose p, ¢ < oo. If r = oo, then

1/q 1/q
( / Ifl"du> ( / flpflq"’du)
X X l/q
(Lisensiecran)
S /4
T ( / Ifl”du)
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Let A= E.If f € LP N L, then [[f[|p, || flloc < 00, s0 [|fq]| < I3 F1155* < oo. Thus f € L7 Now suppose r < co. Note



that A\g < p.

(/X Ifqdu>1/q

1/q
([ 1rPoisiean )
X

HED! _p_ L(e=2a)
< (/ (|f|>‘q)p/)\q du) </ (|f|(17)‘)q) P du) by Holder’s Inequality
)\/p 1;>\
= (frean) " ([1sran)
= AR
By the same argument as above, f € L N L™ implies f € L9. O

Proposition 21. If u(X) < oo, then for all 1 < p < q < oo, we have LY C LP and ||f]|, < ||f||qN(X)%_%.

(f fl”du>1/p (/ 1-f|”du>1/%
(/ <|f|P>q/pdu)5(’l’) (L1n17a)

= || f]lqn(X)7 .

Proof. If ¢ < 0o, then

(452)
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2  Measure Theory

The Lebesgue Measure on R™. Suppose (R™, M, m™) is a measure space where the measure m™ : M — [0, 00] with M C

P(R™) is the unique measure such that

m" (ﬁ(ak,bk)> = H(bk — ak)

k=1

where (ag,br) C R for all k. What can we say about M if we want to measure all the open boxes [[(ag, br)?
e Since any open set is a countable union of open boxes, all open sets in the usual topology must be in M.
e The smallest o—algebra M must be the Borel o—algebra.
So we want to somehow extend m™ from the boxes to all of Bgr~.
Definition. Let X # 0. A family of sets C C P(X) is a semialgebra if
1. ,XecC
2. If E1,Es € C, then E1 N Ey € C (and thus all finite intersections are in C).
3. If E € C, then there exists a finite sequence {F;}_ | € C with E; N E; = () for alli # j such that E€ = Ule E;.
Examples. The following are semialgebras:
e [ = { open, half-open, closed intervals on R}.
e J" = {crossproduct of any n elements of I}.
Notation. Denote any interval with endpoints a and b by I(a,b).
Definition. Let X # (. A family of sets F C P(X) is an algebra if
1. 0,X e F

2. If E1,E5 € F, then E1 N Ey € F (and thus all finite intersections are in F).



3. If E € F, then E€ € F.
Note that by 2 and 3, we are only allowing finite unions to be in F, unlike in a o—algebra.
Examples. The following are algebras

o F(I)={E CR|E=U\_, I, [y € I[,I; N I = 0 for j # k}.

o« F(I)" ={ECRYE =\, It,Ix € I", ;N I = for j # k}.

In general, if C is a semialgebra, then

Y4
F(C) = {ECX|E= UEk7Ek€C,EjﬂEk:@f0rj7ék}
k=1

is an algebra.
Definition. Let C C P(X). A set function p: C — [0,00] is called
e monotone if for all A, B € C satisfying A C B, we have pu(A) < u(B).
e finite additive if {E.}._, C C such that E; N Ey = 0 and Us_, Ey, € C implies p(Us_y Ex) = Y t_y n(Ex).
e countably additive if {E;}72, C C such that E; N Ey, =0 and |3, Ex € C implies p(Urey Ex) = > ey W(Ek).
e countably subadditive if {E;};2, C C such that | J;—, Ex € C implies p(Upey Ex) < 3 poq #(Ek)-

1st Goal: Given a monotone countably additive set function p defined on a semialgebra C, we want to extend u to a monotone

countably additive function g defined on an algebra F(C) generated by C.

Proposition 22. Let C C P(X). Then there exists a unique algebra F(C) C P(X) such that C C F(C) and if A C P(X) is
an algebra such that C C A, then F(C) C A. So F(C) is the “smallest” algebra containing C.

Proof. Define F(C) = N{AIC C A C P(X), A is an algebra}. O
Definition. Given C C P(X), the algebra F(C) provided by Prop 22 is called the algebra generated by C.

Proposition 23. IfC is a semialgebra, then the algebra generated by C is F(C) :={E C X : E = U_ Ex, E;NE, = 0,7 #
k, By € C}

Example. Recall I was a semialgebra. What kind of properties does m : I — [0, 00| defined by m(I(a,b)) = b— a have? It
is monotone, finitely additive, countably additive (2 cases: if the union is an interval which is finite or infinite), countably

subadditive (by monotonicity, countable additivity and Lemma 1).

Theorem 18. Suppose u is a finitely additive and countable subadditive set function on a semialgebra C such that pu(0) = 0.
Then there exists a unique countably additive set function i on F(C) such that p(E) = u(E) for all E € C.

Proof. For all E € F(C), by Prop 23, there exists {Ej;}}_; € C such that E = U}_,E}, and E; N E, = 0 if j # k. Define
H(E) = 32—y 1(E)-
Claim 1: g is well-defined.
Proof: Let E € F(C) and suppose there exists { Ex}}!_; and {F,}}*, C C such that E; NEy =0 for j # k and F;NF, =0
for j # ¢ and U'_,E), = E = Ul Fy. Then for all £ =1,2,...,m, F, = F, N E = F, N (U'_, E},) = U'_,(F, N E},) and
forall k=1,2,...,n,E, = E,NE = E,N (UF,) = U, (BN Fyp). So

B(E) =Tk mw(Ee) = iy (U Ex N FY)
Dkt 2o M ER N FY)
= Zn:1 EZ:1 w(Er N EFy)
= ZZI (U1 Ex N Fr)
= Z?:l p(FY).



Claim 2: p is finitely additive on F(C).

Proof: Suppose {E}}_; € F(C) with E, N E; = 0 for j # k, then U}_,E, C F(C) since F(C) is an algebra. By
Prop 23, there exists {G,}—; C C such that UJ_;G, = U}_,Ey. Also, for all £k = 1,2,...,n, there exist mutually
disjoint {Fy ¢},"% C C such that E, = U, Fy, ;. Then for all k =1,...,n

E.,=FE.N (LnJ Ek> =E.N <O G,«) = (TLnj Fk,@) n (O GT) = ELj O(Fk,ZmGr)
k=1 (=1 r=1

r=1 {=1r=1

Alsoforallr=1,..,s, G, =G, N <O Ek> =G, N <O UF’M> = 0 TUGTHF;CJ. Now

k=1 k=1¢=1 k=1¢=1

k=1¢=1

(05) - (o) S (03enn)

—* Z w(Gr N Fip) :Zﬁ <U UGrﬁFk,£> = iﬁ(Ek)
k=1

r=1k=1/{=1 k=1 r=1/¢=1

Claim 3: p is countably subadditive.

Proof: Same as above, except replace n with co and change the =* to <.
Note that the countable additivity of & follows from the next theorem (Theorem 19) O

Theorem 19. Let F be an algebra of sets on X and i : F — [0, 00] be a set function such that i(0) = 0. Then [ is countably
additive if and only if it is both finitely additive and countably subadditive.

Proof. First note that if i is finitely additive, then (since F is an algebra) for A, B € F with A C B, we see u(B) =
HAUB\ A) =p(A) +a(B\ A) > u(A). Thus f is monotone.

(=) Suppose p is countably additive. Clearly 1 is finitely additive as (@) = 0. To show subadditive, let {Ej}2, C F such
that U, By, € F. By Lemma 1, there exists a sequence {F}}?2; of mutually disjoint sets such that US°F), = U Ej,.
Using countable additivity and monotonicity, we see p(UEy) = p(UFg) = > pu(Fr) < > u(Ek).

(<) Suppose 1 is finitely additive and countably subadditive. Let {Ej}5° C F be mutually disjoint sets such that U E), €
F. Since i is countably subadditive, p(U°Ey) < > 7 11(Ex). To show the opposite inequality, we use finite additivity
and monotonicity to conclude (UPEy) > n(UTER) = Y| i(Ey) for all n. Taking the limit as n — oo, we get

AU By) > Yo7 f(Ey). Thus (U Ey) = 30 fi( Ey,). -

Definition. Suppose A C P(X) is an algebra. A function i : A — [0,00] is called a premeasure if p(0) = 0 and [ is

countably additive.

Theorem 18 shows how to construct a premeasure on an algebra, generated from a semialgebra, from a finitely additive

countably subadditive function on that semialgebra.

Notation. Define I := {(a,b] : a < b€ R} U{(—00,b] : b € R} U{(a,0) : a € R} U{(—00,00)} U {0}. Note the c—algebra
generated by Iis Bp. Also I is a semialgebra.

Proposition 24. Let F : R — R be an increasing function. Define up : I — [0, 00] by pp((a,b]) = F(b)—F(a), pp((—o0, b)) =
F(b)— hm F(z),p ((aoo))—hmF() F(a),ur((— oooo))_hmF()— hm F(z),ur(®) = 0. Then pp is well-

deﬁned ﬁnztely additive and monotone Moreover, if F is right contznuous then up 18 countably subadditive.

Proof. 1t is clear that pp is well-defined. Suppose {I;}7_, C I are disjoint. First suppose each I, is of the form (ag, bx] and
Up_, (ak,bk] = (a,b) € I. Then WLOG, assume a = a1 < by = a9 < by = ... =a, <b, =b. So

n

S ur(l) = Y ur(an b)) = 37 F(be) = Flag) = F() — Fla) = pr((a,1).

1



Now suppose Up_ I}, = (—o0,b] € I. WLOG, assume I; = (—o0,b1] and I, = (ag, bg] with by = as < by = ... = a,, < b, = b.
So

Yo up(Ik) = pr(h) + 325 pr((an,bk]) = F(b1) = limg— oo F(2) + F(bn) — F(az)
= F(by) —lim,,_o F(x)
= MF(<_Oovb])'

Similarly, the other cases hold. Thus pp is finitely additive. Monotonicity follows. Thus we need only to show countable
subadditivity in the case that F is right continuous. Suppose I = (a,b] C U2, I}, with {I;}32, C I. Let € € (0,b — a). For
each k, define

(ag,bp, + 0r)  if I, = (ag, bi],
I} = S (00, by + 6) if I = (—o0, by,

I otherwise,

where Jy, satisfies F(by + &) — F(by) < €27%. Now {I}}3°, is an open cover for [a + €, b]. Since compact, Heine Borel says
there exists a finite subcover, call it {I},}7_; for simplicity. WLOG, assume a + ¢ € I7. If b & I{, then b; 4+ 61 < b and thus
[b1 +61,0] C UY_,I;.. WLOG, assume by + 61 € I5. Then ap < by +61. If b & I, then by + 62 < b and so [ba + d2,b] C UP_51;.
Continue to find m < n such that a < a+e < by + 01 < by + 02 < -+ < b < by, + dpy, that is, b € I' . Note that this also
says a;4+1 < b; + 0;. Now

F(b)—F(a) = F{b)—F(a+e)+F(a+e)—F(a)
< F(bpm+m)— F(a1)+ Fla+ )—F(a)
= H(F(brgr + Org1) — Fbg — 63)) + F(by 4 61) — F(ay) + Fa+ €) — F(a)
< H(F (brgt + ) — F(ak+1))+F(b1—|—51)—F(a1)+F(a—|—e)—F(a)
S oher ((F(by, +6x) — Flag)) + F(a+¢€) — F(a)
= Yo (F(br +0x) — F(bg) + F(by) — F(ax)) + F(a+¢) — F(a)
< e+ 30 wr(lk) + Fa+€) — Fa)
< e+ Flate)—F(a)+ 201, pr(lk)

Letting € — 07, the right continuity of F yields
pr(l) = F(b) = F(a) <Y pr(lk).
1
Now suppose I is an infinite interval. If T = (—o0,b], then for each M > —oo, the same argument shows that u((M,b]) =

Fb) — F(M) < Y72, pr(Ig). Now letting M — —oo, we see pp((—00,b]) = F(b) — limp——oo F(M) < 307, ur(Iy).

Similarly for the other cases.

O

Note. It is also the case that ug is countably additive, but we don’t prove that here. For reference, Folland refers to this

as pto. This is similar to Prop 1.15 in Folland.

Proposition 25. Let F : R — R be increasing and right continuous. Define pp : I— [0,00] as in Proposition 24. Then
Ip f(f) — [0, 00] defined by pp (VL) = 7 pr (1) whenever {I;}7_; C I satisfies I; NI, =0 for j # k is a premeasure
on F(I).

Proof. Follows from Prop 23, Thm 18, and Prop 24. [
Remark. If F' = x, then pup is the usual length of an interval.

Proposition 26. Suppose i : I — [0,00] is finitely additive and p((a,b]) < oo for each a,b € R. Then there exists an
increasing function F : R — R such that p((a,b]) = F(b) — F(a) for all (a,b] C R. If u is also countably additive on I, then

F s right continuous and pp = p.



w((0,2])  ifx>0
Proof. For all z € R, define F(z) =40 if x =0 . We want to verify that u((a,b]) = F(b) — F(a) for all (a,b] € R.

—u((z,0)) ifx<O
Since p is finitely additive, if 0 < a < b

p((a, b)) = u((0, 6]\ (0,a]) = u((0,0]) = u((0,a]) = F(b) — F(a).

Similarly for a < 0 < b and a < b < 0. To show F is increasing, note that for 0 < a < b, F(b) — F(a) = p((a,b]) > 0.
Similarly for the other two cases. Now, suppose p is countably additive. We want to show F' is right continuous. Let x € R
and {x}32, C (x,00) such that z — z as k — oo and {zx}%2, is decreasing. Notice {F'(zx)}32, is decreasing and bounded

below by F(x), so it converges.

Case 1: Let x > 0. Then

F(z1) = p((0,21]) = p((0,2]) + (g2 (w1, z1])

F(z) + limy oo 37 (@1, 24])
F(z) 4+ limy oo S0 Flag) — F(2ri)
= F(z)+lmy_o F(z1) — F(zny1).

Thus F(z) = limy_ o F(xn41). Similarly if x = 0.

Case 2: Let « < 0. Then for some m € N we find z,, < 0. Then

F(z) = —p((2,0]) = —(p((@m,0]) + p((z, 2m]))

= Flom) = p(UpZ, (@rr1, 7))

= F(zm) = lim, o 3507, Far) — F2p41)
= F(zy)— F(zy) +lim F(z,41).

Thus F(z) = limy,—co F(Tnt1).
To show p = pp, we need only to compare u(I) and pp(I) on infinite intervals. Suppose I = (—o00,00). Then I =

U ((=k,—k +1]U (k — 1,k]). Since p(I) > 0 we have

pd) = lim > p((—k,—k +1]) + u((k — 1,K])

= lim iF(—k +1)— F(—k) + nler;oi:F(k) —FPk—1)

1
= lim F(—n)+ lim F(n) = pur(I).

n—oo

2nd Goal: Given a premeasure on an algebra A, we want to extend a measure on the o—algebra generated by A.

Intermediate Goal: Approximate “measure” of any subset of a nonempty X using the premeasure on an algebra A.

Idea: Recall m : I — [0, 00] was given by m(I(a,b)) = b — a (where I(a,b) is any interval with endpoints ¢ and b) for
a,b € R. The algebra generated by I is F(I), which is the collection of all finite unions of disjoint intervals in I. The
extension of m to m on F(I) is m(E) = Y7_, (bx — ai) for E = U_,I(ay, by), with {I(ax,by)}7_, mutually disjoint.
Now, we want to extend m to a set function that “measures” any subset of R. Suppose £ C R. Then we can find
at least one countable family {I;}?2, C F(I) such that E C U2, I} (take I = R for all k). Since E C U2 I, we

expect the “measure” of E to be < m(U2,I) < > 7" m(I). So, in general, we want

o0
“measure of” E < Zﬁl([k).
k=1



So we should define it as

“measure” of E = inf {Z w(Iy) : {1} € F(I),E C Ulk} .
Note that we do not get anything new by trying to approximate the “measure” from the inside, since if £ C R € F(I),
then the “inner measure of” E is m(R)— “the outer measure of” R\ E.

Definition. Let £ C P(X) be such that 0,X € € and p : € — [0,00] satisfy p(0) = 0. For each E € X, define u*(E) =
inf{>" p(Ex) : {Ex}32, €&, E CUEL} to be the outermeasure of E induced by p.

In general,

Definition. If u* : P(X) — [0,00] is monotone, countably subadditive, and satisfies p*(0) = 0, call u* an outermeasure
on X.

Proposition 27. The set function in the former definition is an outer measure in the sense of the latter definition.

Proof. Clearly, p*(0) = 0. Suppose A,B C X with A C B. Observe that there is at least one collection {Ex}2, C &
such that B C U Ej;. Then A C U2 | Ej. This is true for all covers of B. So p*(A) < p*(B). To show subadditivity,
let € > 0 and {Ax}2; € P(X). Then for all j we can find a sequence {Ej;}32, C & such that Ay C UEj ;. Then
wr(Ag) > Z;i1 p(Ey.;) — €27F. Now U | A), C U, U2, Eg ;. By the definition of p*,

*(UA) <ZZp Ey ;) SZ (Ap) +e27F) < Zu*(Ak)+e.
k=1 j=1 k=1 k=1
Since true for all €, we get p*(UAg) <> u*(Ax). O

Roughly speaking, if pu* were a measure and A C E, then p*(A) + p*(E\ A) = p*(E) if A, E are measurable. Then
P (ENA) +p*(ENAY) = p*(B).

Definition. If u* is an outer measure on X, then a set A C X is called p*-measurable if and only if u*(E) = p*(ENA)+
w(ENAC) for all E C X.

Remark. By countable subadditivity, we already have the < direction as E = (E N A) U (E N A%).

Theorem (Carathéodory’s Theorem). If u* is an outermeasure on X, then the collection of all u*—measurable sets, call

it M is a o—algebra. Moreover, u* is a complete positive measure on M.
Proof. We prove that M is a c—algebra:

1. Let F C X be given. Then
W (E) = 1" (00 B) + u* (X 1 E).

Thus (), X are pu* measurable sets.

2. Suppose A is p* measurable and E C X. Then
pH(E) = p (AN E) + p* (A N E) = p* (A% N E) + p* ((A9)“ N E).

Thus A® is u*—measurable.

3. First, we will show p* is finitely additive on M. Let A, B € M with AN B = and let E C X. Notice

AUB=(ANX)U(A°NB)=(AU(BNB°)U(A°NB)=(ANB)U(ANBY) U (A° N B).



Now

*(ENA)+p (EnA%)

“(ENANB)+u (ENANBY) +u*(ENA°NB) + u*(EN A° N BY)
“(EN(ANB)U(ANBY) U (A° N B)) + u*(EN A% N BY)

= u(EN(AUB))+u*(EN(AUB)°).

o
7
Iz

Y

By the remark, we know < is true, thus we have equality and AU B is u* measurable. Now, let £ = AU B. Then, as

A is p* measurable, we see
i(AUB) = p* (AN (AUB)) + u*(AS N (AU B)) = u*(4) + 1 (B).
Thus p* is finitely additive. Now we want to show that M is closed under countable unions. Let {Ax}7°, C M be

mutually disjoint. For all n, set B, = U}_;A; and set B = U2, A;. Let £ C X. Notice that B, N 4,, = A,, and
B, N Ag = B,,_1. Thus

n
p(ENBy) =p* (ENB, NA) + p*(ENB,NAS) = p*(ENAp) + 5" (ENBy1) = Y p* (BN Ay)

by iterative applications. Since BS D BY, we see

3

W (E)=p*(ENBy) 4+ u* (ENBY) > p*(ENA) + p*(EnBY).

>
Il

Since this is true for all n, we get
> w(ENAL)+p(ENBY) > p*(ENB) + p*(ENBY)
k=1

by countable subadditivity. Thus B = U2, A € M.

Thus M is a c—algebra. By Thm 19, we see that p* is countable on M (as o—algebra implies algebra).
To show p* is complete, let N € M with p*(N) = 0. Let A C N. Notice 0 < p*(A) < p*(IN) = 0. So p*(A) = 0. Let
FE C X. Then
(BN A)+ 1" (BN AC) = (B0 AC) < 1* (B)

as p*(ENA) <p*(N)=0. Thus A € M. O

Example. Let £ = {0, {z}, X} with 2 € X and X\ {z} # 0. Counsider p : £ — [0, 00 defined by p(0) = 0, p(X) =1, p({z}) =
2. Then, by definition p*(0) = 0, p*(X) = inf{} p(4;) : {4;} € Eand X C NA4;} = 1. Let A C X with A # (. Then
p*(A) =1 (as X covers A). What sets are p*—measurable?

e Clearly 0, X are.
e Let A C X such that A # 0. Note that u*(X N A) +p* (XN AY) =1+ 1# 1 = p*(X). Thus 4 is not x*—measurable.

This example shows that M is not generated by £ as € C M. As we shall see, if £ is an algebra, then M is the oc—algebra
generated by £.

Proposition 28. If i is a premeasure on an algebra A C P(X) and p* is the outer measure induced by i, then
1L p'la=p

2. FEwvery set in A is p*—measurable.



Proof. 1. Let E € A. We will show p*(FE) = p(F). Since p*(E) = inf{d ] n(4;) : {4;} € A/ E C UA;}, we see
p*(E) < p(E) (take A; = E and Aj; = 0 for j > 1). Now, let {4;}° C A such that E C UA,. By Lemma 1, the
sequence {B;} C A defined by B; = A; \ W' Ay is such that Bj’s are mutually disjoint and UB; = UA;. We see

oo

G(BjﬁE): UBi|nE= GAj NE=E.
j=1 j=1

j=1

Since p is a premeasure and B; N E C A for all 7,

8

iE) =7 B;nE) ZuB NE) <> Hi(4))
j=1

j=1
Now, since this holds for all {A,}, taking the infimum gives us (E) < p*(E).

2. Let A € Aand £ C X. By definition of u*, for all € > 0 there exists a sequence of A; such that £ C UA; and
p*(E) > 3772, i(Aj) — e. Since fi is additive and AN Aj, AN Aj € A, we see

pi(E) = Yn(4;) -
= (AN ) (A°N4;)) -
= 2 (AN ))+M((ACHA))
= 2p((An ))+Zu((ACﬂA))
= Zu*((AﬂA))+Zu((ACﬂAJ))—

wA((AN(UA))) + p*((A9 N (UA4;))) -
P (AN E) + p*((A° N E)) —

(AVARIVS

Since this is true for all €, we see u*(E) > u*((ANE)) + u*((A° N E)). Thus A € M. 0

Definition. Let A C P(X) be an algebra and i1 a premeasure on A. Then fi is called
o finite if n(X) < oo.
o o—finite if there evists {A;}52, C A such that X = U°A; and pi(A;) < oo.
o semifinite if for all E € A with [i(E) = oo, then there exists A C E such that 0 < ji(A) < oo.
Theorem 20 (p 31). Let A € P(X) be an algebra. Let i be a premeasure on A and M the o—algebra generated by A.
1. Then there exists a measure p on M such that p|a = f.
2. If there exists another measure v such that v| 4 = i then v(E) < pu(E) for all E € M. If u(E) < oo, then v(E) = u(FE).
3. If i is o—finite, then u is the unique extension of @ to M.
Proof. 1. Follows from Caratheodory’s Theorem and Prop 28 if we take y = u* (the outer measure induced by f.)

2. Suppose v is another measure on M which extends . If u(E) = oo, then v(E) < u(E). So assume u(E) < co. Then
for all € > 0, there exists {A4;}72; C A such that u(£) > Zj’;l L(A;) — €. Since v is a measure, v(E) < v(UA;) <
> v(Aj) =3 u(A;) < u(E) + e. Since € was arbitrary, v(E) < p(E). To show v(E) = u(E) if p(E) < 0o, let € > 0
and take {A;} as above. By continuity of measures from above (Theorem 5),

v(Urdy) = lim v(UTAy) = lim p(UpA4;) = p(Ui°A4;).

Now (U A, \ E) = p(U3° A;) — p(E) and u(UR Ay) < 32 p(A;) = S7i(Ay) < u(E) + . Thus u(UA; \ E) < e. So
w(E) < p(UPA)) = v(UPA4;) = v(E) + v(UA; \ E) < v(E)+ p(UA; \ E) < v(E) + €. Since € was arbitrary, we see
v(E) > p(E). Thus v(E) = u(E).



3. If 11 is o—finite, then X = U A; with (A4;) = u(A4;) = v(4;) < co. Let E € M. Consider ENUTA;. By (2), we see
v(ENUTA;) = p(ENUTA,). Thus

V(E)=v(ENUA;) =limv(ENUTA;) =limpu(ENUTA;) = p(ENUTA;) = pu(E). 0

Recall the premeasure pp obtained in Prop 25 where jip|e = pp. By Caratheodory’s Theorem, the p}.— measurable
sets form a o—algebra where py(E) = inf{}_ pur((a;,b;]) : E C U(ay,b;]}. We denote this o—algebra by M, and uj|a,, .
by wpp. This is the extension of pupr on I to all of M. Tt follows that Bg € M, (note that in general this is a strict
containment).

Notes.

1. F is called the distribution function for up.
2. ur is a complete measure on M, (by Caratheodory’s Theorem).

3. The measure pp is called the Lebesgue-Stieltjes Measure associated with F. If F' = x, then up is called the

Lebesgue Measure and M, is called the Lebesgue Measurable sets.
Note that for any £ C M,,,., we define up(E) to be pi(E) as we defined it above.
Fix an F' which is right continuous and increasing.
Lemma 2. For any E € M,,,., pp(E) = inf{>"" ur((a;,b;)) : E C U(a;,b;)}.
Proof. Define v(E) = inf{>_ up((aj,b;)) : E C U(aj,b;)}. We want to show v(E) >! up(E) >2 v(E).

1. Let {(a;,b;)}5° be such that E C U(aj,b;). For all j, let {cx ;}72, be a sequence in (a;,b;) such that ¢ ; increases
up to bj. Then (aj,b;) = (aj, ¢i ;] UV (cr,j, chj+1]- So pr((az, b)) = pr((aj, c14]) + 2277 pr((cr,js cr,j1])- Tt follows
that > 1° pr((aj,b;)) > 77 wr((az, c15])+ 225 wr((cky, crj+1]) = pr(E). Since this holds for all intervals {(a;, b;)}
such that £ C U(aj,b;), we see v(E) > pup(E).

2. Let € > 0. By definition of pup, there exists {a;,b;} such that pr(E) > >~ ur((a;, b;]) — €. Since F is right continuous,
for all j there exists &; such that F(b; +d;) — F(b;) < e277. Since E C U*(a;,b; + J;), we see

v(E) < Ywpr((ag,b+95))
= 2 ir((a),05]) + pr((bs, b + 65))
< wr(E)+e+ Y F(bj +6;) — F(bj)
< pur(E)+ 2e.
Of course, € is arbitrary. Thus v(E) < prp(E). O

Theorem 21. If E C M, then
1. pp(E) =inf{ur(U) : U is open ,E C U} (that is, pp is outer-regular)
2. pp(E) =sup{ur(K): K is compact ,E D K} (that is, pp is inner-regular)

Proof. 1. Let E € M,,,.. By Lemma 2, for all € there exists {(a;,b;)}}° C P(R) such that E C U(a;,b;) and pp(E)
> pr(a;,b;j) — e Since up is subadditive, up(E) > prp(U(a;,b;)) — €. Let U = U(aj,b;), an open set. Then pp(U)

pr(E) + €. Now € is arbitrary and since all open sets are the union of open intervals, we see inf{ur(U)} < pr(E).

VANAY

o
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course, > is true by monotonicity, so they are equal.

2. If E is compact, clearly ur(E) = sup{ur(K) : K C U, K is compact}. If E is bounded, then the closure of E, E, is

compact. Note that it is also measurable as it is a Borel Set. Thus by (1) for all ¢ > 0 we can find an open U such



that E\ E CU and up(E\ E) > pp(U) — €. Note that E'\ U is compact and E\U C E. Since E\U = E\ (ENU),

we have
pr(E\U) = pr(E\ENU)
= up(E)-— uF(Eﬂ U) since E is bounded, up(E) < 0o
= pur(E)—pr(U\ (U\E))
— ur(E) — (V) + up(U \ E) since up(U) < up(E\ E) + € < oo
> pr(E) = pp(E\E) = e+ pup(U\ E)
> pp(E) — up(B\E) — e+ ur(B\ B) = ur(E) — ¢

So for all compact sets E \ U we have up(E) < pup(E\U) + € < up(E) + e Since this is true for all €, we see
pr(E) =sup{prp(K): K C E, K is compact}. If E' is not necessarily bounded or closed, consider E; = EN (j,j + 1].
Clearly U72_
that K is compact, K; C E;, and pup(K;) < pup(E;) < pr(K;) + €27Vl Put H, = = U7__, Kj;. Then Hy, is compact
and H,, C E. So pp(Hy,) < MF( b By =3 e (Ey) < 305, pr(KG) + 3¢ = pp(Hy) + e If pup(E) = +oo,
then lim,, . pp (U, E;) = oo which implies pp(H,) — oo. Then sup{ur(K) : K C E, K is compact} = oco. If
pr(E) < oo, then limy, o0 i (U™, E;) = pup(F). Then there exists N € N such that |ur(E) —upr(UNyE;)| < e. Hence
wrp(Hy) < pp(E) < up(Hy)+4e. It follows, since € was arbitrary, that pup(Hy) — pp(E) and pp(E) = sup{pr(K) :
K C E, K is compact}. 0

E; = E and E; is bounded for all j. Let ¢ > 0. By previous argument, for all j there exists K; such

Theorem 22. If A C R, then there ezists E € Bg such that up(E) = p5:(A) and AC E.

Proof. If pp(A) = oo, let E = R. Otherwise, assume pp(A) < oco. For all j, we may select {(a;x,b;r]}7>, such that
A C UP(ajk, bjk] and p*(A) > Y02, pr((aje, b)) — l, Put B; = (a;,bjx]. Then B; € Bgr and we may assume
pur(Bj) < oo. Then pi(A) > pr(Bj) —% and p(A4) < ,up( i) as A C Bj. Let B = N3, B; € Bg. Then pp(B) =
limy_ oo up(ﬁ{Bj) < limysoo pp(Be) < limpoo uf(A) + Z = up(A). Since A C B; for all j, we know A C B and so
wi(A) < pp(B). Combining these two equations, we get equality. O

Definition. Suppose g is an (M., Br)—measurable function, with pup a Lebesgue-Stieltjes measure. Then fR gdug is called

the Lebesgue-Stieltjes Integral.

Theorem 23. Suppose F' is increasing and differentiable on R. Then

b
/ IX(a,b)dpr = / gF'dz.
R a

Note. If F =z, then up = m is the Lebesgue measure and Thm 23 reduces to [, gX (a,5dpr = ff gdz.
Theorem 24. If E C R, then TFAFE

1. EeM,,

2. E=V\ Ny, where V € Gs = {N°U;|U; is open} and pp(N1) = 0.

3. E=HUN,, where H € F, = {UK,|K; is closed} and pp(N2) = 0.

Proof. Since Br € M,,,., we see that (b) = (a) and (c) = (a). So suppose E € M,,,.. First, suppose pp(E) < co. Then by
Theorem 21, there exists {U;}32; € P(X) of open sets and {K;}52; C P(X) of compact sets such that £ C U; and K; C £
and p(U;)—277 < pp(E) < pp(K;)+277. Put V =nNFU; and H = UPK;. So H C E C V. Then pup(H) < pup(E) < ur(V)
and

pr(V) = L}LIEOMF(ﬂ{Uj) < pp(E) < lim pr(UK;) = pp(H).

Thus pp(H) = prp(E) = pp(V). It follows that up(V\ E) =0 and up(E\ H) =0. Let N; =V \ F and N, = E'\ H. Note
that V € G5 and H € F,. Now suppose pup(E) = co. Consider E; = EN (j,7 + 1] for all j € Z. Follow the argument in
Theorem 21. O



The Lesbesgue Measure is the most commonly used measure on R™. Let £ denote the set of Lebesgue Measurable sets. Note
that £ is complete and is Borel, that is Bg C L.

Theorem 25. If E € L, then E+s = {x+s € Rlz € E},rE = {rz € Rlz € E} € L for all ;s € R. Moreover,
m(E + s) = m(E) and m(rE) = |r|m(E).

Proof. If E is open, then so is E+ s and rE (for r # 0). It follows if E' € Bg, then so is F+ s and rFE for all r, s € R. Denote
m(E + s) by ms(E) and m(rE) by m"(FE) for all E € L. Clearly

ms(I(a,0)) =m(I(a+s,b+38)=({b+s)—(a+s)=b—a=m(I(a,b))

and
m”(I(a,b)) = m(I(|r|a,[r|b)) = [r|b— |r|a = |r|m(I(a,b))

for all intervals I(a,b). Since R is o—finite with respect to mgs, m”, m, our earlier propositions imply that the extension of
ms, m”, m from the left open, right closed intervals to Bg is unique. Thus we see ms(E) = m(E) and m"(E) = |r|m(FE) for
all E € Bg. Suppose E € £ and m(E) = 0. By Theorem 24, there exists V' € Bg and a null set N such that £ = V' \ N. Now
0=m(E) =m(V\N)=m((V)—m(N) =m(V). So V is a Lebesgue null set. Since V' € Bg, we have ms(V) =m(V) =0
and m" (V) = |r|m(V) = 0. By monotonicity and completeness, as E C V, we see ms(E) = 0 =m"(E). In general, if E € L,
then use Theorem 24(3) to conclude E + s,rE € L and ms(E) = m(F) and m"(E) = |rjm(E). O

Example. Let E = QN [0,1]. Then there exists an enumeration {r;}7° of E (since Q is countable). Observe that
m({r;}) = 0. So m(E) = m(n{r;}) = Y. m({r;}) = 0. So this is measure-theoretically small. On the other hand, E = [0, 1],
so this is topologically large.

Now set U; = (rj —e€277,r; +€277) N [0,1] for all j € N. So m(UU;) < Y- m(U;) = > €271 = 2¢. So again, this is set
is measure-theoretically very small. However, we still see WUJ = [0, 1], and so the set is topologically large.

Define F = [0,1] \ (U$°U; N [0,1]). Notice F is compact (and thus F = F). Clearly, F # [0,1], in fact F is nowhere
dense (that is, there does not exist an open interval contained in F'). So this set is topologically small. However, m(F) =
m([0, 1]\ (LU, N [0,1])) = m([0,1]) — m(UU; N [0,1]) > 1 — 2e. Thus this is measure-theoretically large.

Proposition 29. Let C' be the Cantor Set.
1. C is compact, nowhere dense, and totally disconnected. However, C has no isolated points.
2. m(C) = 0.

3. C is uncountable.

Proof. 1. That C is compact follows from the fact that it is a countable intersection of closed sets (and therefore closed)
and clearly bounded (as C' C [0, 1]). For the other properties, we will use decimal expansions base 3, that is for € [0, 1],
we will find a; € Z3 such that z = >77° 24 and write = .ajazas...5. Note that Z;iz Z = 2(1_1% —-1-3)=1,s0

.023 = .13. Now we will apply this to our Cantor Set:

Sy = [03,13]
Sy = [03,.0023] U[.025,.0225] U [.23,.2023] U [.223,.2223]

It follows that C' contains all the points that have only 0’s and 2’s in its base 3 expansion. It seems all be in C, however
this is not the case: ) 5 )

i= Z o= .023 which implies 1€ C
yet it is clear that % is not an endpoint. Now C' has no open intervals as we can always choose a number with a 1 in its
base 3 expansion inside any open interval of [0, 1]. This says C is totally disconnected. To show it has no isolated points,

we will use a particular example (as all other points will follow from there). Consider i = .02023 and z; = .00023.



These are in C and differ by .025 = 2. Now consider x5 = .0200025. ThlS is also in C and 2 —x9 =.0002 = 2. We can

continually do this, finding a sequence {z;} C C such that ; — z; = gi. Then z; — §, Wthh says it is not an isolated

point.
2. Now m(C) = m(NS,) = limm(S,) (we can do that as m(Sy) = 1 < 00). Note that m(Sp) = 1,m(S1) =1— 3 =
2m(Sz)=2—2=35m(S3) =35 — 5 = o, etc. Thus m(S,) = g—: — 0. Thus m(C) = 0.

3. To show C is uncountable, we will show there exists a surjective map C' — [0, 1], as we know [0, 1] is uncountable. For
a;

all z = ) ¢4 with a; = 0,2 (i.e, for all z € C), define f(x) = Y 537, a binary expansion. Now let y € [0,1]. Then

y:Zg—;forsomebjGZQ. Let z = %.Theany. 0

Generalized Cantor Set

Let I be a bounded interval and call J the open o' middle of I. If J is open, then m(J) = am(I) and the midpoint of .J is
the same as I. (Here, we take a € [0, 1].) Inductively define Sy = [0, 1] and S,, to be S,,_1 with the ! middle of each interval
in S,_1 removed. The generalized Cantor set is then C' = NS,,. If {a,}52, C (0,1), then C is compact, totally disconnected,
and uncountable. For n, we see m(S,) = (1 — an)m(Sn—1) = [[7(1 — ;). So m(C) = T[7°(1 — «;). If {a,} are bounded
away from 0 uniformly, then m(C) = 0. If {a,,} go to 0 slowly enough, then m(C) = 0. If {a,,} go to 0 too fast, then m(C) > 0.

Vitali Function, AKA Cantor-Lebesgue Function

Definition (1). The complement of the Cantor Set C in [0,1] is
O =[0,1J\C = [0,1]\ N7ZoSn = UpZi[0, 1]\ S = UFZ; Uaego,2)s Oa

_ | © = (55,00 =
(£,%),00,0) = (35, %), and for a = (a1, ..., a,), we see Oq = (31, ;3" + 3~ +D S0 ;31 + 2. 3= (D),
Now, for x € Oy, define f(z) = 3 and for & € Oy for a # 0, define f(z) = > ,_; 6n%27" + 2~ nt+1) Note that f is

uniformly continuous on 0. Thus let F be the unique extension of f to [0,1] that is continuous. Note F(0) = 0,F (1) =

where {0,2}° = 0,{0,2}' = {(0),(2)},{0,2}> = {(0,0),(0,2),(2,0),(2,2)}, etc and Oy = (3,%),0
(
(

and F' is non-decreasing.

1F(3z) ifo<z <3
Definition (2). Define Fi(z) = q 1 if + <x < 2. Then, for example F(;)=3F(3)=3(G+3F(3)), and
14+ 3F@Br—2) if2<z<l1

solving we get F(§) = 3.

Fact. F is piecewise constant on O, so F' is constant a.e. Also, F is differentiable a.e. and F'(z) = 0 a.e. In fact, F'(z) =0
for all z € O. However, F is not constant as F(0) = 0 and F(1) =

Another Amazing Function

Define ¢ : [0,1] — [0,2] by g(x) = F(z) + 2. Then g is continous and strictly increasing. Also g(0) = 0,¢(1) = 2. So
m(g([0,1])) = 2. What is m(g(0))? Since O = U2, Ugego,2)5 Oa With O, mutually disjoint and g is strictly increasing,
g(0) = UUg(0,). Thus m(g(0)) = >-m(g(0n)) = >_m(Oq) =1 (since Oy, g(04) = Oy +c and m is translation invariant).
So m(g(C)) = m(g([0,11,0)) = m(g([0,

way!).

1])) =m(g(0O)) = 1. So g maps the Cantor Set to a set of measure 1 (in a continuous

2.1 Hausdorff Measure (p 350)

For all § > 0, define & = {E C R" : diam(E) < ¢}, where diam(E) = sup{||z — y|| : =,y € E}. Then, for all p > 0,
define H, 5(A) = mf{Z] 1(diam(Bj))P : {B;}52; C & and A C U°B;}. Note that this is an outer measure. Define the
Hausdorff Outer-Measure H, by H,(A) = hm5_>0+ H,;(A).

Notes.



1. &, C &s, whenever 61 < da. So Hp 5,(A) > Hp5,(A). Thus {H), 5} is increasing and thus the limit exists.
2. You may restrict & (and still get the same results) to E C R™ where E is open or closed (see p 350).
Proposition 30. H, is an outermeasure on R".

Proof. We see that H,, is nonnegative and H, () = 0. If A; C A,, then since H), 5 is an outermeasure, H, 5(A;) < H, 5(A3) <
H,(Az2). Since this is true for all §, take the limit to get H,(A1) < Hy(Az). To show subadditivity, let {A4;}72, C R". As

H, s are outermeasures,
Hp 5(UA;) < ZHpﬁ(Aj) < ZHP(AJ)
Since true for all §, take the limit to get H,(UA;) <> H,(4;). O

Let (X, p) be a metric space. We define p(4, B) = inf{p(z,y) : © € A,y € B}. If p(A,B) > 0, then AN B = (. If
p(A, B) =0, anything may happen.

Definition. Suppose p* is an outermeasure on X. We say that u* is a metric outer measure if p*(AUB) = p*(A) + p*(B)
whenever p(A, B) > 0.

Proposition 31. If u* is a metric outer measure, then every Borel Set is u* measurable.

Proof. Recall that the Borel Sets are generated by the closed sets. Thus it suffices to show all closed sets are p* measurable.
Suppose F C X is closed. We need to show p*(A) = p*(ANF) + p*(A\ F) for all A C X. Recall that “<” follows
from subadditivity. If p*(A) = oo, clear. So suppose p*(A) < oo. If p(ANF,A\ F) > 0, done by the definition. Define
B, ={z € A\ Flp(z,F) > 1}. Now p(B,,F) > L. Since p* is a metric outermeasure, p*(A) = p*(ANF) U (A\ F)) >

w(ANFYUB,) =p*(ANF) + p*(B,). So we need only show lim, e p*(By) = p*(A\ F).

Claim: Let Cy,41 = Byy1 \ Bn. Then p(Cpi1, By) > n(%ﬂ)
Proof: Note that the distance between points in B,, and F is > % and the distance between points in C),11 and F is

1 e O T |
< T So the distance between C,, 11 and B,, is > - T = AT

Now Bapy1 = Cor, U Boy, 2 Cop, U Bog_1. So

p*(Bak+1) > p*(Cox U Bag_1)
*(Cak) + p*(Bak—1)
w(

(

(
*(Cak) + p*(Cop—2 U Bag_3)
k

j=

k

7
1
1
> 1#(023) 1 (B1)
Ej 1M *(Cay).

(AVARAVARLVS

Thus we have pu*(Bagy1) > Z?Zl,u*(C’gj) and it follows that p*(Bag) > Z?:l,u*(C'gj_l). Since p*(A) < oo, u*(B,) <

p*(A) < co. Thus Y 7° p*(Cs;) < oo and Zle 11*(C2j-1) < oo. Since these sums both converge absolutely, >°°2 u*(C;) —
0. By subadditivity of u*, p*(A\ F) = p*(B, U (U32,,C;)) < p*(Bn) + 252, #*(C;). Taking this limit as n — oo, we see

w (A\ F) <liminf u*(B,) < limsup p*(B,) < u*(A\ F).

Thus p*(A\ F) = lim u*(B,). O

Note. For the above proof, we assumed F was closed in order to deduce that U®B,, = A\ F as if z € A\ F, then as F is
closed, we know p(x, F') > € > 0 which implies « € B,, for n > %

Proposition 32. H, is a metric outer measure on R".

Proof. By Proposition 30, we know that H), is an outermeasure. Thus we need only show H,(AU B) = H,(A) + H,(B)
whenever p(A, B) > 0. Let A, B C R™ with p(A, B) > 0. Since H,, is an outermeasure, we already have “<”. To show “>”,
we select & € (0,p(A, B)) and {E;}32; C & such that AUB C UE; and Hy s(AUB) > 37 | (diam(E;))P — e for a given e.



Since § < p(4, B), no E; can intersect both A and B. So we split our covering for AU B into 2 families: {C;}72; (which are
the Fj such that E; N A # () and {D;}32, (which are all the other sets). Then {C;} is a cover for A and {D;} is a cover
for B. Now,
H,s(A) + (diam/(C Z (diam(D Z (diam(E;))? < H, s(AU B) +
= i=1 =1
Now, since € is arbitrary, we have Hp 5(A) + Hp 5(B) < H, s(AU B) < H,(AU B). Again, this is true for all ¢, so letting
d — 0, we see H,(A)+ H,(B) < H,(AUB). O

Corollary 8. All the Borel Sets of R™ are H,—measurable.

Example. The Cantor Set. Define it as Sy = Cp, 51 = C1,1UC 2,52 = C21 UC3 2UC, 3UC, 4 and in general S, = U%k Ck.;
where diam(C} 1) = (3)¥. Since C = NSy, each Sy, covers C. It follows that C C U} Cj 1. So if § = (3)*, we see that

. In2

5 k 0 1fp> 3

— 1 : - — : __ In2
H,(C)= 5£Igl+ H,s(C) < kli)Ing (3p> =<1 if p= 13
oo ifp< L’%

Interestingly, it can be show the inequality is actually equality.

Proposition 33 (p 351). If H,(A) < oo, then Hy(A) = 0 for all ¢ > p. If Hy(A) > 0, then Hy(A) = oo for all ¢ < p. It
follows that
inf{p|H,(A) = 0} = sup{p > 0|H,(A) = oo}.

The Hausdorff Dimension of A is the above number.

2.2 Product Measures

Goal: Given measure spaces (X, M, u) and (Y, N,v), we want to define a measure on X x Y (the cartesian product) such
that the measure of E x F, with E € M and F € N is pu(E)v(F).

Definition. Let {(Xa, Ma)}taca be measurable spaces. The product o—algebra on X = [] X, is the o—algebra

acA
generated by {m;Y(E,) : Eo € My, a € A} where 7 : X — X, is the a'" coordinate map.

Notation. The product o—algebra is denoted by ®qca M.

Proposition 34. If A is countable, then Q@nca M, is the c—algebra generated by {]] E,:E, € M,}.

a€A

Proof. See page 22-23. O

Proposition 35. Let Xi,..., X,, be metric spaces and let X = H? X, be equipped with the product measure (p 13). Then
®1Bx,; C Bx. If each X; is separable, then @{Bx, = Bx.

Corollary 9. Brr = ®7'Bg.

Definition. If E € M and F € N, we call E x F' a measurable rectangle. We denote the set of all measurable rectangles
by R.

By HW3 #3, since M and A and semialgebras, we see R = M X N is a semialgebra. So we can use the Carathéodory

construction to extend it to an algebra:

Theorem 26. Let II : R — [0,00] be defined by II(A x B) = u(A)v(B). Then II is well-defined, countably additive, and
I1(0) = 0.



Proof. Clearly II(#) = 0 and II is well-defined. To show countably additive, suppose we have {A,,}5° C M and {B,}° CN

which satisfy

o U(A, X B,)=Ax B with Ae M and BeN.

o (A, X Bp) N (An x By) =0 if n # m.

Then we need to show II(A x B) = > TI(A, X B,). Note that

xa(x)xs(y) =

By Theorem 7, we see

Now, using Theorem 7 again, we have

ZXA w5, ((z,y)) = Zx ,(@)xB, ().

Jx xa(@)xs(y)du(z)

Jx 220 xa, ()x B, (y)dp(x)
= 21 foA )XBJ(?J) ()
= 21 (]) J(Z/

= [y A y)dV(y)

= fy21 Aj)xa; (y)dv(y)
= X7 fyu )X, (y)dv(y)
= Y1 wA)v(B)).

Thus, by our definition of II, we see II is countably additive. O

Theorem 27. With I1 defined as in Theorem 26,

algebra generated by R.

Proof. Done, by Theorems 19 and 18.

there exists a unique extension of Il to a premeasure II on F(R), the

O

Theorem 28. The premeasure II generates an outer measure II* on X x Y whose restriction to M @ N is a measure

extending I1. Moreover, if p and v are o—finite, then so is II*| peoar and IT* is unique.

Proof. Done, by Proposition 27, Carathéodory’s Theorem, and Theorem 20. O

Notation. We denote IT*| pgn by p X v.

Note that by iterative applications of the above we can define a product measure for any finite number of measure spaces.

In that case, we denote the product measure on M; ® --- ® M,, by H? e

How do we find u x v(E) for E € M QN7

Simple Case: Let E C R? with F = {(z,y) € R%la <z < b, f(z) <y < g(z)}. Then the measure of E is f:g — f(z)dx
Now g — f(z) = meas(E,) where E, = {y € R|(x,y) € E}. So we see

Questions

1. Given FEec Mo N,z € X,is B, ¢ N?

2. Is the function « — v(F,) p—measurable?

w

s puxv(E) = [y v(Ey)du?

4. Can we interchange p and v?

meas(E) :/Rm(E



Definition. If E C X x Y, then for all v € X define the x—section E, = {y € Y|(z,y) € E} and for ally € Y
define the y—section EY = {x € X|(z,y) € E}. If f : X x Y — R, we define the x—section f, and the y—section f¥ as
faly) = Y (x) = f(2,y).

Example. f E=Ax BwithAe Mand BeN then E, =0ifx ¢ Aand E, = Bif x € A.
Proposition 36 (p 65). 1. fE€ MQN, then E, € N for allz € X and EY € M for ally €Y.
2. If f is a (M ® N)—measurable function, then f, is N—measurable and fY is M—measurable.

Proof. 1. Let O be the collection of all E C X x Y satisfying £, € N for all z € X and EY € M for all y € Y. We show

O is a o—algebra:

e Clearly, 0, X xY € O.

e Let E € O. Then E, € N which implies (EY), = ES € N for all # € X as N is a 0—algebra and EY € M which
implies (E¢)Y = (EY)° € M for all y € Y as M is a o—algebra. Thus E¢ € O.

e Suppose {F;}%2; C O. Then (UE}), = U(E;), € N for all z € X and similarly (UE;)¥ € M for all y € Y. This
UE; € O.

Now we observe that all measurable rectangles are in O and since M ® N is defined to be the smallest o—algebra

which contains the measurable rectangles, we see M @ N C O.

2. Suppose E C Bg. Then f~'(E) € M ®@N. By part 1, (f~1(E)), € N and (f~*(E))Y € M. Notice (f1(E)), ={y €
Y:f(r,y) e E}y={ye€Y: f.(y) € B} = f,1(E). Thus f,(E) € N which implies f, is measurable. Similarly, f¥ is
measurable. O

Definition. A subset C C P(X) is a monotone class if it possesses the following properties:
o If{E;}32, CCand Ey C Ey C---, then UPE; € C.
° If{Ej};?‘;l CCand B4 2 Ey D ---, then NPE; €C.

Note. A o—algebra is a monotone class.

Given a subset £ C P(X), there exists a smallest monotone class C(€) containing £. We say C(€) is the monotone class

generated by £.

Theorem 29. M C P(X) is a o—algebra if and only if M is a monotone class and an algebra.
Proof. (=:) Clear

(<:) Suppose M is an algebra and a monotone class. Then

1. 0, X € M as M is an algebra.
2. M is closed under complements as M is an algebra.

3. As M is an algebra, it is closed under finite unions. Let {F;}32, C M. Define Ay := U;?:lEj. Then A;, € M for
all k and A; C Ay C --- . Since M is a monotone class, we see U;-’O:lEj =U Ay € M. O

Lemma (Monotone Class Lemma (p66)). If A C P(X) is an algebra, then the monotone class C(A) generated by A
and the o—algebra M(A) generated by A are equal.

Proof. Since M(A) is a monotone class, we see C(A) C M(A). So it is enough to show C(A) is a c—algebra. By Theorem
29, it is enough to show C(A) is an algebra.

1. Since A is an algebra, §, X € A C C(A).



2. Define € := {F C X|E® € C(A)}. We show £ is a monotone class.
o If {E;}52, C € such that By € Ep C -+, then {E€}%2, € C(A) and Ef 2 E§ D --- which implies (UE;)¢ =
ﬁEjC € C(A) which implies UE; € £.

e Similar
So C(A) C &€ which implies C(A) is closed under complements.

3. We want to show C(A) is closed under finite unions. Define £(F) := {E C X|FUF € C(A)} for all F € C(A). Now,
suppose F' € A. Then A C £(F) as A is an algebra. Continuing under the assumption that F' € A, we want to show
E(F) is a monotone class (as then C(A) C E(F).). So

e Let {Aj}?i1 C E(F) with Ay C Ay C--- . Then {4; UF};?":l C C(A) and of course A;UF C ApUF C --- which
implies (UAi) UF = U(AZ U F) € C(A) Thus UA; € E(F)
e Similar
Now, suppose FE € C(A). Then F € E(F) if and only if FUF € C(A) if and only F' € £(E). Thus for all E € C(A),
we have A € £(E). By the above, £(F) is a monotone class. So C(A) C E(F) for all E € C(A). Thus C(A) is closed

under finite unions.
Thus C(A) is an algebra, which implies it is a c—algebra and thus C(A) = M(A). O
Theorem 30 (p 66). Suppose (X, M, u) and (Y,N,v) are o— finite measure spaces. Let E € M @ N. Then

1. 2= v(E;) and y — p(EY) are measurable in X and Y, respectively.

2. pxv(E) = [ v(E;)du(x) = [y p(EY)dv(y).

Proof. Let £ :={F € M®N : (1),(2) hold}. We want to show & = M @ N, that is £ 2 M ® N. For this, we show & is
a monotone class that contains the algebra F(R). Since M @ N is the o—algebra generated by R, it is also generated by
F(R). So it is the monotone class generated by F(R) by the Monotone Class lemma. Thus, if we show F(R) C £ and £ is
a monotone class, then M QN C &.

First, we assume (i, v are finite measures. Now, if Ax B € R, then z — v((AXB);) = v(B)xa(z) and y — p((AxB)Y) =
#(A)xB(y), which are measurable. Thus property (1) holds for R. For property (2),

/ V(A x B)a)d(z) = / v(B)xa(@)du(z) = v(B)u(A) = j x v(A x B).
X X

and similarly [, p((A x B)Y)dv(y) = p x v(A x B). Thus R € &. Since R is a semialgebra, it is enough to show & is
closed under finite disjoint unions (by Proposition 23) to show F(R) C €. Let E1,Es € £ with E; N Ey = (). Observe
(E1U E3), = (F1)s U (F2), with (E1), N (E2), = 0. Similarly for the y—sections. Thus

1. 2 — v((Ey U Eg)z) = v((E1)z U (E2)z) = v((E1)z) + v((E2),) and similarly y — p((E1)Y) + p((E2)Y), which are

measurable.

2. Since p x v is a measure, we see u X v(Ey U Ey) = pu X v(Ey) + p x v(E2) = [v((E1)z)dp + [v((E2)y)dp =
Jv((Er)z) + v((B2))dp = [v((Er U Es),)dp and similarly g x v(Ey U Es) = [ p((Ey U E2)Y)dv.

Thus & is closed under disjoint unions of two sets and (by induction) thus is closed under finite disjoint unions. Thus

F(R) C €. Now, we need to show £ is a monotone class.

e Suppose {E,}22, CEwith By CEy C -+ . Now, (E1), C (F2)z C -+ and (F1)Y C(Eg)Y C---.So{z— v((En))}n
and {y — p((Fn)Y)}, are increasing sequences of measurable functions. By Theorem 5,

Jim v((En)e) = v <U (En)m> =v ((U En> ) and lim pu((En)”) = p ((U En> ) :



So z +— v((UE,);) and y — p((UE,)Y) are measurable functions (as the supremum of measurable functions is

measurable). For property 2, by the MCT and Theorem 5,

n—oo n—oo

[ B v0) = Jim [ (B = T ox (B = o x (0 En)
Y
and similarly for the z—sections. Thus US2 | E,, C €.

e Similar

Thus, if 4 and v are finite, we see £ is a monotone class containing F(R) which implies M ®@N C £. If y and v are o—finite,

then X and Y are the unions of finite increasing sets, in which case we can use the above with the MCT to get the limit. O
Theorem (Fubini-Tonelli Theorem p.67). Suppose (X, M, ) and (Y,N,v) are o—finite measure spaces. Then

1. (Tonelli) If f € LT (X xY'), then the functions g(x) = [, fedv and h(y) = [y fYdp are in LT (X), LT (Y), respectively
and (%) [x .y f(z,y)d(p x v) = [ [[y fla,y)dv] d/‘ Sy UUx f(a y)d,u] dv.

2. (Fubini) If f € L*(u x v), then g € LY(X) and h € LY(Y) and () holds almost everywhere.

Proof. 1. If f = xg for E € M®QWN, then f, = xg,. So g(x) = [, fzdv = [, X5, dv = v(E,), which is measurable. Thus
g € L™ by Theorem 30. Similarly, h(y) = u(EY) and h € L*. Also by Theorem 30,

[ ratx vy = [xpdncn) = wx o) = [ vmdn= [ [ fav

and similarly [ fd(u x v) = [ [y fY(z)dudv. Since f.(y) = f¥(x) = f(z,y), the theorem holds for all characteristic
functions of measurable sets. If f is a simple function in LT, then it is a finite linear combination of characteristic

functions of measurable sets. Thus, the theorem holds for all simple functions.

If f € L™, not necessarily simple, then we may select {¢,,}32; C LT such that ¢, is simple, 0 < ¢ < g < --- < f,
and ¢n — f pointwise everywhere Clearly, (¢n)e — fo, (dn)Y — fY, and (¢n)s, (¢n)Y are increasing sequences. Define
gn(z) = [y (én)zdv and hy,(z) = [y (¢n)?dp. By the MCT,

Jim g,(0) = [ Jim @) = [ (P = gla)

and similarly lim,, e hn(2) = h(z). We also see that 0 < g1 < go <--- < gand 0 < hy < hg <--- < h. Thus again
by the MCT

//f(x,y)dydp:/ gdp = lim / Gndp = lim / /((ﬁn)wdvdu: lim (bnd(uxy):/ fd(u x v).
XJY X n—oo Jx n—oo Jx Jy =0 JX xY XxY

Similarly [y [ f(z,y)dudv = [ fd(uxv).

2. Follows from applying part (a) to f* and f~ separately (as if f € L', then [ f*, [ f~ are finite). 0

Note. A common way to use this theorem is to use part a in order to use part b. That is, if f is measurable, then
|f] € LT. Then we have [y, |f(z,y)|ld(p xv) = [y [y [f(z,y)ldvdp = [, [ |f(z,y)|dudv and we can show that one of

those integrals is finite to conclude that f € L'. Then, we can use part b.

Definition. The n—dimensional Lebesgue measure m™ is the completion of (R", L& ---® L,m X --- x m). The domain of

m’ﬂ

is L™, the class of n—dimensional Lebesque measurable sets.
Remarks.

1. Often, the superscript n is dropped. For example, just write (R, £,m) for (R™, L™ m™). Integrals with respect to the

Lebesgue measure are usually written as fRn fdx instead of fR,L fdm.



2. By Theorem 8 (1.9 in Folland), if N' = {N € Bgn : m(N) = 0}, then L" = {EUF : E € Bgn, F C N for some N € N'}.
3. If {E;}7_; € L C P(R), then m”(l_[?:1 E;) = H?Zl m(E;).

IftE= H?=1 E;, then we will refer to each E; as a side/edge of E. Recall that EA F = (E\ F) U (F \ E). Let
R ={ITi=1 Bx : {Ex}imy S LS PR)}.

Theorem 31 (2.41 in Folland). Suppose E € L™. Then
1. m(E)=inf{m(U) : E CU and U is open}.
2. m(E) =sup{m(K): K C FE and K is compact}.
3. E=V\ Ny, where V is a G5 set and m(Ny1) = 0, where G5 = {ﬂ?‘;lUj : Uj is open}.
4. E=HU Ny, where H is an F, set and m(Nz) = 0, where F, = {U52,D; : D; is closed}.
Note that this is just the n—dimensional version of Theorem 21 (1.18 in Folland) and Theorem 24 (1.19 in Folland).

Proof. 1. Recall that m is the restriction to £™ of the outer measure m* which is induced by [;_; Ax — [, m(Ax).
Thus for a given E' € L™, we have m(E) = m*(E ) inf{>>72, m(E;) : {E;}32, CR,E CUX,E;}. Let e € (0,1). Then
there exists {7} };=1 C R such that &2 C U2, T}, and Z 2 m(Ty) < m(E)+ %e. Set Qo = {[Tr_;[an, ar+1) : ay € Z}.
Notice that this is a countable collection of rnutually disjoint sets such that Ugeg,@ = R™. Let {Q,}2; be an
enumeration of Q. Let j € N be given. We have that T} = U22,Q, NT; = U2, Q, N[[ E;, where {E;;}7_; C
L C P(R) (that is, they are the one dimensional edges of T}). Let r € N be given. Since Q, = [[,_;[ax, ar + 1)
for some {ay}}_; C Z, we conclude Q, NT; = [[;_,lak, ar + 1) N E; . Now [ag,ar + 1) N E;r € L C P(R), so by
Theorem 21, for all & = 1,...,n, there exists F,;r C R that is open and satisfies F, j, 2 [ak,ar + 1) N E;; and

m(Fy ;1) < m(lag, ar +1) N E; ) + 2" €27"J. It follows that @, NT; C [[_, Fy .k, which is open and

m (H Fr,j,k:) = Hm ,jk < H (m ak,ak—l—l)ﬂEj k)+2Te2_7 J)

k=1
1

- H(m([ak>ak+1)ﬁE 0+ g ) T (oo D0 B + e )

k=1 k=2

= kl;[l {m(la,ar +1) N Ej 1)} kl;IQ {m([ak,ak +1)NEj.) + 2%62—7- ]}

§ {m([ak, ar+1) N Byp) + 5 EQH}
k=2

1
1 .
< H {m(lag,ar + 1) N E; 1)} {m (lak,ax + 1) N E; k) + ne2rj}
Pl 2nn,
n 1

2 1

< H {m(lax,ar +1) N E; 1)} 1:[ {m([ak,ak +1)NE;;) + 2762—r ]}
—|—L€2_T “Im(lar, a1 +1) N E;1) ﬁ m([ag, ar +1) N E; 1) + Le2_r_j
amn ’ ’ 7 2"n

=3
1 , 1 A
—e27 (14 —e2777
+n2"€ < + 2"n€ >



2 n
1
< U ak,ak—kl ﬁEJk H{ ak,ak—kl)ﬂEJ"k)—&—ﬁtﬁ J}
1 1 n=t

2 2 I (1 €277

AT ( T o )
< ﬁ m([ag,ar +1) N E; k) +n idfrfj 1+ idfrfj "
T o I 2nn 2nn

- 1 —r—j 1 —r—j ! n—1
< m([ak,ak—&—l)ﬁEj’k)—i—ieZ Tas |1+ 2—62 J <2

"n

k=1

= m(Q,NTj)+ %eQ‘“j

Thus for all r,j € N, there exists an open set of the form [] F,.;x such that Q NT; C [[F,;r and m([[ F k) <
127777 Now, for all j set U; = U, [[7- | Fj k. So T; C U;, with U; open and

m(Qr N T]) +

m(Uj) Z:i1 m(HZ:l Fr,j,k)
St (m(Qr N'Ty) + 5€27777)
m(Us2,Qr NTj) + 3€279 577 27

m(Tj) + 3€277

INIAIA

Set U = Uj2,Uj, so U is open and £ C U2,

T, C U andm(U) < 5%, m(U

) < S (m(Ty)+5e2d =370 m(Ty) +

1e <m(E)+e. Since € € (0,1) was arbitrary, we’re done.

2. Follows exactly from Theorem 21b (1.18 in Folland)
3. Follows exactly from Theorem 24 (1.19 in Folland)

4. Follows exactly from Theorem 24.

For each k € Z, define Qp = {T[}_,[a;27", (a; + 1)2~

*]:a; € Z}, the set of n dimensional dyadic cubes.

Remarks.

e For each k € Z, R" = Ugeor Q.

o If Q1 € QF and Q2 € Q} with k < ¢, then either Q2 C Q1 or Q2N Q1 = 0.

o If Q € QF, then m(Q) =27+,

, then there are exactly

¢ IfQeQy

2(k=6n glements of Qy contained in Q.

Lemma 3. Let U C R™ be an open set, then there exists a countable collection of disjoint dyadic cubes {Q,}22, € U2 Qk

such that U = U2, Q.

Proof. See Rudin.

O

Theorem 32 (2.40c in Folland). Suppose E € L™ and m(E) < co. Then for all € > 0, there ezists a finite collection {Q, }1_,
of disjoint dyadic cubes such that m(E A UN_,Q,) < e.

Proof. By Theorem 31a (2.40a), there exists an open set U C R™ such that m(U) < m(E) + je. By Lemma 3, there exists

a collection {Q,}52, of disjoint dyadic cubes such that U = US®

IQT Then Zr 1 m(QT) - (

> m(Qy) is absolutely convergent, there exists an N € N such that Y77 ., m(Q,) < 3e. Thus
m(E AU, Q) m((E\UL,Qr) U (UL, Qr \ B))
= m(E\UT 1QT)+m(UN 1@\ E)
< mU\UYL,Q,)+m(U\ E)
= m(U) - ZT Q) +m(U) —m(E)
< m(E)+5e=30m(Qr) + 27 vy m(Qr) +m(U) —

) < m(E) + e < oco. Since

m(E) =e.



Theorem 33 (2.42 in Folland). The n—dimensional Lebesgue measure is translation invariant. To be more precise, for all
a € R", define 7 : R" — R"™ by 74(x) = x + a. Then

1. If E € L", then 7,(E) € L™ and m(7(E)) = m(E).

2. If f : R™ — C is Lebesgue measurable, then so is f o 7,. Moreover, if either f > 0 is real valued or f € L'(m), then
Jgn [oTadm = [, fdm.

Proof. Key Observation: Suppose A is a Borel measure on R™ and there exists a constant ¢ such that A(Q) = cm(Q) for
all dyadic cubes. Then, by Lemma 3, A(U) = .72, A(Q,) = > o0 em(Q,) = em(U) for all open sets U C R™. Thus
AME) = em(FE) for all E € Bgn.
We will prove 1. Fix a € R™ and define A : Bgn — [0,00] by A(E) = m(7,(E)). It is easy to verify X is a Borel measure.
Let @ be a dyadic cube. Then 7,(Q) is still a dyadic cube and has the same volume. Thus A(Q) = m(Q). By the Key
Observation, (x) m(7,(E)) = AMFE) = m(E) for all E € Bgn. Of course, we want to show this for a general F € £". If
N € L™ and m(N) = 0, then by Theorem 31(3) (2.40b), there exists V' € Bgn such that N C V and m(V) = 0 by (x). Since
m is complete, it follows that 7,(N) € L™ and m(7,(N)) = 0. In general, if E € £, then by Theorem 31(4), there is an
H € Bgn and a null set N € L™ such that E = HUN, so 7,(E) = 7,(H) U7,(N) € £". Thus the translation of a Lebesgue

measurable set is still Lebesgue measurable. Furthermore,

m(E) = inf{m(U)|U is open and E C U}
inf{m(7,(U))|U is open and E C U}
= inf{m(U)|U is open and 7,(E) CU}
= m(ra(E))

Thus, we conclude m(7,(E)) = m(E) for all E € L™. O

Theorem 34. Suppose p is a Borel measure satisfying u(r,(E)) = w(E) for all E € Bgrn and a € R™. Suppose also
w(Qo) < oo for some unit dyadic cube. Then p(E) = u(Qo)m(E) for all E € Bgn.

Proof. Since p(7,(Q)) = p(Q) for all a € R™ and dyadic cubes @), we may assume that Qo € Qf. Let Q € QF for some
k€ N. Now Qp = U2 1QT for some family {Q, }2_ 1 C QF, where u(Q,) = u(Qs) for all 7,5 = 1,...,2"%. Thus u(Qo) =

M(Uzikl BES ZEZ w(Q) = 2" u(Q). Thus u(Q) = 27" u(Qo) = m(Q)u(Qo). By the Key Observation, u(E) = u(Qo)m(E)
for all £ € Bgn. O

Corollary 10 (11.20 in Folland). If H, is the p—dimensional Hausdorff measure on R", then there is a constant jp, > 0
such that Hy(E) = j, nm(E) for each E € Bgrn (we assume p > n).

o Ifp=mn, then jp, = Hp(Qo) = m(lB) where B is a ball of radius 1.

o Ifp>n, then j,, = 0.

Theorem 35. Suppose that T : R™ — R"™ is a linear transformation (that is, T(ax + by) = aT'(x) + bT(y) for all x,y €
R™ a,b € R). Then there exists a number 6 < oo such that m(T(FE)) = om(E) for all E € L™.

Proof. If the dimension of the range of T' is less than n then m(T(R™)) = 0 which implies m(T(E)) = 0 for all E € L™, so
we have 6 = 0. If the dimension of the range of T' is n, then T' can be represented by an invertible matrix. In particular,
T~ exists and is also linear (and thus continuous). It follows that T~! is a Borel measurable mapping. Thus T'(E) € Bgn
whenever E € Bgn. Define p : Brn — [0, 00] by u(E) = m(T(E)). Since T is linear, it is easy to verify that u is a measure.
Let a € R™ by given. Then u(7o(E)) = pla+ E) =m(T(a+ E)) = m(T(a) + T(E)) = m(T(F)) = u(E) (as m is translation
invariant) for all E € Bgn. By Theorem 34, u(E) = pu(Qo)m(E) for all E € Bgr with Qg a unit cube.

For the general case where E € L™, use essentially the same argument used at the end of the proof for Thm 33. O



2.3 Signed Measures and Differentiation
Major Goal: Develop a theory of differentiation for measures.

Suppose that g € C1(R) with g(0) = 0. Then by the Fundamental Theorem of Calculus, there exists f € C(R) such that
g(z) = fom f(s)ds. (Here, of course, f = ¢g’.) We want to do something similar for measures:

e Suppose that p, v are measures on a o—algebra M. When is it true that there is a M —measurable function such that

for each A € M, v(A) = [, fdu? In some sense, f is the derivative of v with respect to .
To develop an answer to this question, we extend our notion of measures to signed measures.
Definition. Let (X, M) be a measurable space. A signed measure on (X, M) is a function v: M — [—o00, 00| such that
o () =0.

e v assumes at most one of the values £0o, that is, if there exists A € M such that v(A) = oo, then there does not exist
B € M such that v(B) = —oc.

o if {E;}52, C M are mutually disjoint sets then v(U32, E;) = Z;i1 v(E;) and Z;i1 |v(E;)| < oo whenever | Z;i1 v(E;)| <

Q.

Remark. Since countable unions are invariant under rearrangement, if | Z;’il v(E;)| < oo, then one can show Z;’il V(E;)| <

Q.

Examples.

1. Suppose «, 3 € R and p1, o are positive measures on M such that either puq(X) < oo or us(X) < 0o. Then apy + Bus
is a signed measure. [The condition that one must be finite is to prevent ap; + Bus from taking on values of both
+00.]

2. If f € L' () where 1 is a positive measure on M, then the function v : M — (=00, 00) defined by v(A) = [, fdu is a

signed measure.
Proposition 37 (3.1). Let v be a signed measure on (X, M).
1 If{E;}52 CMand By C Ey C - -+, then v(U32, Ej) = limj o0 v(E)).
2. If {E;}32, S M and By 2 Ey D -+ and [v(E1)| < oo, then v(N52, Ej) = lim; .o v(E}).

Proof. This is similar to the proof for Theorem 5 (1.8 in Folland). Thus we will prove only (1). If there exists N € N such
that |v(En)| = oo, then for all j > N v(E;) = v(E;\ Ex)+v(EN) = v(En) = oo by property 3 of the definition of signed
measures. Thus [v(E;)| = oo and lim; . v(E;) = +oo. Also, v(U2, E;) = v(U2, E; \ Ex) + v(EN) = 00 = v(EN) =
lim U2, v(E}). So we may assume |v(E;)| < oo for all j € N. Define {F;}32; C M by Fy := Ey and Fj := Ej \ Uf;llEk for
all j > 2. Then by Lemma 1, (U2, E;) = v(U32, F)) = Zjoil v(F}). For each j > 2, we see v(E;) = v(Fj) + I/(Ufc;llEk) =
v(F;) +v(Ej-1). Since |v(Ey)| < oo, this says v(F;) = v(E;) — v(E;j_1). Thus we have
V(U2 By) = ) v(Fy) = v(B) + ) v(E)) — v(Bj_1) = lim v(E)).
j=1 j=1 e O

Definition. Suppose v is a signed measure. A set E € M is called

1. positive if v(F) > 0 for all F C E such that F € M,

2. negative if v(F) <0 for all F C E such that F' € M,

3. null if v(F) =0 for all F C E such that F € M,



Lemma 4. Suppose {P; };";1 C M are positive sets with respect to v. Then U2, P; is also positive.

Theorem (Hahn Decomposition Theorem- p.86). Suppose v is a signed measure. Then there exists a positive set P
and a negative set N such that X = PUN and PNN = (. Moreover, if P', N’ are another such pair, then PAP' = N AN’

are null sets.

Proof. WLOG, assume v(A) < oo for all A € M (if not, work with —v). Put M = sup{v(P) : P is positive}. Then there
exists {Pj}‘;';l C M such that each P; is a positive set and lim;_,o, v(P;) = M. WLOG, assume P; C P, C --- as otherwise
we can just use s; = U;_, Py where still v(s;) — M. Set P = U2, P;. Then by Proposition 37, v(P) = lim; ., v(P;) =
M < o0o0.Set N =X\P.

Claim: N is a negative set.
Proof: Suppose not. Then there exists A € M such that A C N and v(A) > 0.
Subclaim: There exists a positive set E such that F C A and v(FE) > 0.

Proof: If A is a positive set, done. Otherwise, there exists C € M such that C C A and v(C) < 0. Put
L =inf{v(C) : C € M,C C A} < 0. Let n; € N be the smallest such integer such that L; < —n%. Then there
exists C; € M such that C; C A and v(Ch) < —n%. Set Ay = A\Cy. If A, is a positive set, done. Otherwise, there
exists C' € M such that C C A and v(C) < 0. Put Ly = inf{v(C) : C € M,C C A1} < 0. Let ny € N be the least
such integer such that Ly < —n—12. Then there exists Cy € M such that Co C Ay and v(Cs) < —n—lz. Set Ay = A;\Co
and continue inductively to get sequences of sets {A;}22,,{C;}32,, and positive integers {n;}32, such that for
j > 2 we have C; C A;_q and for all j € N, v(C)) < fn%. Notice v(A;) > v(A)+ > 9_, nik Put B = N5, A;.
Since A; D Ay D -+ and v(A;) < 00, by Proposition 37, we have v(E) = limv(Ay) > v(A)+> ro i > 0. Since
v(E) < oo, we have Y i < oo and thus ny — oo as k — o0o. Now, suppose F is not a positive set. Then there
exists C' € M such that C C F and v(C) < 0. Since ny — oo, there exists ko such that v(C) < ——1—. Since

Ngg—1"

CCEC ﬂ?io{lAj C Apy—1 and Ly, = inf{v(C) : C € M,C C Agy_1}, we see Ly, < ——L—. But ng, — 1 < ng,

Nkg—1"
and ny, was chosen to be the smallest integer, a contradiction. Thus E is a positive set and v(E) > v(4) > 0.

By the subclaim, if N was not a negative set, then there exists a positive set F such that v(E) > 0. But this contradicts
the fact that v(P) = sup{v(P) : P is a positive set} as P U E is a positive set with v(P U E) > v(P). Thus N is a

negative set.

If P', N’ is another such decomposition, then P\ P’ C P and P\ P’ C N'. Thus v(P \ P’') = 0. Similarly for P’ \ P and
thus P A P’ is a null set. O

Definition (p 87). Any decomposition of X into a positive set P and a negative set N (that is, PUN = X and PNN =0)

18 called a Hahn Decomposition.

Definition (p 87). Suppose that u and v are signed measures on (X, M). We say p and v are mutually singular, denoted
w L v, if there exists a set E € M such that E is a null set for u and X \ E is a null set for v. We also say p is singular

with respect to v and vice versa.

Example. Suppose m is the Lebesgue measure and v any discrete signed measure, that is, there exists a countable set

K C R™ such that R™ \ K is a v—null set (for example, the counting measure on Z). Then m L v. (since m(k) = 0)

Example. Put D = {(z,y) € R?*[z = y}. Define v : Bgz — [0,00] by v(E) = m({x € R: (z,2) € E}). Then m|p_, (D) =0
and v(DY) = 0.

Theorem (Jordan Decomposition Theorem p.87). If v is a signed measure on (X, M), then there exist unique positive

measures v+ and v~ such that v =vt — v~ and vt L v~

Proof. Let P, N be a Hahn Decomposition for v. Define v™,v~ : M — [0,00] by v (E) =v(ENP) and v~ = —v(E N N).

Its easy to check v+, v~ are positive measures. Also v L v~ as PN N = (). Finally,

V(E) =v((ENP)U(ENN)) =v(ENP)+v(ENN) =vH(E) — v (E).



To show uniqueness, suppose there exist mutually singular positive ™, 4~ such that v = p+ — p~. Since u™ L p~, there
exists £ € M such that u~(E) = p*(E®) = 0. Now, for any A € M such that A C X\ E, v(A) = pT(A)—p~(A) = —pu~ (A)
by monotonicity. So X \ F is a negative set and similarly E is a positive set. Thus E, X \ E is another Hahn Decomposition
of v which implies v(E A P) = v(E¢ A N) = 0. Let A € M be given. Then

pt(A) = pH(ANE)=v(ANE) = v(AN((E\P)U(PNE)))
= v(ANE\P)+v(AN(PNE))
= v(ANE)NP)=vT(ANE).

Also
vI(A)=vT((ANE)U(A\E)) = v (ANE)+vT(A\E)
= vI(ANE)+v((A\E)NP)
vI(ANE)as (A\EYNPCEAP. O

Definition. The decomposition of a signed measure v into a difference of two positive mutually singular measures v, v~
is called a Jordan Decomposition. The positive measure v is called the positive variation of v and v~ is called the

negative variation of v. The total variation of v is defined by [v|(E) = vT(E) + v~ (E) for E € M.
Note. This is a generalization of bounded variation.

Remarks.

—

. |v] is a positive measure on M.
2. A e M is anull set for v if and only if it is for |v|.
3. If v is a signed measure on M, then v | p if and only if |v| L p if and only if v* 1 pand v= 1 p.
4. If P, N is a Hahn Decomposition for v, then v(A) = vt (A)—v~ (A) = |[v|(ANP)—|v|[(ANN) = [, p d|v|— [,y 1dIv| =
fA Ixp — xnld|v]|.
Definition. Suppose v is a signed measure on (X, M). We set L' (v) = L*(v")NL' (v™) and define [ fdv = [ fdvT—[ fdv~
for f e L' (v).
Example. Define f € C®(R) by f(x) = 22 + 2. Define §y,6; : Bg — [0,00] by §(A4) = 0ifi ¢ Aand 1ifi € A. Put

v =m — dp — 61. This is a signed measure on Bg as dy + J; is finite. Notice

1 1
dv = dm — ddy — dé, = —a3 b —0=-
[0,1) / /[0,1) fdm [0,1) fdoo [0,1) fon 3" 20— £(0) =0 3
(as 1 ¢£10,1)) but
fav =5~ f(0) ~ F(1) = .

(0,1]

2.4 The Lebesgue-Radon-Nikodym Theorem

Definition. Suppose v is a signed measure and p a positive measure on (X, M). We say v is absolutely continuous with

respect to p, denoted v << p, if v(E) = 0 whenever u(E) = 0.

Remarks.
o If v << p, then each null set for p is a null set for v.
e v << pif and only if |[v| << p if and only if v+ << p and v~ << p.
o If v << pandv L pu, then v =0.

Examples.



1. Suppose f € L*(u) and define v : M — (—o0,00) by v(E) = fE fdu for all E € M. Then v << p.

2. Recall the dirac measures &g, 1. Then 6y << dy + 1 and §; << dg + d1, but §y + 41 is not absolutely continuous with
respect to dg, I1.

Theorem 36 (3.5). Let v be a finite signed measure and let p be a positive measure. Then v << p if and only if for all
€ > 0 there exists § > 0 such that |[v(F)| < € whenever u(E) < 4.

Proof. If the € — ¢ condition holds and p(E) = 0, then for all € > 0, we have |v(F)| < e. Thus v(E) = 0. Now suppose
v << u, but there exists e > 0 such that for all 6 > 0 there exists F € M such that |v(E)| > € and pu(E) < 6. Then for
all n € N, find E,, € M such that u(E,) < 57 yet [v(E,)| > e. Set F = liminf; o E; = N5, UpZ; Bk So for j € N, we
have 0 < pu(F) < p(URZ,; Ey) < Z:o:] 7 = g7=r. Since this holds for all j € N, we have p(F) = 0. Since v << p, [v| << p

21
and thus [v|(F) = 0. Observe [v|(U2; Ex) < 0o and UR2 By 2 UR2 ;. Ey. Since |v] is a positive measure, Theorem 5 gives
0= [v|(F) = limj o0 [V|(URZ; Bk) = limj 0 [V|(E;) > limy o [V(Ej)| > €, a contradiction. O

Corollary 11. If f € L'(u), then for all € > 0 there exists 6 > 0 such that | [, fdu| < € whenever p(A) <.

Notation. If v(E) = [}, fdu for E € M we write g—z for f. Also, write dv for fdpu.

Lemma 5 (3.7). Suppose v, u are finite positive measures. Fither v L u or there exists € > 0 and E € M such that u(F) > 0

and E is a positive set for v — ep.

Proof. For all n € N, let A,, be the signed measure v— %u and P,, N,, be a Hahn Decomposition for A,. Set P = US2 P,, N =
N2 N,,. Note N = X\ P. We see N is a negative set for all A,,. Thus 0 > X,,(N) = (v— 1 1)(N) which implies 2 u(N) > v(N).
Taking the limit as n — oo, since v is a positive measure, ¥(N) = 0. If P is a null set for px, then v L u. So suppose P is not
a null set for p, that is, u(P) > 0 (since p is a positive measure). Then there exists ng € N such that u(P,,) > 0 and since
P, is a positive set for A,,, the lemma is proved (that is, take E = P,,). O

Theorem (Lebesgue Radon Nikodym Theorem- p.90). Let v be a o—finite signed measure and p be a o—finite positive
measure. There are unique o—finite signed measures A, p on (X, M) such that X\ L p, p << p and A\+p = v (this is called the
Lebesgue Decomposition of v and ). Moreover, there exists an R—valued p—integrable function f such that dp = fdpu.

Any other such function is equal to f p—a.e.
Note. By p—integrable, we mean either [ fTdu or [ f~du is finite.

Convention: If v is a signed measure, we may refer to dv as a signed measure, but we are actually referring to E — || pdv.

Proof. Step 1: First, we will assume y, v are finite positive measures. Set F = {f € L'(u) : [, fdp < v(E) for all E € M}.
Note that 0 € F, thus it is non-empty. Also, if f,g € F, so is the function z — maz{f(x),g9(x)} as if A = {z €
X|f(z) > g(x)}, then for E € M [, max{f(x),g(x)}dp = [z, fdp+ [ 49dn < v(ENA)+v(E\ A) = v(E). Put
a :=sup{ [y fdu : f € F} so that a < v(X) < oco. We may select {f,}n2; C F such that lim,_. [ fndp = a. For each
n € N, define g, = max{fi, ..., fn}. Then {g,,}3°; C F is an increasing sequence. Define f : X — R by f(z) := sup, ey fu(2).

Claim: f € F.
Proof: Observe g, — f pointwise and g; < go < --- < f. By the Monotone Convergence Theorem, for all £ € M,
S5 fdp =lim, oo [ gndp < v(E). Then f € F.

Note that [, fdu = a.

Claim: The measure dA = dv — fdu is singular with respect to p.

Proof: Note d) is a positive measure as v(E) — [ fdu > 0 for all E € M. Suppose A was not singular with respect to
p. By Lemma 5(3.7), there exists € > 0 and E € M such that u(E) > 0 and A(A) — ep(A) > 0 for all A € M with
A C E. This implies for all A € M that eu(ANE) < MANE) =v(ANE) — [,z fdu. Thus [,{f + expldp =
Jafdp+en(ANE) < [, fdu+v(ANE) = [, p fdu = fA\E fdu+v(ANE) < v(A). Therefore, f + exp € F but
Jx f+expdp = [ fdu+ eu(E) > [ fdu, a contradiction. Thus A L p.



For uniqueness, suppose there exists A, p/, f/ satisfying the conclusion of the theorem. Then dv = d\ + fdu = dN + f'du
which implies d\ — d\ = (f' — f)du. Since A L pand X L p, we see A — X L p. Also, since f'duy << dp and fdp << du
we have (f' — f)du << dp. This implies that A — ) is singular and absolutely continuous with respect to p which says
A—=X =0. Now, [, |f— f'|[dn =0 and thus by Proposition 14 (2.23), f' = f u—a.e. Thus, the theorem is proved when s, v
are finite positive measures.

Step 2: Now, assume p,v are positive o—finite measures. We may find a sequence {4; }‘;‘;1 C M of mutually disjoint
sets such that U2, A; = X and v(4;),u(A;) < oo. For each j € N, define the positive finite measures v; and j; by
pi(E) = u(E N A;) and vj(E) = v(E N Ay) for all E € M. Apply Step 1 to each pair (u;,v;) to obtain {A;}32; of signed
measures and {f;}52, of u;—integrable functions (in fact, in L'(y;), since p;(X) < 00) such that for all j € N, A; L p;
and dv; = dX\; + fidu;. Since p;(X \ A;) = 0, WLOG, assume f; = 0 on X \ A;. Also, observe for all E € M such that
E C X\ Aj we have \;(E) = v;(E) — [ fidu; = 0. So X \ A; is a null set for \;. Put A:= 3772, Aj, f:= 372, f;. Then it
can be shown A\ | v and dv = dX + fdpu. Also, A and fdu are o—finite.

+ +

Step 3: If v is a o—finite signed measure, then v = v — v~ where v, v~ are o—finite positive measures. Apply Step 2

to vT and v~ separately and take the difference of the results. O

Definition. The function f in the Lebesgue-Radon-Nikodym Theorem is called the Radon-Nikodym derivative of v with
respect to p. It is traditionally denoted by 4 dv and if v << u then dv = g—;du.

Example. Let v be a o—finite signed measure on (X, M). We see v << [v|. Also, we observed v(E) = [ [x, — xn]d|v|

where P, N is a Hahn Decomposition of v. Thus xp — xn is the Radon-Nikodym derivative of v with respect to |v|.

0 if x <0,
Examples. Let F: R — R be given by F(z) =¢(3—¢ % if0<xz<1 Thus F is nondecreasing, right continuous. So

4—e® ifl1<z<oo.
there exists a Lebesgue-Stieltjes measure pp with F' as its distribution. What is the Lebesgue Decomposition of pp with
respect to m? Note that m({0}) = 0 but pur({0}) = pr((—00,0] \ (—00,0)) = 2. Also, m({1}) = 0 but ur({1}) =

0 if x <0,

Then there exists a singular measure on {0,1}. Define G : R — R by G(z) = Notice fo s)ds is 0
e if0<z <oo.

if z <0and —e*+1ifz > 0. So define p : Bg — [0, 00] by p(E) = [, G(x)dx. We see that pp = p+259+6; and jﬁl = G(x).

Expansion of discussion on p 106

Definition. Let (X, M) be a measurable space such that {x} € M for all x € X. Let v be a signed measure on (X, M). We
say x € X is an atom of v if v({x}) # 0.

Definition. Let (X, M) be a measurable space such that {x} € M for all x € X. Let v be a signed measure. Then,
o We say v is continuous if v({x}) =0 for all x € X.
e We say v is discrete if there exists a countable set k C M such that |v|(k€) = 0.
Definition. Let (X, M) be a measure space such that {x} € M for all x € X. For each x € X define the dirac measure
1 ifxekE,

concentrated at x by 6, = for all E € M.
0 ife ek

Examples.

e The Lebesgue measure, the 0 measure, and all Lebesgue Stieltjes measures with continuous distribution functions are

continuous.
e The 0 measure and the dirac measures are discrete.

e There exist measures which are neither continuous nor discrete. For example m + dg.



Proposition 38. Let (X, M) be a measurable space such that {x} € M for all x € X. Let v be a o—finite positive measure
on (X, M). Then there exist c— finite positive measures v, and vq such that v. 1 vg, v = v, + v, v, is continuous, and vq

is discrete.
Proof. Step 1: Assume v is finite.

Claim: v has only a countable number of atoms.

Proof: Let F € M be a set consisting of a countable number of atoms. Then v(F) = Y _.v({z}) < v(X) < oo.
Put o :=sup{d_ cpv({z}) : F € M and F' is countable}. Then a < oo and there exists a sequence {F,};2; € M
such that each F, is countable and a = lim, .o ) ,cp v({7}). Set F' = U2 F,. Then F' is countable and o =
> werV({z}). If there were an uncountable number of atoms for v, then there would exist xo € X such that z¢ is an

atom but xg ¢ F. But then F' U {z¢} would be a countable set where v({z}) > a, a contradiction. Thus

z€FU{zo}
there exists a set k = {atoms} which is countable.

Define vq : M — [0,00) by vg(E) = >, v({z})0:(E) for all E € M. Put v. = v — v4. Clearly, v, is countably additive

as v and vg are and v.(0) = v(0) — vq(B) = 0. To show v, is non-negative, let £ € M. Then v.(E) = v(E) — vy(FE) =

VENKY)+v(ENk) —va(ENKY) —vg(ENk) =v(ENKY) + 3 cprnv({2}) = X ocpan v({z}) = v(ENEY) > 0 (since

0 =1 for all z € ENk). Thus v, is a positive finite measure. Need to show v, is continuous. Let € X be given. Then

ve({x}) = v({z} Nk%) = 0. Since v. = v(EN k) and vy = v(E Nk), clearly v. | vy. We leave uniqueness as an exercise.

Step 2: Extend to o—finite measures. (Again, an exercise). O

Theorem 37. Let (X, M) be a measurable space such that {x} € M for all x € X. Let pu be a o—finite positive measure

and v a o—finite signed measure. Then there exist unique o— finite signed measures Vye, Vse, and vq such that
1. Vge << Uy Vse L pand vy L p.
2. Vs 18 continuous, vq is discrete and v, 1 vg.
8. V="V4+ Vse + V4.
Proof. Use Lebesgue Decomposition for part (1), then use Jordan Decomposition and Proposition 38 for the rest. O

Example. Let m be the Lebesgue measure on R. Define v : £ — [0,00] by v(E) = m(E) + 6o(E) + §1(E). Define

p: L —1[0,00] by p(E) =3 cpan 1 Then vye = 61, v5c = m,vg = dp and dg—zc = % = X{1}-

2.5 Differentiation on Euclidean Space

We consider the setting where (X, M) = (R", Bgn). In this setting, we will look at computing 5—7’; more explicitly.

Consider a positive Borel measure p on R such that p << m. By the Radon-Nikodym Theorem there exists f € LT(R)
such that u(E) = [, fdz for all E € Bg. Can we find a formula for f in terms of x?

Special Case: Suppose f is continuous. Then for all zy € R and h > 0, we have pu((zo — h,x0 + h)) = fioj: fdx and

w((xg — hyxo + h)
m((zo — h,xzo + h)

xo+h
)) ~o " o )

as h — 01 by the Fundamental Theorem of Calculus. Thus 5—1‘7‘1 = limj,_, o+ % = f(zo).
Let B(r,z) C R™ be the open ball of radius r centered at x € R™. Want to show that if v is a signed measure on

Bgrn such that v << m, then dv = fdm for some m—integrable function and for m—a.e. x € R"™ we have 571:1 = f(x) =

: v(B(r,z))
iy —o+ 5B
Definition. A measurable function f : R™ — R is locally integrable with respect to the Lebesgue measure if [, |fldx < oo

for all bounded measurable sets K € L. We denote the space of locally integrable functions by Li (R™) or just by L}

loc loc*



Definition. Let f € L} .. Then for all bounded measurable sets K € L with m(K) > 0, we define the mean (average)

loc*

value of f over K by ﬁ fK fdz. We denote the mean value of f over K by § i fdx. (Note that this notation is different,

but more standard, from Folland’s notation).

Definition. Let f € Llloc. The Hardy-Littlewood Maximal Function Hf : R™ — R (also notated as M f) is given by
Hf = sup,~ofp( ) |flda.

Recall that a function h : R™ — R is lower semi-continuous if the set {z € R™ : h(z) > a} is open for all a € R. Also, we

say h is lower semicontinuous if liminf, ., h(y) > h(z).

Proposition 39. Let f,g € L} be given. Then

loc

1. 0<Hf < +.
2 H(f+g) < Hf+ Hg
3. H(cf)=|c|Hf for all c € R.
4. Hf is a lower semicontinuous function in R™.
5. Hf is a Borel measurable function.
Proof.  (1-3) obvious

(4) Let a € R. Consider the set U, := {&# € R™ : Hf > a}. We want to show U, is open. Let zy € U,. Then
there exists a sequence {r,, }n2; C (0,00) such that lim, .o f (s, z0)|fldz > a. Thus there exists ro,e > 0 such
that  (re.z0)|fldr > a + €. Now, the measure E — [, |f|dz is absolutely continuous with respect to m. So by
Theorem 36, there exists § > 0 such that whenever m(E) < & we find [, |f|dz < Jem(B(rg,zo)). Consider the set

D ={z € R" : m(B(xo,70) A B(x,r9)) < d}. This is an open set containing z¢. Let € D. Then by Theorem 33

1

70, d m(B(ro,z0)) !
][B( o,-/o)|f‘ Yy m(B(rg,xo)) /B(Toﬂv) iy
1

ot Fldy — / fldy
m(B(TOaxO)) /B(m,x) | B(Toﬂco)‘ |

+ ][B(ro,zo) |f‘dy

1
m(B(ro, x0)) I /B(TO,I)AB(TO,ID) Fldy Bro.ao) 1Y
1 1
>~ | Zem(B
- m(Bl(ro,ch)) i 2 (TO’IO))] Tt
= a+ 56
(5) Since for all a € R the set (Hf)~*((a,]) € Bg~ by (4), we see H f is Borel measurable. 0
1 if 2 € (0,1),
Example. Consider the function x[ 1) € Lj},.. We see Hx[o,1) = Sup,~¢ s.m(B(r,z)N[0,1)) = = ifz>1 Note

that even though xjo1) € L' N L>, the maximal function Hx( 1) & L'. In general, H f ¢ L'(R™) unless f = 0 a.e.

Theorem (Chebyshev’s Inequality- p.193). Let (X, M, u) be a measure space. If f € LP(u) for some p € [1,00), then
for each a > 0 we have p({z € X : |f(z)] > a}) < L||f|[5,.

Proof. Set Eq :={x € X :|f(z)| > a}. Then [y |fPdu> [, [fPdu > oP [, ldp = aPu(Eq). O

Definition. Let (X, M, u) be a measure space. For each measurable function f : X — R, define [f], := sup,solePu({z €
X |f(x)] > a})]. We say f is in weak-L? if and only if [f], < cc.



Remarks.

e [f], is not a norm (it does not satisfy the triangle inequality).

e By Chebyshev’s Inequality, for all p € [1,00) we find LP(u) € weak — LP(y). (This is strict as —4~ ¢ LP, but is in

zl/P
weak — LP.)

Lemma 6 (Simple Vitali Covering Lemma 3.15). Let C be a collection of open balls in R™ and set U = UgeeB. If
¢ <m(U), then there exists disjoint balls {Bj}§:1 C C such that Zle m(Bj) > 5.

Proof. Let ¢ < m(U). By Theorem 31(b), there exists a compact set K C U such that ¢ < m(K) < m(U). Since K is
compact, there exists a finite subcover {4;}72, C C of K. WLOG, assume m(A;) > m(Az) > -+ > m(Ay). Set By = A;.
Then, pick By to be the next ball in the list As, ..., A,, such that By N By = (). Then pick B3 to be the next ball after Bs
in the collection of {A;} such that Bz N (U7, B;) = 0. Continue until the list is exhausted. So we end up with a disjoint
collection of {B;}¥_, such that A; N (Us_)B; # 0 for all i = 1,...,m. Let 1 < i < m be given. Then there exists at
least one j such that A; N B; # (0. Pick the smallest such j. Then m(B;) > m(A;). Hence the radius of B; is greater than
the radius of A;. Let B;‘ be the ball that is concentric to B; but has 3 times the radius. Then A; C B;. It follows that
UE_ B} DU, A; D K. Thus ¢ < m(K) < m(Us_, BY) < Y5 m(B) =37 55 m(B;). O

Theorem (The Maximal Theorem, AKA The Hardy-Littlewood Theorem). There ezists a constant ¢ > 0 such
that for all f € L' and all « > 0 we have m({z € R™ : Hf(x) > a}) < £||f|11, that is, Hf € weak — L.

Proof. Set E, = {x € R™ : Hf(z) > a}. Then for all z € E,, we must have SuPr>oj[B(T7z) |fldy > « which implies
F B, fldy > « for some r, > 0. Define C = {B(r,, ) : & € Ey}. Then E, C UpeeB. For each ¢ < m(FE,), we may select
(by Lemma 6) a finite number of points {z; };?:1 C E, such that {B(rmj,xj)}j?:l are disjoint and 2521 m(B(re;,75)) > 57
So

¢ <3 i m(Blray, ) = (i mUB(ra,,w5)e)
(g1 m(B(re;,27) f B, o) |f|dy)
(5t o, o) 1 1d0)

ot o oy 1)
L en | £1dy.

fldx. O

IN

2 o400l

IA

Since true for all ¢ < m(E,), it follows that m(E,) < - [,

e}

Theorem 38 (2.41). If f € L*(m) and € > 0, then there exists a continuous function g : R™ — R such that fR" |f—gl|dx <e.
Recall that lim,_, g ¢(r) = ¢ if and only if limsup, _, ; |¢(r) — ¢| = 0.

Theorem 39 (3.18). Let f € L} .. Then for almost every x € R™ we have limTHOfB(T 2 fy)dy = f(x).

loc®

Proof. Let N € N. Since f € L} , we find fy := IxBv0) € L'. Let € > 0. By Theorem 38, there exists a continuous

loc?

function g : R — R such that [, |fv — gldz <.

Claim: lim,_,q+ JfB(mﬁ) gdy = g(x) for all z € R™.
Proof: Let x € R™ and § > 0. Since g is continuous, there exists r > 0 such that |g(y) — g(z)| < d for all y € B(r, z).
Thus JEB(T ) lg(y) — g(x)|dy < 6. Since § > 0 was arbitrary, we see

0= limrﬂo UCB(r,x) |g(y) - g(l‘)|dy Z hmTHO |fB(r,x) g(y) - g(m)dy\
im0 |45, .y 9(W)dy — g(x)| > 0.

Hence, lim,._, ¢+ fB(mc) 9(y)dy = g(z).



Now, estimate limsup, _, g+ HB(T ) fn(w)dy — fn(z)| by comparing fy and g. We have

limsup, o+ [Fp .0 In@)dy = [ ()| limsup, o+ |fp (.0 INY) = 9@)dY + S5, 0y 9) — 9(2)dy + g(z) — fn(2)]
limsup, o+ (g, /8 Y) — 9W)ldy] + g(z) — fn ()]

H(fn = 9)(@) + [fn () = g(x)].

IN A

It follows that for all « > 0, if lim sup,._,o+ |fB(T o INW)dy—fn ()] > o, then either H(fy—g)(x) > § or |fx(z)—g(z)] > 5.
Set F, = {z € R™ : limsup,_, o+ |7fB(r,z) Inw)dy — fn(x)] > a}, Fu ={z €R": H(fn — g)(z) > a}, and G, = {z € R™:
|fn(z) — g(x)| > a}. Note that E, C F, /5 UGg /2. By the Maximal theorem and Chebyshev’s inequality,

«

2c 2 2c 2
m(Ea)gm(Fa/Q)—i—m(Ga/Q)g—/ |fN—g\dx—|——/ |fN—gdx§6(+>.
a Jrn a Jrn «Q

Since € > 0 was arbitrary, we deduce m(E,) = 0 for all a < 0. Set E = U°, E; ;.. Then m(E) = 0 and for all z € E we
see 0 < limsup,_,q+ |JCB(T ) fn(@w)dy — fn ()| = 0. Thus lim,_ o+ fB(r ) fn(@y)dy = fn(z). Since N € N was arbitrary and
fn = f on B(N,0), we conclude lim,._,o+ fB(T o) f(y)dy = f(z) for almost every z € R". O

Definition. For each f € L}, set Ly :={x € R™ : lim, o+ UCB(T 2) |f(y) — f(z)|dy = 0}. The set Ly is called the Lebesgue
set for f. The points in Ly are called the Lebesgue points for f.

Theorem 40 (3.20). If f € L},., then m(R™\ Ly) = 0.

Proof. For each a € R, define g, := |f — al. Since f € Lj,, and o < 00, go € Li,.. Then, by Theorem 39, E, = {z €
R™| lim, g+ fB(T ) |f —aldy DNE or # f(x) — a} is a null set for all & € R. Put E := UpeqEq 5o m(E) =0. Let z ¢ E
and € > 0. Since Q is dense in R, select @ € Q such that |f(x) — «| < €. Since z & E,

loc*

0 < timsup | ) f@)dy < timsw ]{?( 1) aldy o S @) =207 @) o] < 2

r—0 r—0

by Theorem 39
Since € was arbitrary, lim,_¢ fB(T’I) |f(y) — f(z)|dy = 0. 0
Definition. A family of sets {E,},~0 C Brr is said to shrink nicely to x if
e E.C B(r,z) for all T > 0.
o There exists a constant o > 0 such that for all r > 0 we see m(E,) > am(B(r,x)).

Theorem (Lebesgue’s Differentiation Theorem). Suppose f € L} .. For each x € Ly we have lim, o+ JCET lf(y) —
f(z)|dy = 0 and lim,_,o+ J“E y)dy = f(x) for all families {E,},>0 C Brn that shrink nicely to x.

Proof. By definition, there exists « > 0 such that m(E,) > am(B(r,z)) for all » > 0. Thus

1 1 1
v sl s [ 1) - sy s [ it @l = 0 5w - sl

If € Ly, then it follows that lim, o+ 5, |f(y) — f(z)|dy = 0. Also

][f )y — £(x)

Remark. Recall that the members of L' (and L}

loc

0 < lim
r—0+

< lim £ 1) - f(@)ldy =0.

r—0+

O

) are actually equivalence classes. By Theorem 3p, for all f € Lloc we

) ) ) UEB )dy if it exists
have lim, _ o+ J%(T ) f(y)dy exists for almost every x € R™. The function f*(z) = () is called

otherwise



the precise representative for the equivalence class f € L}, .. Note that if f,g € L}, and f = g a.e., then f* = g* for all
r € R".

Definition. Let v be a signed measure on (R™, Brn). Then we say v is reqular if
1. [v(K)| < oo for all compact K C R™.
2. For all E € Bgn, we find |v|(E) = inf{|v|(U) : U is open, E C U}.
Remarks.
1. If v is regular, then v is o—finite (by 1).
2. Property 1 implies Property 2.

3. If dv = fdm, then v is regular if and only if f € L}

loc*

Proof. By the Jordan Decomposition, dvt = ftdm and dv™ = f~dm. So d|v| = |f|dm. If v is regular, then (1)
implies f € L}, .. So assume f € L} . Then clearly (1) is satisfied. For (2), let E € Bgn. Put Ey := E N B(1,0) and
for j =2,3,... define E; := EN(B(4,0) \ B(j — 1,0)). Note fxm € L' for all j € N. Let € > 0. By Corollary 10
(3.6), for all j € N there exists §; such that [, |fxp(j+1,0/de < €277 whenever m(F) < ;. By Theorem 31a(2.40),
for all j € N there exists U; C B(j + 1,0) such that U; is open, E; C U; and m(U;) < m(E;) + 6;. This implies
m(U; \ E;) = m(U;) —m(E;) < ;. Put U = U3, U;. Then

AN

= Jylfldz < 3772 Jeu [fxu,ldz
= Zji1 ij | flda
= Z;}i1 ij |f|d$+2;’;1 ij\Ej \f|dm
= fE|f|dl'+Z;i1 €277
= [VI(E)+e<|v[(U)+e

Since € > 0 is arbitrary, v(E) = inf{|v|(U) : U is open, E C U}. O

Theorem 41 (3.22). Let v be a reqular signed measure on (R™, Bgn). Let dv = dX\ + fdm be the Lebesgue-Radon-Nikodym
decomposition of v with respect to m. Then for almost every x € R™, we have lim,._,+ % = f(x) for every family {E,},>0

that shrinks nicely to x.
Proof. As in the proof of the remark, the Jordan Decomposition implies d|v| = d|\| + | f|dm.

Claim: X and fdm are regular.
Proof: If K is compact, then |A|(K) + [, |fldm = |[v]|(K) < oo by property 1 of regularity. Thus |v(K)|, [, |fldm < oc.
Thus f € L},

where v and fdm are regular. So we can use the same exact argument to show if f € L} . then fdm satisfies property
2.

and by the previous remarks, | f|dm satisfies property 2 of regularity. For |\|, note that d|A| = d|v|—|f|dm

Since f € L} _, the Lebesgue Differentiation Theorem implies lim,_,q+ fE fdy = f(z) whenever x is a Lebesgue point for
ME,) _ I

f- It only remains to show lim, o+ mEy =0 for m—almost every € R™ and all {E,},~o which shrink nicely to x (as
then lim, o+ ;((E y = lim = f(x)). Since A L m, there exists A € Bgn such that A\(A) = 0 = m(A%). Since AY is
an m—null set, we need only COHSldCI‘ x € A. For each k € N, define Fy, := {z € A : limsup,_,+ % +}. We claim
m(Fy) = 0 for all & € N. Let € > 0. Then there exists U € R™ that is open such that A C U and |A|[(U) < AM(A) + € =€
by property 2 of regularity. Let 2 € Fj. Then there exists r, < 0 such that B(r,,z) C U and + z < %%;D Set V =
Uzer, B(rg,x) C U. For each ¢ < m(V'), by Lemma 6 there exists a finite collection of disjoint balls {B(rmj , acj)}fz1 such that
c< 3" Zj 1 m(B(rg;,25)) < 3"k ijl IN(B(rz,,z;)) < 3"kIA(V) < 3"K|A|(U) < 3"ke. Since ¢ < m(V) and € > 0 were
arbitrary, we conclude m(Fy) = 0. Setting F' = U2 | F, we see m(F) = 0. Suppose x € A and there exists {E, },~¢ C Bgn

loc?

E7f’m




v(Er)

that shrink nicely to x such that limsup,_,+ | | = 8 > 0. Then there exists a > 0 such that m(E,) > am(B(r,x)) for

m(E,)
all 7 > 0 and K > (%57 we have limsup,._, o+ % > limsup, _, o+ % > limsup,_,q 0‘5‘(‘}(53) >af> 4. Sox€F
Thus lim sup,._, g+ |;‘1((%)) | =0 for almost every = € R". O
0 x <0,

Example. Consider the earlier example F' : R — R defined by F(z) = {(3—e¢* 0<z < 1. Let ur be the Lebesgue-
4—e™ 1<z
Stieltjes measure with distribution function F. So pup((—oo,z]) = F(x). Previously, we found dur = dX + fdm where

0 x <0,
A =20p+ 01 and f(x) = By Theorem 41, for m—almost every z, we see

e ® x>0.

pr((x —r,x+7r)) Flx+r)—F(z—r)

= 1 = 1. = Fl
/(@) ) m((x —r,x+7r)) r20 2r (z)
. - . . 0 r <0,
if F is differentiable. Note that since F'(x) = we have a formula for f(z) almost everywhere. Put dp = fdm.
e x>0,

So then if x < 0, we see p((—o0,z]) = 0 and if z > 0, we see p((—o0,z]) = f(ioo o fds = f[o ;€ °ds =1—e™". Now,

A = pp — p. In particular, A({0}) = ur({0}) — p({0}) = pr((=00,0]) = pr((=00,0)) = 0 = 2 and A({1}) = pr({1}) = 1.
Thus A = 250 + 51.

Theorem (Lusin’s Theorem). Let f : R” — R be a Borel measurable function. Suppose there exists A € Brn such that

m(A) < oo and f(x) =0 for all x € AC. Then for all ¢ > 0 there exists a continuous function g : R™ — R such that

e g(x) =0 for all zx € R™\ B(R,0) for some R > 0.

® SUP;cRrn ‘g(.’l})' S SUPzeprn |f($)|

o m({z € R"|f(z) # g(x)}) <e

Proof. (Of Theorem 38) WLOG, assume f > 0. By Proposition 19 (6.7), the set of simple functions in L! is dense in L.
Thus we may select a simple function ¢ € L' such that fRn |f — ¢ldx < 5. Since ¢ is simple and in L', there is an A € Bgn
such that m(A) < oo and ¢(z) = 0 for all x € A®. By Lusin’s Theorem, there exists a continuous g : R* — R such that

Sup,cpn |9(2)| < 00 and m({z € R"*|g(x) # ¢(x)}) < m. Thus

(2sup,epn |6])e €
o-glds < [ 16— gldz < sup 6 — glm({z € R™ : o(x) # g(x)}) < z <
/Rn {zeR|g(2)£¢(x)} zeR" 4sup,egn [@(7)| +1 2

by Holder’s Inequality. Hence [, |f — gldx < [, [f — ¢ +]¢ — gldz < e O

Theorem 42. Let f : R™ — R be a Borel measurable function. Let A € Bgrn be such that m(A) < co. For all € > 0, there
exists a compact set K CR™ such that m(A\ K) < e and f|x is continuous.

Proof. Recall that O} is the collection of dyadic intervals in R with length 27%. Fix k € N. Let {Q;}32, be an enumeration
of Q;. For each i € N, set A; := AN f~1(Q;). Since A € Br~» and f is Borel measurable, each A; € Bgn. Also, the Als are
mutually disjoint and A = U2, A;. By Theorem 31a, for each ¢ € N there exists a compact set K; C R™ such that K; C 4,
and m(A; \ K;) < 55%. Now {K;}7° are disjoint and so m(A\UK;) = m(UA; \UK;) = m(U(A;\ K;)) = > m(A;\ K;) < 57.
Thus there exists Ny such that m(A \ Uiv’“KZ) < g5 Set Dy = Uiv’“Ki. Then Dy is compact and D C A. For each
i1 =1,..., N, select b; € Q; (note Q; 2 f(K;)) and define gi : Dy — R by gr(z) = Zivz"l bixk, (). Now {K;}N* are compact
disjoint sets, so there exists a strictly positive distance between K; and K; whenever i # j. It follows that g is continuous on
Dy. Moreover |f(z) — g (x)| < 27F for all z € Dy,. Put K = N2, Dy, so K is compact and m(A\ K) < Y22, m(A\ Dy) < e.

Since | f(z) — gr(z)| < 27 for all z € Dy, we see gr - f on K which implies f is continuous on K. O



Remark. Sometimes Theorem 42 is called Lusin’s Theorem.

Theorem 43. Suppose K C R" is a compact set and f : K — R is continuous. Then there exists a continuous function
f:R" — R such that sup,cpn |f(2)| < sup,ex |f(2)] and f(z) = f(z) for all x € K.

Proof. Note that this follows from Tietze’s Extension Theorem, but we will prove it without. First, we construct a candidate
for the extension of f to R™ : Put U = R™ \ K, so that U is open. For each s € K, put vs(x) = max{2 — dl“;(xsll‘( 0}.
Notice that 0 < vs(z) < 1 for all z € U. Note that = — vs(z) is continuous (as 2, ||z — s||, dist(z, K) are continuous and
dist(x, K) > 0). Let {s;}52, be a countably dense subset of K. Define o : U — [0,1] by o(z) = >_7° v, ()57 Since {s,} are

L vs, (z

dense, we see o(x) > 0. Now, we define wy, : U — [0,1] by = — "'g&’;)( ) Observe that {wi}32, forms a partition of unity
inU:

o x — wi(x) is continuous on U

o ( < Wi, < 1

o > wi(zx)=1forall z € U.

: .7 f(z) ifzekK < =

Now, our candidate for f is f(z) = Observe that sup,cpn | f(2)| < sup,cx |f(x)|. To show f is

Yoo wi(x) fo(x) if xeU.

continuous on U, let E C U be compact. Then mingeg o(x) > 0 which implies max,cp |wi(z) fs(z)] < WM =: M.

Now Y72 | My, = S::fn‘i ((Z)‘ > 5 < 00. By the M-test and the fact that if > uj,(X) is a uniform convergent series of continuous
functions on E then the function x — Y uy(z) is continuous on E, we conclude Y p- ; wi () f(sk) is continuous on E. Hence
f is continuous on U.

We now show f is an extension of f. We need only show that for all z € K we have lim, ., .cv f(z) = f(a). Fix a > 0.
Since f is continuous, there exists 6 > 0 such that |f(s) — f(a)] < « for all s € K satisfying ||s — a|| < 4. Suppose z € U

and ||z — al| < $. Notice that whenever ||a — s;|| > &, we have

)
-+ ||!E—Sk||

§ < la—skll <lla— =zl + [z —sil| < 7

This says ||z —sg|| > 22 > 3||z —al| > 3dist(x, K). Thus 2— dlzlft(;’}g) < —1 which implies v, (z) = 0 and so wg(z) = 0. Since
S wy(z) =1 for all € U and wi(z) = 0 whenever |[z — a|| < 2,||la — si|| > 6, and [f(a) — f(sk)| < & when ||s, — a|| <6,

we see that

[F(@) = f(@)] = > w(@)[f(s) = f@)]] <D wi@)f(si) = fl@) < Y wi(@)|f(sk) = fla)| < D wi(z)a=a.
k=1 k=1 kEN,|sp—al<d keN
Since a was arbitrary, we see lim, ., cevr f(2) = f(a). O

Lemma 7. Let K CR"™ be compact and U C R™ be an open set such that K C U. Then there exists a continuous function
U:R" - R such that U(z) =1 ifz € K, UV(z)=0ifx €U, and 0 < ¥(x) <1 for z € R™

Proof. Let d := min{dist(z,R" \ U) : z € K}. Since K,R" \ U are closed, d > 0. Set K = Uzex B(4,z) and note
dist(z, R\ U) > % for all z € K. Define ¥ : R — R by U(x) = JCB(* ) Xg (y)dy. By HW3 #4, the function ¥(z) is
continuous. Noting B(%,z) C K whenever z € K and B(4,z)n K = if z € R" \ U, we see all the properties for ¥ as

stated in the lemma are verified. O

Proof. (Of Lusin’s Theorem) Let ¢ > 0. By Theorem 42, there exists a compact set K C R™ such that m(A\ K) < § and
flx is continuous. By Theorem 43, there exists an f : R” — R such that f is continuous and f(x) = f(z) for all z € K and
SUp,ern | f(2)] < supge | f(2)] < supgegn | f(2)|. By Theorem 31a and since A is compact, we may find an open set U and
R > 0 such that K C U € B(R,0) and m(U) < m(K) + 5. Then m(U \ K) < §. Let ¢ be continuous such that 1) = 1 on
K,¥»=00onR"\U and 0 <+ < 1 by Lemma 7. Put g = ft. Then



e g(x) =0 for all z € R"\ B(R,0)

o sup,cpn |9(2)] < sUp,cpn |F(2)] < sup,epn | f(2)]

o If v € K, then f(z) = g(z). If z € A NUC, then f(z) =0 = g(x). So

{zr eR"|f(z) #g(x)} < R"\K)N(UNAY)
= (R*\K)N(UUA)
(R*"\K)NU)UR"\ K)N A)
(U\NK)U(A\K)

Hence m({x € R"|f(z) # g(x)}) <m((U\K)U(A\K)) <m(U\K)+m(A\ K) <e. 0O

2.6 Functions of Bounded Variation

Recall. There exists a correspondence between regular Borel measures and increasing right continuous functions. We just
established a nice differentiation theorem for regular Borel measures in R™. We can use this to establish differentiation

theorems for the distribution function F. Recall that if p is a regular Borel measure, then lim,._ o+ % = F(z) for almost

pr((@atr) _ Flatr)—F(

2 2) the derivative.

every x € R™. Now, in R', this implies lim, _, o+
Theorem 44 (3.23). Let F : R — R be an increasing function and define G : R — R by G(x) := F(x+) = lim,,_,,+ F(a).
Then

1. The set of points of discontinuity for F is countable (and thus has measure 0)

2. F and G are differentiable and F' = G' a.e.

Proof. 1. Define intervals I, := (F(z—), F(z+)) C R for all z € R. Then I, # () if and only if z is a point of discontinuity

for F. Since F is increasing, {I,}.cr is a disjoint family of intervals. For each N € N, we have

Yve-nnymUz) = sup{d>, cpm(l;): EC (—N,N) is finite}
sup{m(Uzepl;)|E C (—N,N) is finite}
m(F((=N,N)))

m((F(-N-),F(N+))) = F(N+) — F(-N—-) <

IAIA

Thus there exists countable many « € (—N, N) such that m(I,) > 0. It follows that F(x—) = F(z+) except for at

most a countable number of x € (—N, N).

2. By definition, G is increasing and right continuous. Also, G = F at all points of continuity for F. In particular, G = F

,x+h if h>0
a.e. For all h # 0, we have G(z + h) — G(z) = poll@ @ +hl) i Observe {(z — 7, z]}rs0, {(z, 2 + 7] }r>0

—pe((z+h,z]) if h <.

shrink nicely to x as r — 07. Also, by Theorem 21a(1.18), ug is a regular Borel measure on R. Thus by Theorem 41
(3.22), we have

fim Pel@=ral) o G@=C@=r) g g He@EETD)

r—0t m((x —r,z])  root r r—ot m((z,x+7r]) root r
for almost every x € R. Put H := G — F. If we show H' = 0 a.e., then F' = G’ a.e. By part 1, we know H = 0 a.e. Let
{z;}32, be an enumeration of those points for which H # 0. (We assume z; are distinct and note that j may be over
a finite index set). Since G > F, we see H > 0 and for all j € N, we have H(z;) = G(x;) — F(x;) = lim,_,, F(x) —
F(zj) <lim,_ + F(x) —lim,_ - F(x) = F(xz;+) — F(x;—). As in part 1, we see 0 < ije(_N,N) H(z;) < oo for all

N eN. Put v := Zj’;l H(:z:j)éxj'. We see that if K is compact, then K C (—N, N) for some N € N. Then

WE) = Y v{mh) < Y Hizj) <o

;€K z€(—N,N)



By Proposition 2.6 (1.16) and Theorem 21a, v is regular. We can use the Lebesgue Differentiation Theorem. Moreover,

v 1L m and so by Theorem 41, lim, _ ¢+ ;((%r)) = 0 for almost every z € R. (Here {E,} shrink nicely to x). Thus
limy, g |w| < limp W < limp_so W = 0 a.e. by above as {(z — 2|h|,z + 2|h|)}
shrinks nicely to . Thus H'(z) = 0 a.e. O

Definition. Let F : R — R. Define Tr : R — R by Tp(z) = sup{d ., |F(z;) — F(z;—1)| :n € N,—o0o < xg < 21 < -+ <
Xy, = x}. We call Tp the total variation function of F. If a < b, then we call Tr(b) — Tr(a) the total variation of F over
[a, b].

Remarks.
e T is nondecreasing.
e It can be shown that Tp(b) — Tr(a) = sup{d_;—, |F(z;) — F(zj_1)| :n€N,a =29 < 21 < -++ <, = b}.

Definition. Let F: R — R be given. If lim; o Tr(z) < 00, we say F is of bounded variation on R. We set BV (R) =
{F:R = R|limy_,00 Tr(z) < o0}. Let F : [a,b] = R. If Trp(b) — Tr(a) < oo, then F is of bounded variation on [a,b] and we
set BV ([a,b]) = {F :[a,b] = R|Tp(b) — Tr(a) < co}.

Remarks.

e BV (R), BV ([a,b]) are vector spaces.

F(z) z € a,b]
o If F € BV ([a,b]), then F : R — R defined by F(z) = { F(a) x <a isin BV(R). Thus any F € BV ([a,b]) can be

F) x>0
extended to F' € BV (R).

e If F € BV(R), then F € BV ([a,b]).
Lemma 8. If F € BV(R), then Tr + F,Tr — F are increasing.

Proof. Let x,y € R with z < y. We want to show Tr(y) + F(y) > Tr(x) = F'(x). Let € > 0. We may find {z;}7_, C (—o0,7]
such that —0o <@g < ... <@, = and Tp(z) — e < 370 |[F(x;) — F(2;-1)|. Then

Tr(y) = Z |F(z;) = Flz;-)l + |F(y) = F(z)| =2 Tr(z) — e+ [F(y) — F()].

Now, Tr(y) > Tr(x) —e+ F(x) — F(y) and Tp(y) > Tr(z) — e+ F(y) — F(x). Thus Tr(y) £ F(y) > Tr(z) £ F(z) — €. Since

€ was arbitrary, done. O

Theorem 45 (3.27b). Suppose F' : R — R. Then F € BV (R) if and only if F' can be written as the difference of two

bounded increasing functions.

Proof. Since BV (R) is a vector space and any bounded increasing function is in BV (R), the backward direction is done.
Let F € BV (R). Then %(Tp + F') are increasing and their difference is F. Just need to show they are bounded. Of course,
since F' € BV (R), we have Tr is bounded by definition. Also, |F(z)| < |F(z) — F(0)| + |F(0)| < Tr(z) + |F(0)| < co0. So F
is (uniformly) bounded. Thus 1 (Tp =+ F) is bounded. O

Theorem 46 (3.27). Let F € BV(R). Then
1. F(x+), F(x—) exist for all z € R and limy,_,o0 F'(2),lim,_,_o F(x) exists.
2. The set of points of discontinuity of F' is countable.

3. If F: R — R is defined by G(z) = F(x+), then F',G’ exist a.e. and F' = G'a.e.



Proof. Note that (1) follows from Theorem 45. To show F'(z+) exists, just note there exists increasing bounded functions
f1, f2 such that F' = f; — fo. Then lim,_, .4 f1(y),lim, ., f2(y) exist and thus lim,_,1 f(y) exists. For the limits, use the
fact that F' is bounded. Now parts (2) and (3) follow from Theoerem 44 and 45. O

Definition. If F € BV(R), then the representation F = 3(Tp + F) — 1(Tr — F) is called the Jordan representation of
F. We say (Tr + F) is the positive variation and 3(Tp — F) is the negative variation for F.

Remark. If —oco < 2y < ... <z, =z, then F(z) = F(xo) + Z;-lzl F(z;) — F(xzj—1). Thus
3T+ F) = gsup{Y|F(x;) - F
3 sup{} [F(z;) — F

sup{>_7_|
= Sup{Z?:l[

Define NBV(R) = {F € BV(R) : lim;_,_o F(z) = 0 and F is right cont}.

zj-1)| + F(z)}
zj—1)| + F(zo) + 3o Fl2;) — Flaj—1)}
DI+ 3 F(x0)}

OFY+ Limg o F(2).

(
(

zj) — F(x;
(

Fla;) — F(z;_
F(Z‘j)—F —

i

Lemma 9 (3.28). If ' € BV (R), then limy_,_oo Tr(z) = 0. If F is right continuous, then TF is also right continuous.

Proof. Let e > 0. With z € R, select {x;}_; C Rsuchthat —co < z¢ <.. <z, =z and Tp(z)—e < Z;’il |F(2;)—F(xj-1)|.
Thus T (z) =Tk (z0) = sup{>_7" [F(y;) = F(yj-1)| :m € Nyzg = yo < .. <yn =} > 300 |[F(xj)—F(zj-1)| > Tr(z)—e.
Thus Ty(z) < € which implies Tr(y) < € for all y < z¢. Hence lim,_, o, Tr(x) = 0. Now, suppose F is right continuous.
We want to show Tx is right continuous. Put o = lim, .+ Tr(y) — Tr(x) > 0. Let € > 0. Choose 6 > 0 such that
|F(y) — F(x)| < € whenever z < y < x4 ¢ and (by definition) when Tr(y) — lim,_, .+ Tr(z) < € whenever z <y < z + 4.
(Note that § may initially be different, but then choose the smaller one). Let y € (z,2 + §) be given. We may choose
{z;}7_; C R such that z = 29 < ... <@, =y and

IR = Fag1)| 2 [To(y) = Te(@)] = 1[Tr() — Tr(@)] 2 5] 1, Te(z) ~ Te(@)] = Sa.

Since z1 € (z,z + J), we have |F(z1) — F(x0)| < €. So 23;2 |F(z;) — F(zj-1)] = 2a — e. Now, we may find {t;}, CR
such that z =ty < ... < ty, = 21 and ) |F(t;) — F(tj—1)| > %a. Now, x =ty < ... <ty =1 < .. < x, =y is a partition.
So Tr(y) — Te(w) = X0y [F(t5) — Flty)l + Xy () — Flz; 1) = Sa — e Now, a+ e > Tr(y) — Tr(x) > Sa — &
which implies o < €. Since € > 0 was arbitrary, a = 0. O

Theorem 47 (3.29). If u is a finite signed Borel measure on R and F : R — R is defined by F(z) = p((—o0,x]), then F €
NBV(R). If F € NBV(R), then there exists a unique finite signed regular measure up on R such that pp((—oo,z]) = F(x)
for all x € R. Moreover, |up| = pry, that is, pr. ((—oo,z]) = Tp(x) for all x € R.

Proof. Suppose p is a finite signed Borel measure. By the Jordan Decomposition Theorem, we may find positive Borel
measures p*, = such that 4 = u* — u~. By Proposition 26, the functions F+, F~ : R — R given by F*(z) = p*((—o0, z])
are right continuous and increasing. Moreover, lim,_, ., F*(z) = 0 by Theorem 5e (1.8d) and lim, ., F*(x) = p*(R).
So F* € NBV(R). Since F = F+* — F~ and NBV(R) is a vector space, we see ' € NBV (R). For the other direction,
put F+ = %(TF + F). So F* are bounded increasing and right continuous. Let pup+ be the associated Lebesgue Stieltjes
measures (note they are regular) and put pup := pp+ — pp-. Thus pp is a signed regular Borel measure and pp((—o0,z]) =
pp+((—o00,z]) — pp-((—o0,x]) = FT(x) — F~(x) = F(x) as they are in NBV(R). To show |ur| = pr,, observe that for
[a,8] € R, [up|((a,b]) = pp+((a,8]) + pp-((a,0]) = F*(b) = FF(a) + F~(b) = F~(a) = Tp(b) — Tr(a) = pry((a,b]). Since
they are equal on the semialgebra of left open-right closed intervals, they are equal on Bg. Uniqueness is an exercise. O

Remarks. Folland proves everything for C—valued functions. Also, compare Propositions 25 and 26 to Theorem 1.16 in
Folland.

Proposition 40 (3.30). Let F € NBV(R). Then F' exists a.e. and there exists f € L' such that F' = f a.e. Moreover,
wr Lm if and only if F/ =0 a.e. and pp << m if and only if F(z) = f(ioo 2] ft)dt.



Proof. If F € NBV (R), then pp is a signed regular Borel measure by Theorem 47 (3.29) and F” exists a.e. by Theorem 46.
Let f be the Radon-Nikodym derivative for up so that f € L'(m) by the LRN Theorem and f = F’ a.e. by Theorem 41
(3.22). The rest follows from the LRN Theorem. O

Definition. We say F : R — R is absolutely continuous if for all € > 0 there exists 6 > 0 such that for any family
{(aj,bj)}7_y of disjoint intervals, we have Zévzl |F(bj) — F(a;)| < € whenever Zj.vzl(bj —aj) <4.

Proposition 41 (3.32). If F € NBV(R), then F' is absolutely continuous if and only if pp << m.
Proof. See Folland. O

Corollary 12 (3.33). If f € L*(m), then F(x f( 00,] f()dt is in NBV(R), is absolutely continuous, and F'(z) = f(x)
a.e. If F € NBV(R) is absolutely continuous, then F' € LY(m) (a.e.) and F(z) = f(foo 2] F'(t)dt.

Proof. The second part follows immediately from Proposition 40 and 41. For the first part, if f € L'(m), then f+, f~ €
L'(m) and F(x f( 00,] fr()dt — f( 00,2] f~(t)dt, the difference of two increasing bounded functions. Thus F' € BV (R).
Of course, F'is clearly continuous and lim,_, _ ., F(x) = 0. So F € NBV(R). We see F is absolutely continuous by Proposition
41 and F'(z) = f(z) a.e. follows from Proposition 40. O

Theorem (Fundamental Theorem of Calculus). Let [a,b] C R and F : [a,b] — R be given. TFAE
1. F is absolutely continuous on |a,b].
2. F(x) = F(a) + f(a,:c] ft)dt for some f € L'([a,b], m).
3. F' exists a.e. in |a,b] and there exists f € L*([a,b],m) such that f = F'" a.e. and F(z) = F(a) + f(a’r] f(t)dt

Theorem (Integration By Parts). Suppose F,G € NBV(R) and either F or G is continuous. Then for all [a,b] C R,
we have f(a,b] Fdug = F(b)G(b) — F(a)G(a) — f(a7b] Gdur.

Proof. WLOG, assume G is continuous. By considering H(z) := G(—x), we see T is continuous. Thus G* := 1(T¢ + G)
are continous. Also F* := (T + F) are right continuous as F € NBV(R). Set Q = {(z,y) : a < 2 < y < b} C R%. Now,

np+, pax are all positive finite Borel measures. Thus by Fubini’s Theorem, we have

(hp+ X pg+)(Q) = Jod(ppe X pe+)
= Jiaw Juow G+ W)dpp+ ()
= f(a,b] pig+(b) — pe+ (z)dpp+ ()
S G+< )~ G+< >duF+< >

and similarly
(hp+ X pe+)(Q) = f(a,b] f(a,y] dpp+(x)dpc+(y)
= f(ab] +( ) = F(a)duc+(y)
= Jun FrWdng+(y) = FF(a)(GT(b) — G*(a)).
Combining these two equations, we get
| FPring: =6t ) - Fr @6 @~ [ 6 dupe. ()
(a,b] (a,b]

Of course, we could easily show (x) holds for F~,G*. Then, subtracting these we get that (x) holds for F, G*. Repeat with
G to get that (x) holds for F,G. O



2.7 Measurable Transformations

Recall. Change of Variable Formula: If g : (a,b] — (¢, d] is continuously differentiable and monotone and f is continuous
on (¢, d], then f: flg(@)|g' (z)|dx = fcd f(y)dy. We want to generalize this idea to Lebesgue integrals.

Definition. Let (X, M), (Y,N) be measurable spaces. A mapping T : X — Y is called a (M, N)—measurable transfor-
mation if T~Y(F) € M whenever F € N.

Remarks.
e This is the same definition as a measurable function. The point is to note we are not restricting ourselves to R.

e If (R,0) is a measurable space and f : ¥ — R is a (M, O)—measurable function, then foT : X — R is a

(M, O)—measurable function.

Proposition 42. Let T be a measurable transformation from (X, M) — (Y,N). Let p be a positive measure on M and
define po Tt : N — [0,00] by poT HF)=u(T~YF)). Then o T~ is a measure on N.

Definition. The measure o T~ above is called the measure induced by ;i and T, or the pushforward of i through T.

Example. Let T : [0,27) — R? be given by T(t) := (cost,sint). So T is a bijection between [0,27) and the unit circle
S'. Let m = m|z(jo,2x))- Let N be the o—algebra on S” generated by T. Then T is a measurable function. By definition,
T is an (M, N)—measurable transformation. The Lebesgue measure on S’ is the pushforward of m through T, that is,

mg =moT 1.

General Change of Variable Formula. Let (X, M, 1) be a measure space. Let (Y, N') be a measurable space. Suppose

T is an (M, N)—measurable transformation. Then for all N'—measurable functions f : Y — R, we have

/ﬂﬂmw=/f@WwTU
X Y

in the sense that if one exists, they both do and are equal.
Proof. Exercise using simple function technique. O

Corollary 13. Under the same hypotheses, for all F € N, we have
[ r@@yde= [ foduer )
T-1(F) F

provided one of the integrals exist.

Corollary 14. Let (X, M, u) be a measure space. Let (Y,N,v) be a o—finite measure space. Suppose T is a (M,N)—

measurable transformation such that o T~ << v. Then for all N —measurable functions f : Y — R, we have

[ raenan= [ ™,

Theorem 48. Suppose T : [a,b] — [c,d] is an increasing bijection that is absolutely continuous on |a,b]. Let f € L'([a,b],m)
be given. Then f[ayb} F(T(x)T'(x)dx = f[c,d] f(y)dy.

Proof. Want to use Corollary 14. Define p : B, 5 — [0,00] by u(E) = m(T(E)). Observe that for (z,y] C [a,b], we have
w((z,y]) = m(T((x,y]) = m((T(z),T(y)]) = T(y) — T(x) as T is monotone and continuous. Upon appropriately extending
T, we get a Lebesgue-Stieltjes measure pe where T:R— [0,d — (] is defined by

T(x)—c ifx€a,b]
T(x):=<¢0 ifr<a

d—c ifz<bd



Then T is absolutely continuous and is in NBV (R). So prp << m. Also pgls, , = p. Moreover, pg o T g, =m

Bie,q)
since for (z,y) C [e, d] we have
pp o T™H(2,y]) = ne(T™ ((z,9]) = pe(T7H(2). T~ (W)]) = T(T™(y)) = T(T™H(2)) = y — = = m((z, y))
Now, by Corollary 14, f[a’b] f(T(z))dpe = f[c,d] f(y)%rf_l)dy which implies, by the LRN Theorem that
f[a b d“” dx = f[c af (y)dy. By the Fundamental Theorem of Calculus and the LRN Theorem, we find that T"(z)
exists for almost every z € R and 2 a2 = = T’ almost everywhere. Since T"(z) = T'(x) for almost every z € [a,b),
f[a,b] T'(z)de = f[c,d] f(y)dy. O

Note. This holds if T is decreasing, but then we want —7".

We use a similar idea in higher dimensions for the case where T' : R™ — R" is a linear transformation. We needed
transformations 7' : R” — R™ such that © = m o T is a measure and g << m. So, in particular, we need m(T(E)) = 0
whenever m(E) = 0. Recall Theorem 35: If T : R" — R" is a linear transformation, then there is a number § < oo such
that m(T(E)) = ém(E) for all E € L. If E = Qy, the unit cube, then m(T(Qq)) = ém(Qop) = 6. Thus § = |det T'|.

Theorem 49 (Linear Change of Variables Formula - 2.44). Let T : R® — R"™ be a bijective linear transformation. If
f e L' (m), then foT € L'(m) and [g, f(y)dy = |detT| [5, f(T(x))dz.

Proof. Define u : Bgn — [0,00] by u(E) = m(T(E)) for all E € Bgn. Since T is a bijection and T~! is continuous, we find
that p is a measure on Bgn. (check!) Also, if m(E) = 0, then u(E) = m(T(F)) = |det T|m(E) = 0. Thus u << m. Also,
=|detT| for all E € Bg» with m(E) # 0, it follows that % = |det T'| (by the theorem on nicely

o T~ =m. Since 51((?)
shrinking sets). Now T is a measurable transformation, so by Corollary 14, fRn T(x))dp = [gn f (y)id(” ;Z;l)dy, which
implies [, f(T(2)) 2 dx = [, f(y)dy and thus |det T| fo.. f(T(2))dx = [, f(y)dy. O

Corollary 15. If R : R" — R™ is a rotation or a reflection across the (n — 1)—dimensional plane, then m(R(E)) = m(E)
for all E € L™.

Notation. If G : Q@ — R™, for  C R™ open, has continuously differentiable components, that is G = (G, ..., G,,) with

G; € C’, then D,G : Q — R™™ is given by [D,G(x)];; = aaff (z).

Definition. We say G : Q — G(2) C R" is a C'—diffeomorphism if G is bijective and both G and G~ are continuously
differentiable.

Theorem (Change of Variables Formula - 2.47). Suppose Q@ C R™ is open and G : Q@ — G(Q) is a C'—diffeomorphism. Then
1. If f € LY(G(Q2),m), then fG(Q) f(z)dz = [, f(G(z))|det D, G(x)|dx.

2. If ECQ and E € L, then G(E) € L™ and m(G(E)) = [, |det DG (x)|dx.

2.7.1 Integration in Polar Coordinates

2-dimensions: Set Q := {(r,0) € R : r > 0,6 € (0,27)} and W := R%\ {(r,0) : r > 0}. So Q and W are open. Now, define

G:Q — W by (r,0) — (rcosf,rsin@). Then G is a C'—diffeomorphism. Indeed, G™1 : — (V22 4+ y2,0(x,y)) where
tan~—1(y/x) x>0,y>0
O(x,y) = { m+tan—'(y/z) <0 Also, | det Dy,.9)G(r,0)| = r for all (r,0) € Q. Suppose f € L*(R? m). Then the

2m +tan~(y/z) = >0,y <O0.
change of variables formula yields

/ f(m,y)d(:r,y):/f(G(n@))ldetD(T,g)G(r,9)|d(r,0):/f(rcosﬁ,rsinﬁ)rd(r,él).
w Q Q



Noting that W = R? \ (a null set) and using Fubini’s Theorem, we see

/ f(:c,y)d(x,y):/ / f(rcos, rsin 0)rdfdr.
R2 (0,00) /(0,27)

Higher dimensions: The same formula can be derived in higher dimensions. Set S"~! := {z € R" : ||z|| = 1}. For z € R"\ {0},
define r(z) := ||z|| and 0(z) = 13y, € S7~1 1t can be verified that the map G : (0,00)x S"~1 — R™\{0} defined by (r,0) — 76
is a C’—diffeomorphism. (Note that G~1(x) = (r(z),0(x)) and both components are differentiable). Since G is a bijection

and has a continuous inverse, we may define the measure m. on B oo)xgn-1 by m«(E) = m(G(E)). Now, define the measure

prn o0 B(g,oc) by pn(E) = fE r"~ldr. We want to define a measure o,,_; on S"~! such that m, = p, X op_1.
Theorem 50 (2.49). There exists a unique Borel measure o,,—1 on Bgn-1 such that m. = pn X 0p_1.

Proof. Let E € Bgn-1. For each o > 0, set E,, := G((0,a]x E). So E, = {rf:0 < r < a,0 € E}. Define 0,,_1(E) := nm(E).
Consider the map \ : P(S"~!) — P(B(1,0)) C P(R™). Since A commutes with unions, intersections, and complements, A
maps Borel sets to Borel sets and thus o,_; is a Borel measure on S"~1. Also, given a € (0,), E, = T(E;) where T :
R™ — R"™ is a linear transformation such that 7'(z) = ax. Thus m(E,) = |det T|m(E1) = a™m(E1). For any (a,b] C (0, c0)
and E € Bgn—1, we see

m.((a,b] x E) =m(E \ Ea) = m(Ep) —m(Eq)
= (0" —a")m (El)
= Y=d On—1

= (f(a,b] ldr) on-1(E)
= (pn X on-1)((a,b] x E).

Also, m.((a,00) x E) is 0 when o,_1(E) = 0 and co otherwise. This agrees with p,, X ¢,,—1 which implies the same formula
works. Fix E € Bgn-1. Set Cg :={(a,b] x E: 0 < a < b}U{(a,00) : 0 < a}. Then Cg is a semialgebra on (0,00) x E. Since
My = pp X 0,—1 on Cg, Caratheodory’s Extension process and uniqueness (as m, is o—finite on (0,00) x E)) imply that
My = pp X 0p—1 On the o—algebra Mp = {A x E : A € B )} By Proposition 35 (1.5), B(g,c0)x 571 = B(0,00) ® Bgn—1
and by Proposition 34 (1.7), B(g,e0) ® Bgn-1 is generated by {Mg}res

uniqueness imply that m. = p, X 0,1 on B oc)xgn-1- O

on_1- Thus Caratheodory’s Extension process and

Thus by Theorem 50 and the simple function technique, if f € L*(R™,m), then

— n—1
- f(z)dz = /(0}00) /Sni1 fro)r™ do,—1(0)dr

(as dp = r"~Ldr).
Remarks.
o(S’) = 27, the circumference of the unit circle.

e For E € S"! one can show o, 1(E) = H,_1(E), the n — 1 dimensional Hausdorff measure on R™. Thus

f(z)dz = / / frO)r"—tdH,_1(0)dr
Rn (0,00) YOB(1,0)

e One can also show r"~1dH,,_; is the n — 1 dimensional measure on dB(r,0). So

[gwa= [ [ it

e Notice the function F(s f(o 9 faB(r 0) f(y)dH,—1(y)dr is absolutely continuous on [0, 00). So F'(s) exists almost



everywhere and

d
F'(s) = — dH,_1dr| = dH,_ .
()= o V() / o T ] /83(870)f(y)H )

3 More about L? Spaces

Let (X, M, 1) be a measure space. For f: X — R such that |f| € L™, we define for p € [1,00) || f]l, == ([ \f|pdu)1/p and
[1flloo :=1inf{a € R: p({z € X : |f(x)] > a}) = 0}. Also, for p € [1,00], we see LP(u) :={f : X = R:||f||, < oo}.
Properties of LP Spaces:

e Banach Space

L? is a Hilbert Space

Simple functions are dense

e If 4 = m, then continuous functions are dense.

Holder’s Inequality: Suppose 1 < p < oo and % + % = 1. Then for measurable functions f,g : X — R, we have
I1fallr < 1fllpllgllq- (In particular, if f € LP, g € L4, then fg € L'.)
3.1 Dual Spaces

Definition. Let (X,]|- ||x) and (D,]| - ||ly) be normed vector spaces. A linear map is bounded if there exists C € [0,00)
such that ||Tz||y < C|lz||x for all z € X.

Proposition 43 (5.2). If (X,]|-||x) and (.|| - ||ly) are normed vector spaces and T : X — Q) is a linear map, then TFAE
e T is continuous on X.
o T is continuous at a single point (generally use 0).
e T is bounded.

Proof. (1) = (2) : By definition.

(2) = (3) : There is a § > 0 such that |[Tz||y < 1 whenever |jz||x < 4. If z € X\ {0}, then ‘

5—’”” = §. Thus
Mellx ||y

Tally = 15t

IEIES

T, < el

(3) = (1) : There exists ¢ such that ||[Tz|ly < cl[z||x for all z € X. Let € > 0. If ||z — 22|| < &, then ||[Tz; — Tasl|ly =

1T (21 = z2)[ly < cl|zr — 22|z <. O
Definition. If (X,|| - ||x) and (,]| - |ly) are normed vector spaces, then the space of all bounded linear maps from X to
2 is denoted by L(X,9). The function ||| - ||| : L(X,2) — [0,00) defined by |||T|| = sup{||Tz||y : ||x||x = 1} is called the
operator norm.

Remarks.
o (L(X,2),ll - I) is a normed vector space.

o 7(||lallf) = sup {

Example. There do exist discontinuous linear maps (other than the obvious T' : X — 400). Let X = {{zx}32, : @ €
R, Y 72, kxy, < oo}. Define || - |1 : £ — [0,00) by ||z||l1 = > pey || and || - |2 : £ — [0,00) by ||z||2 = 3 k|zk|. These are
both norms. Define T : (X, || - |[1) — (X,]| - ||2) by Tz = 2. However, |||T||| = sup{||Tx||2 : ||z||; = 1}. Define (™ € X by
(™ =(0,...,0,1,0,...) where 1 appears in the n'" spot. Then ||z(™||; = 1 but ||z(™||s = n. Thus |||T||| > ||z(™||z = n for

all n which implies |||T||| = co. Thus T is unbounded and discontinuous.

iTelly ;g 0} =inf{c € R: [|Tx|ly < ¢||z||x for all = € X}.

Bl



Proposition 44 (5.4). If (,]| - |ly) is complete, then so is (L(X,D),|l| - ||]).

Definition. If (X,]|| - ||x) is a normed vector space, (L(X,R),[|| - |||) is called the (continuous) dual space of X. It is
denoted by X* or (X*,|| |

x+). The members of L(X,R) are called linear functionals.
Remark. By Proposition 44, X* is complete.

Definition. If X is a vector space, we see that p : X — R is a sublinear functional if p(z +y) < p(z) + p(y) and
p(Ax) = Ap(x) for A >0 and for all x,y € X.

Theorem (Hahn Banach Theorem). Let X be a vector space over R, p a sublinear functional on X and M a linear
subspace of X. If f : M — R is a linear functional such that f(x) < p(x) for all x € M. Then there exists a linear functional
f:X — R such that f(z) < p(x) for all x € X and flp = f.

Proof. WLOG, assume M C X. Let € M®. Want to extend f to M, = {y +azx :y € M,a € R}. To do this, we want to
define f, : M, — R such that f is linear on M., f.(y) < p(y) for all y € M, and f.|am = f. Suppose there exists § € R
such that af < p(az+y) — f(y) for all @ € R,y € M.(x). Then we could define f,(ax+y) = af+ f(y) for alla € R,y € M
and f, would be the desired extension to M. For each y1,y> € M, we have

fly) + fly2) = flyr +y2) <plyr +y2 —x+2) <plyr — x) +p(y2 + )
= f(y1) —p(y1 — ) < ply2 + ) — f(y2)

Since y1,y2 € M were arbitrary, we have
sup{f(y) —p(y — ) :y € M} <inf{p(y +2) — f(y) : y € M}.

So select 8 such that sup{f(y) —p(y —x) : y € M} < 8 <inf{p(y+z) — f(y) : y € M}. If a =0, then [ satisfies (x). If
a > 0, then
af < ainf{p(y+z) - f(y):y € M}
inf{ap(y +z) — af(y) : y € M}
= inf{p(ay + ax) — flay) : y € M}
inf{p(ay + az) — flay) : ay € M}
= inf{p(y + ax) — f(y) : y € M}

and lastly, if a < 0, then
of

IN

asup{f(y) —p(y —x) : y € M}

= (—a)inf{p(y —z) — f(y) :y € M}

= inf{p(—ay + az) - f(-ay) : y € M}

= nf{p(y +az) - f(y) : y € M}.
Thus g satisfies (x) and we have thus extended f to M,. Now, consider F, the collection of all pairs (f|y,V) where V is a
linear subspace of X containing M and fy is a linear functional on V such that fy |y = f and fy(y) < p(y) for all y € V.
Define a partial order < on F by (fv,, V1) < (fv,, V) if Vi C V2 and fv,|v; = fv,. Note that (f,, M,) € F and thus it is non
empty. Let G C F be a totally ordered subset of F. Since W = Uy, v)egV is a linear subspace of X, we see (fw, W) € F
and is an upper bound for the chain. Thus, by Zorn’s Lemma, there exists a maximal element, call it (f, V). If V # X, then

there exists x € X\ V and f, extends f, a contradiction to maximality. O

Example. (Generalized/Banach limits). Set > = {{zx}° C R : sup |zx| < oo} and M = {z € £ : limy_,, z), exists}.
So M is a linear subspace. Consider the linear function Ly : M — R defined by & — limg_,oo zr. Define p : £° — R by
z +— limsup,_ . + Zlf xj. So p is a sublinear function on £*°. We can verify Lo(z) = p(z) for £ € M. So by the Hahn
Banach Theorem, there exists a linear function L : /> — R such that Ly = Lo and L(x) < p(x) for & € £*°. Since

p(z) < limsupy_, ., Tk, we have

liminf z, = —limsup(—zx) < —p(—2) < —L(—z) = L(z) < p(x) < limsup z.



(n)

Also, if we define, for each z € £*°, the sequence z(™ € ¢> by x;’ = Tpin, then you can verify L(z™) = L(x).

Theorem 51 (5.8). Let (X,||-||x) be a normed vector space.

1.

If M is a closed subspace of X and x € X\ M, then there exists f € X* such that f(z) # 0 and f|pm = 0. Moreover,
1fllx= =1 and f(z) = infyer [l — yll.

If x € X\ {0}, then there exists f € X* such that ||f]

x- =1 and f(z) = [|z|x.

Bounded linear functionals in X* separate points in X, that is, if 1,20 € X and x1 # x2, then there exists f € X*

such that f(x1) # f(x2).

For each x € X, define & : X* — R by &(f) = f(x). The map = — I is a linear isomelry from X into X**, that is,
lzllx = [[&[|z = sup{[2(f)] : [[ |z~ = 1} = sup{|f(z)| : ||f[|2~ = 1}.

Proof. 1. Let M, ={y € X :y =z + Az for some z € M, X € R} and define f: M, — R by f(z+ Az) = Xinf e ||z —

yl|x. So f(x) =infyer ||z — yl|x, flm = 0 and f is linear on M, :

Let a,b € R,y1,y2 € My. Say y; = z; + Mz, Then f(ay; + bya) = f(az1 + bza + ahz + bhox) = (ar +
bA2) infyen ||z — yll = af(y1) + bf (y2).

For all X # 0, we see |f(z + Az)| = [N infyen ||z — y|| < A ||z + A7 2] = ||\ + 2|| (take y = —A7'2). So f is linear
on M and f(y) < ||y|| for all y € M,. Thus by the Hahn Banach Theorem, there exists an extension f € X* that is

linear and satisfies
flm, = £, f(x) = inf ||z — y||x and ||f]

since M is closed, f(z) > 0. Let € > 0. Then there exists y* € M such that ||z — y*|| < inf,en ||z — y|| + €. Since

x—y* e M, we see

2 < 1.

) = — ) = i —qyll > |z — y*|| — e
flx—y") = flx —y") ylgAfAIIx yll > [lz —y*|| — €

Thus . .
(o T P
|z —y*lx llz —y*[lx infyen ||z —yllx
Thus ||]|x- = sup{1f(@)] : ollx = 1} > 1. Hence ||]|x- = 1.

2. Take M = {0} and apply 1.

3. Since x1 # x2, we have z1 — z2 € X\ {0}. Now apply 2.

4. If f,g € X* and a,b € R, then Z(af + bg) = (af + bg)(x) = af(x) + bg(x) = aZ(f) + bZ(g). So & is a linear functional
on X*. Moreover, if z1,z2 € X and a,b € R, then ax1/+\b:1:2(f) = f(axy + bx2) = af(x1) + bf (x2) = aZ1(f) + bE2(f).
Thus x +— & is a linear map from X — X**. Now for all f € X*, we have |Z(f)| = |f()| < ||f||lx=||zllx = |lz||x if
l|fllxz= = 1. Thus ||Z||x+ < ||z||x. By 2, there exists f € X* such that ||f||x~ = 1 and f(z) = ||z||z. So, for this
particular £, we see [(f)] = |£(z)] = [lallx. Then [|4]|x-- > ||zl and so [[#]|x-- = [Jz]lx. o

Remarks.

1. X** is complete.

2. Define X := {Z € X**|x € X}. Then X is a subspace of X**. Since we’ve shown x — & is a linear isometry, we can
identify X with X so that ¥ < X**. By definition, X is a dense subspace of X (the closure of X). Thus X has to be a
subset of X** as X** is complete. Call X the completion of X.

3. X is called reflexive if X — X** defined by x — & is surjective as well. It is standard to identify & with z itself.

Definition. (p 125) A directed set is a nonempty set A with a relation < such that



o aSa forallae A
o a < [ and B <y implies a < 7.
o Ifa,3 € A, then there exists v € A such that « <y and 5 < 7.
An element of A is called an index.
Examples.
e Any nonempty subset of R with the usual order relation is a directed set. In particular, N is a directed set.

e Let B be a neighborhood basis for a topology 7 on X, that is B C 7 and for all z € X there exists A/ € B such that
xe€Vioral VeNandif U € T and x € U, then there exists V € N such that V C U. Set N, : {U e B:z € U}
with x € X fixed. If we say for U,V € N, that U <V when U D V, then N, is a directed set. (Note: If U,V € N,
then € U NV € T which implies there exists W € B with € W such that W CUNV.So W 2 U and W 2 V.)

Definition. Let V be a set. A net in X is a function from a directed set A into X. We denote the mapping o — x, by
< Ty >aca - The set A is called the index set.

Definition. Let (X,T) be a topological space and E C X. Let < xo, >aca be a net. Then
o < Ty >aca is eventually in E if there exists ag such that o € E for all a 2 ag.
o < Xy >aca is frequently in E if for every oo € A, there exists § € A such that 8 2, o and zg € E.

o < Iy >aca converges to a point x € X (that is, xo — x) if for all neighborhoods U of x, < xq >aca is eventually in
U.

e A point x € X is a cluster point of < xn, >aca if for all neighborhoods U of x < xq >aca s frequently in U.
Examples.

e Let B be a neighborhood basis for 7 and set N, = {U € B : z € U}. Suppose < zy >pen, C X satisfies 2y € U for
all U € N,. Then zy — =.

e Let f € L'([a,b]) N LT. Let S be the set of all nonnegative simple functions on [a,b] that are dominated by f. Order
S with the usual ordering of functions (that is, ¢1 < @9 if ¢1(x) < ¢o(x) for all = € [a,b]). So S is a directed set. For
¢ €S, put y, = f[a,b] ¢dz. Then < ys >4cs is a net and yy — f[a’b} fdx.

Definition. A subnet of a net < x4 >aca is a net <yg >pep together with a map 8 +— ag from B into A such that
e For all ag € A there exists By € B such that ag 2 ag whenever 5 2 By.
® Ys = Tqy-

Note. The map 3 — ag need not be injective.

Proposition 45 (4.18). If (X,7T) is a topological space and E C X, then x € X is an accumulation point of E if and
only if there exists a net < x4 >aecaC E\ {2} that converges to x and x € E if and only there exists < To >acal E that

converges to x.

Proposition 46 (4.19). If (X,7) and (Y,S) are topological spaces and f : X — Y, then [ is continuous at x € X if and
only if for all nets < xo >nca converging to x, we have < f(x4) >aca— f(x).

Proof. (Sketch)

Claim: Let N := {Nfepf~H(Wy) : Wy is open in Yy, D is a finite subset of Z}. Then the topology induced by N is the
weak topology and A is a neighborhood basis.



Proof: Suppose < f(x,) > converges to f(z). Let @ € T be an open set such that z € O. There exists a finite collection
fn € F and Wy, € Ty and f(z) € Wy such that N_, f; (W) € O. Thus = € N/_, f;(Wy,). Since f;(zo) — f(x)
for all j = 1,...,n there exists a; such that a 2 «a; and f;(z.) € Wy,. Note the a’s are in a directed set. So there
exists ag 2 oy for all j = 1,...,n. Thus for all « 2 ag, we have fj(z,) € Wy, which implies z, € f;l(ij). Thus
T € ﬂ?zlfj_l(ij) C O. Since O was arbitrary, done. O

Definition. Let X be a set and {(Ya, 7o)} aca a family of topological spaces. Given a family {fo : X — Ya}aca, there

exists a unique smallest topology that makes each fo continuous. Call this the weak topology generated by {fo}aca-
Proposition 47. Let (X,7) be a topological space and < o >0caC X a net.
1. If T is induced by a metric p on X, then < x, >— x € X if and only if < p(za,x) >— 0 € R.

2. If the topological space is the weak topology generated by a family of functions F C{f : X — (Y,p)}, then < xo >—
x € X if and only if < f(xo) >— f(x) €Y forall f € F.

Definition. Let (X,|| - ||) be a normed vector space. The weak topology on X is the weak topology generated by X*.

Convergence in this topology is called weak convergence.

Remark. If < z, >,c4C X is a net, then we say z, — « strongly if and only ||z, — z|| — 0 and we say z, — z weakly
(denoted z, — z) if and only if f(x,) — f(z) for all f € X*.

Recall. X C X**, so each z € X is a linear functional on X*.

Definition. Let (X,|| - ||) be a normed vector space. The weak* topology on X* is the weak topology generated by X.

Convergence in this topology is called weak* convergence.

Remark. If < f, >,c4C X* is a net, then we say f, — [ strongly if and only if ||fo — f|lx+ — 0 and we say fo — f
weakly (denoted f, —* f) if and only if f,(x) — f(x) for all 2 € X (note that this is just like pointwise convergence).

Theorem (Alaoglu’s Theorem). If (X,|| - ||) is a normed vector space, then the closed unit ball B~ := {f € X* : ||f|| <
1} C X* is compact in the weak* topology.

Definition. Let {(Xa,7Za)}aca be a family of topological spaces. The product topology on X = [] .4 Xa is the weak
topology generated by the coordinate maps {m : X — Xo}.

Definition. A topological space (X,T) is compact if whenever {Uy}aca is an open cover of X there exists a finite subset

B C A such that X = UgepU,. A subset K C X is called compact if it is compact with respect to the relative topology on K.

Theorem (Tychonoff’s Theorem. 4.42). If {(Xa,74)}aca is a family of compact topological spaces, then X =[], c 4 Xa

is compact with respect to the product topology.
Corollary 16. Suppose X has the weak topology generated by a family of functions F and that the following hold:

1. TX) 1s compact for all f € F

2. If x # vy, then there exists f € F such that f(x) # f(y).

3. If < f(xa) >aca is a convergent net for all f € F, then there exists © € X such that f(zq) — f(x) for all f € F.
Then X is compact.

Proof. Each f € F is a map into some topological space (Y}, 75). Condition 1 states that f(X) is a compact subset of Y for

each f € F. Tychonoft’s Theorem shows that Z = [] feF f(X) is compact with respect to the product topology. Suppose
there exists a map h : X — Z such that

o h(X) is closed



e 1 is a continuous bijection from X to h(X).
e h~! is continuous on h(X).

(So h is a homeomorphism from X to h(X)). Then if {Uy}aca is an open cover of X, then we have {h(U,)}aca is an
open cover of h(X). Since h(X) is a closed subset of the compact set Z, it is compact. So there exists a finite subcover
{h(Us)}aen for h(X). Thus {U,}aecp is a finite subcover of X as X = h™1(h(X)) € A~ (Uaeph(Us)) = UaesUs- Thus X
is compact.

Define h : X — Z by hy(z) = f(z) (the f component of h) for all f € F,xz € X. To show h(X) is closed, let
< Ya >acaC h(X) be a convergent net. Then there exists a net < x4 >4c4C X such that h(zy) = y, for all @ € A. Now
< f(zq) >=< hg(xq) > is a convergent net (otherwise < y, > does not converge). By condition 3, there exists z € X such
that f(zq) — f(z) for all f € F. But this implies h(x,) — h(z) and thus y, — h(z) € h(X). By Proposition 45 (4.18), h(X)

is closed. We see that h is continuous, since each f is continuous and each coordinate map 7y : Z — f(X) is continuous.

Now h : X — h(X) is surjective. So we need only show it is 1-1. By the contrapositive of condition 2, this is clear. Thus
h~! exists. To show it is continuous on h(X), we will show for a convergent net < y, >aca, that h™1(y,) — h71(y),
where yo, — y. Let 14 = h™1(ya). So < h(z,) >=< y, > is convergent. By condition 3, there exists 2 € X such that
h(zs) — h(x). Then h(x) = y since h(z,) = Yo — y. Thus h=1(y) = z. By Proposition 47b, < x, >aca is convergent in
X if and only if < h(zq) >aca is convergent in h(X). Since h(x,) — h(x), we see z, — x by the bijectivity of h. Thus
™Y (ya) = 4 — 2 = h~Y(y). Thus A1 is continuous. O

Proof. (Of Alaoglu’s Theorem) We want to use Corollary 16 with X = B" and the relative weak* topology. Also, X is the
family F in the corollary (so we replace the 2’s with f € X* and the f’s with « € X). Now, we just need to verify the three
conditions of the corollary hold.

Condition 1: Observe for f € B and z € X that |z(f)| = |f(z)| < ||/] z||x < ||z||x. Thus (B C [~||z||x, |=||x]

x*

which implies z:(B") is compact.
Condition 2: Clearly, if z(f) = z(g) for all z € X, then f = g.

Condition 3: Let < fo >4ecaC B be given and suppose < z(f,) > is convergent for all € X. Then for all x € X,
there exists £(x) such that fu(z) — £(x). We need to show £ € B". Let 8,7 € R,z,y € X. Then fo(Bz + yy) =
B9a () + vfaly) — BL(z) + v(y) and fo(Bz + vy) — €(Bx + vy). Thus Bl(x) + vl(y) = £(Bz + vy). Thus ¢ is linear.
Now, we show |[£]|x+ < 1. We see | fo ()] < [|fallx||z]|x < ||z||2. Thus |fo(z)] — |[€(x)] < ||z||x for all z € X and so
€|+ < 1. Therefore £ € B". Hence &(fo) = fa(z) — £(z) = x(¢) for all z € X.

Thus, by Corollary 16, B is compact. O

Corollary 17. Suppose < fo >C X* is a net such that sup||f]

x+ < M for some M < oco. Then there exists a subnet

< gg > of < fo > that is weak® convergent.

Proof. The net < ﬁ fa >C E*, which is compact by Alaoglu’s Theorem. It follows that there exists a subnet < ﬁ gg > of

< 7fa > converging weak* in B O

Application (Sect 6.2) Since LP(u) is a Banach Space, Alaoglu’s Theorem implies the closed unit ball in [LP]* is weak*

compact. In particular, bounded nets in [LP]* have weak* convergent subnets. What is [LP]*?

e Suppose p > 1 and % + % =1 (if p =1, take ¢ = o). For each g € L9, define ¢, : LP(11) — R by ¢4(f) = [y gf dp.

This is a linear functional. To show ¢4 € [LP]*, use Hélder’s Inequality:

sup{| [y fg dul : f € L?,[|f[l, = 1}
sup{ [, |fgldu: f € L, || f]l, = 1}

sup{|lgllg|I fllp : £ € L7, || fll, = 1}
lgllg < oc.

19gllz,1-
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Proposition 48. Suppose %+ % =landl<p<oc. Ifge L9, then ||g||Le = ||dglliLe- = sup{| [y fodul : || fll, =1}. If u

is semifinite, then we can allow for p = 1.

Recall. p is semifinite if for all E' with p(E) = oo, there exists F' C E such that 0 < u(F') < oco.

' if g(x) #0.
Proof. 1f g = 0, done. By Holder’s Inequality, ||¢,||is- < ||g||za. Define sgn(g(z)) = { 19! 9le) # Ifp>1,
0 if g(z) = 0.
g—1
define f : X — R by f(z) = w o 1715 = fo 9@ P« Ddy = o [ lg@)lidp = 1. Ths

Wl = | [ Fodul = | [y £()la@)lsan(o(x))du] = lollze. Thus llggllin- = llgllze. T p = 1, we
assume g is semifinite. Let € > 0 and bet E:={xeX:|g(x) Z \|g||oo — €}. Since p is semifinite, there exists FF C E such
that 0 < m(F) < oo (note pu(E) > 0). Define f : X — R by f(z) = ﬁxp(x)sgn(g(x)). Thus ||f]]1 = ﬁfx xpdp =1
and [0l = | [ Fodul = s [ lgldie = ks (lglloc — Vu(F) = [[gl]oo —e. Since € > 0 was arbitrary, |[égll - > [lg]loc.
So [|¢gllizey» = llgllLa- O

Ig(w ’

Theorem 52 (6.14). Suppose % + % =1 and g: X — R is measurable. If
1. fg € LY(p) for all f € ¥ := {simple functions in L'(u) which are 0 outside a set of finite measure}.

2. My(g) = sup{| [ fgdul : f € %, ||f|l, <1} < oo
3. Either Sq = {x € X : g(x) # 0} is o—finite or p is semifinite.
Then g € L7 and ||g||rs = My(g).
Proof. Set ¥ := {f : X — R : f is bounded, measurable, f = 0 outside a set of finite measure}.

Claim: supd] [y fodpl : £ € 5, [1fllp < 1} < M(g).

Proof: Let f € ¥ such that ||f||z» < 1. Select {¢,}5°; to be simple functions such that 0 < |¢1] < [go] < --- < |f]
and ¢, — f a.e. Observe each ¢, € ¥ and |[¢,||, < ||f|l, < 1. Suppose f = 0 for x € X \ E with u(E) < oo. Then
|6ngl < |fgl = IIfllslgxe| € L' by (1) since xg is a simple function. Also ¢,g — fg a.e. So by the LDC Theorem,

‘/ngdu‘ = ‘/limqbngdu‘ :lim‘/%gdu’ < M,(9)

Now suppose 1 < ¢ < co. Note that Sy is o—finite (exercise). Let {E,}72; C M satisfy By C Ey C --- with Sy = U2, E,,
and p(E,) < oo for all n € N. Let {¢,}52; be a sequence of simple functions such that 0 < |¢1] < |po| < -+ < |g]

and ¢, — g a.e. Put g, = dpxg, 50 0 < |g1] < |ga] < --- < |g] and g, — g with g, = 0 for all z € X \ E,. Define

Folz) = lonl " sonla(@)

PRI So || fallp = 1 as in the previous proof and f,, € ¥. By Fatou’s Lemma and the first claim,
nlld

llgllg < liminfllgnll, = liminfﬁ fX |9n|9dp

hmlnffx ‘fn Hgn( )‘d/JJ
hmlnffX | frllgldp
liminf [y frgdu < My(g) < oo.

IN

By Holder’s Inequality, ||g||q > My(g). Thus ||g]|l; = M4(g).

Now, suppose ¢ = oo and let € > 0. Set A = {z € X : |g(x)] > Mx(g) + co}. If u(A4) > 0, select B C A such that
0 < u(B) < oo (by 3) and put f = ﬁ)@gsgn( (z)). So f € ¥ and ||f]|pr = [y |fldp = 1. Thus Mo(g) > | [ fgdu| =
ﬁfB lg(x)|dp > u(B)( wo(g) + €)u(B) = My (g) + €, a contradiction. So p(A) = 0. Hence ||g]|cc < Moo( ) < o0. So

feL>. Also Moo (g) = sup{| [ fgdul} < ||glloo sup{| [ fdu|} < lglloc- Thus [|g]lec = Moo (g)- O

Theorem (Riesz Representation Theorem for LP Spaces (6.15)). Suppose % + é =1 with p € (1,00). Then for all
¢ € [LP]*, there exists g € LY such that ¢(f) = [y fgdp for all f € LP. If ju is o—finite, then we allow for p = 1.



Proof. First assume u(X) < oo. So all simple functions belong to L. Let ¢ € [LP]*. Define v : M — (—o0,00) by
v(E) = ¢(xg). Want to show v is a finite signed measure. Note that |v(E)| < |¢(xg)| < [L7]* < ||| zep-(E)YP <
||¢H[LP]*M<X)1/I] < oo. Thus v is uniformly bounded. To show it is countably additive, let {F;}22, C M be mutually
disjoint. So if £ = U, Ej, then xp = Y xg,. Also, 3272, u(E;) < u(X) < oo which implies 37, u(E;) is absolutely
convergent. Since p < oo ||xg — Z;V:1 XE;llp = HZJ.:NH Xe;llp = (u( ;?‘;NHEj))l/P = (Z N1 M(ES)) /P — 0 as
N — oo as p(E; is absolutely convergent. Since ¢ is continuous and linear in LP and Z j=1XE; — Xp in LP, we have
V(E) = ¢(xp) = ¢(X7 xp,) = Imy—oo oSN x5,) = my—co S0 d(xE,) = > =1 V(Ej). So v is countably additive.
Moreover, if p(E) = 0, then for F' € M such that F' C E, we have ||xr||, = 0. So ¢(xr) = 0 as ¢ is continuous which
implies ¢(0) = 0. Thus v(F) = 0 and thus ¥ << p. By the Radon Nikodym Theorem, there exists g € L'(u) such
that ¢(xg) = v(E) = [, gdp. If f is a simple function, by linearity of the integral and ¢ we have ¢(f) = [ fgdpu. Since
| [ fodu| = 1o(f)] < |9z . By Theorem 51, we see g € L. Need to show ¢(f) = [ fgdu for all f € LP. By
Proposition 19, there exists a sequence of simple functions {f,}52; C L? such that f, — f in L?, that is ||f, — f||, — 0.

By continuity of ¢, we see

6(f) = lim ¢(f,) = lim / fugd = lim / Podu + / Fadn < Tim |15, — fllllglly + / Fodu = / fadp.

’I’LHOO

(Note here that g is in fact unique a.e. by the Radon Nikodym Theorem).

Now we assume p is a o—finite measure. Select {E,}52; € M such that £y C Ey C --- JUE, = X,u(E,) < o0
for all n € N. For each n € N, find g, € L%(u, E,) such that for all f € LP(u, E,) we have ¢(f) = fEn fgdu and
llgnllg = llllie )+ < 19ll[Le(x))+- We may assume for m < n that g,|g

= gm a.e. in E,, (by the uniqueness of the finite
case.) Define g a.e. in X by g(z) = gn(z) if © € E,. Thus g|g, = g a.e. in E,. By the Monotone Convergence Theorem,
lgll2 = [ 1917%dp = [ limn oo |9xE, 171 = iy oo [y |galdi < 18117, ;. < 0. Thus g € L7, For a given f € LP(X),
we have

o gfxE, — gf ae. in X asn — oo.

o l9/xE, @)| < g@)||f@)] for a.c. = € X.
Li(z)

o fxg, —f—0forae zeX.
o |fxe, — fIP <2|f(X)P for ae. x € X (as |fxg, (z)? < |f(z)P for ae. z € X).

Thus by the Lebesgue Dominated Convergence Theorem and the last two observations, ||fxg, — fllzr — 0 as n — oo,
that is, fxg, — f in LP. By the Lebesgue Dominated Convergence Theorem and the continuity of ¢, we have ¢(f) =
o(lim fxg,) =limo(fxe,) =lim [ gfxp,dp = [limgfxe,dp = [ gfdu. Thus the Representation Theorem holds when p
is o—finite and p € [1, 00).

Finally, assume p € (1,00) and p is an arbitrary measure. For any o—finite set £ C X, there exists an a.e. unique
ge € Li(E) such that ¢(f) fE fgdu for all f € LP(E). If B C F and F is o—finite, then gp|p = gg for a.e. = €
E and |lgslly < llgrlle < 11¢llimo@y-- Put M = sup{|lgsl, : Eis o — finite, p(f) = [, fgpdu for all f € LP(E)}. So
M < ||Bllzr @2y < oo Let {E,}52, € M be o—finite such that ||gg, ||, — M. Then F = U;2, E, is o—finite (as it is
a countable union of o—finite sets) and ||g9g, |l < |lgrllq for all n € N. It follows that M = ||gp||s. For any o—finite
set A such that FF C A, we have [, |gp|? + fA\F lgavrl? = [rlgal® + fA\F lgal? = [, 1gal%dp < My = [, ]gr|*. Thus
gar = 0 a.e. Notice if f € LP(X), then p({z € X : [f(z)| > ;}) = j* ? Jase (a)]> 2 ydu < P [ |f(@)[Pdp < oo. Thus
{reX:f(z)#0}=U,{zeX: f(z) > }} is o—finite and so 1sA—FU{x6X f( ) # 0}. Thus gp|a\r =0 a.e. and
flx\a = 0. We have </5(f) = ¢(fxa+ fxx\a) = ¢(fxa) + ¢(fxx\a) Now fxx\a = 0 implies fxx\4 =0 in L” and thus

gr(z) ifxeF
o(fxx\a) = 0. Thus ¢(f) = ¢(fxa) = [, fgadp = [ fgrdp as ga =0 on A\ F. Take g(z) = B

0 otherwise.
Remark. By Proposition 47 (6.13), we see that L7 is isometrically isomorphic to [LP]*. Functionals in [LP]* are usually

just identified with functions in L? (for 1 < p < 00).



Corollary 18. Ifp € (1,00), then LP is reflexive.

Corollary 19. If p is o—finite and < fo >aca 15 a bounded net in L, then there exists a subnet < gg >gep and a
function g € L™ such that gg —* g in L™.

Corollary 20. Ifp € (1,00) and < fo >aca s a bounded net in LP, then there ezists a subnet < gz >pep and a function
g € L? such that gg — g in LP.

Example. (Fourier Series) Let 1 < p < oo. Consider the space LT ([0,27]). For each k € Z, put ex(z) = \/%e
Then e, € L for all k € Q which implies e, € L? for all ¢ € [1,00]|. For each f € LP and k € Z, put f(
\/% f[()’%] f@eg(z)dz = 0,27] f(x)e~*=dg. Here, f(k) is the k" fourier coefficient for f. The series Dy fk)et is
the nt" partial sum of the Fourler Series for f. For each x € [0, 27], define ¢, : LP — C by ¢,(f) = > 7_ .. f(k)e™ ™. From

the definition of f(x), we see ¢ is linear and

()] < S, \f(kmeim note |e““”| =1
= Zk——n ‘f(k)| = Zk_—n PL | f[o 2] kmdx|
-1/p
< e naellfllee (f[o o €T |PIP™ 1) By Holder

1] 2n+1
= Zk:——n (2m) %/1; = (Q;LJq/p ||f||P

Hence ||¢,|(z 7+ < 00 and so ¢, € [LF]*. By the Riesz Representation Theorem, there exists g, € LP/P=1(]0,2n]) such that
b (f) = f[o,zw] f(y)gz(y)dy. What is g,? Note

n

— - i —iky jikx _/ 1 2 (z—y)
—k_z_:n27r/f(y)€ o= 0,27] Z 27T -

=gz (y)

Using trig,
g rig sin( 2L (z—y)) it 4y
27 sin(£5Y)

2n+1
2w

ifx=y.

Thus ¢.(f) = f[ovzﬂ] F@)kn(z —y)dy.

3.2 Dual Spaces for Spaces of Continuous Functions (Ch 7)

Definition. If (X,7) is a topological space and f : X — R, then the support of f is supp(f) :={x € X : f(z) # 0}.

Notation. Let C(X) denote the vector space of all continuous functions from (X,7) — R. Set C.(X) := {f € C(X) :
supp(f) is compact}. Define || ||¢s : Cc(X) — (0,00) by || f||lr := sup{|f(z)| : x € X} (the uniform norm). We will assume
C.(X) is endowed with || - ||y, making it a normed vector space. Note that, in general, it is not complete.

Definition. If I : C.(X) — R, then I is a positive linear function if I is linear and I(f) > 0 whenever f > 0.
Definition. If p is a Borel measure on X and E € Bx, then

e 1 is outerregular on E if u(E) = inf{u(U) : U is open, E C U}.

e 1 is innerregular on E if u(E) = sup{u(K) : K is compact, K C E}.

o 1 is regular if it is both outer and inner reqular on all Borel sets.
Definition. A Borel measure p is called a Radon measure if

o u(K) < oo for all compact K C X.



e 1 is outer reqular on all Borel sets.
e 1 is inner reqular on all open sets.

Remark. If (X,7) is c—compact and o—finite, then p is a Radon measure if and only if y is regular.

Notation. If U is open and f € C.(X), then we write f < U if 0 < f < xy and supp(f) C U and say f is subordinate to
U.

Theorem (Riesz Representation Theorem for C.(X)). If I is a positive linear function on C.(X), then there exists a
unique Radon measure i on X such that I(f) = [ fdu for all f € Co(X). Also

e For all open sets U, p(U) =sup{I(f): f €Cc(X),f <U}.

e For all compact K, u(K) =inf{I(f): f € Cc.(X),f > xK }-
Facts. Suppose p is a Radon measure on X.

o If 1 <p < oo, then C.(X) is dense in LP(u).

e (Lusin’s Theorem for Radon measures) If f : X — R is measurable and 0 outside a set of finite measure, then for all
€ > 0, there exists g € C.(X) such that sup,¢yx |g(2)| < sup,cx |f(z)| and p({z € X : f(z) # g(2)}) < e

Definition. A topological space (X,T) is called a locally compact Hausdorff space if
1. it is locally compact, that is, for each x € X, there exists A C X such that x is in the interior of A and A is compact.

2. it is Hausdorff, that is, whenever x,y € X and x # y, we may find open U,V € T such that UNV = () and
zelUyeV.

Let (X,7T) be alocally compact Hausdorff space. Let Co(X) be the closure of C.(X) with respect to the uniform metric.
It can be shown that f € Co(X) if and only if {x € X : |f(x)| > €} is compact for all € > 0 (so f is “vanishing at 00”).

Definition. We say that a signed Borel measure p on Bx is a signed Radon measure if || is a Radon measure.

Notation. Let M(X) be the vector space of all finite signed Radon measures. Define || - ||as : M(X) — [0,00) by
[pllar = [pl(X).

Riesz Representation Theorem for Cy(X). Let (X,7) be a locally compact Hausdorff space. For each pn € M(X) and
feCo(X), define I,(f) = fX fdu. Then the map p— I, is an isometric isometry from p(X) — Co(X)*.

Corollary 21. If < po >acaC M(X) is a bounded net, then there exists a subnet < vg >gep of < po > and a Radon
measure v € M(X) such that vg —=* v in M(X), that is, for all f € Co(X), we have [, fdvg — [ fdv.

Corollary 22. Let i be a positive Radon measure and < go >C L' () satisfies supyea ||gallrr < 0o. Then there exists a
subnet < hg >gep of < go > and a Radon measure v € M(X) such that hgdy —* dv in M(X).

Proof. First, define pio, € M(X) by po(E) = [ 5 Jadp. By the previous corollary, there exists a subnet < v3 > such that
vg —* v. By definition of p,, we have hgdu —* dv. O

Note. Although each g,du is absolutely continuous with respect to u, this may not be true for dv.

Example. X = [—1,1] with the usual topology. Let p be the Lebesgue measure on [—1,1] restricted to the Borel sets.
. . 0 if z g [_%’ %] .
Then u is a Radon measure. Consider the sequence g, (z) = . Notice that ||gn|lr =1 < o0.
2 oifze(—=, ).
2 1 n’n

Claim: g,dx —* ddy in M(X).



Proof: Consider ||

—1,1] gn(x) f(x)dz for f € Co([—1,1]). We have

G, See=5 [ ) - SO 10 < 1) = Ol + SO = SO

n’%)

by continuity of f.
This implies g,dx —* ddy, which is not absolutely continuous with respect to m.

How do we fix this? If sup||fa|| < oo and for all € > 0 there exists § > 0 for all a such that [ |f.|du < e whenever u(E) < 4,
then there exists a subnet < gg >— g in L. So if hgdu is “uniformly absolutely continuous”, then we are good.

Note. The above example also works to show that weak convergence does not imply strong convergence (consider the

sequence g./? ).

3.3 Baire Category Theorem

Definition. Let (X,7) be a topological space. A set E C X is of first category (meager) if E is the countable union of

nowhere dense sets (in particular, it does not contain any open sets) and E is of second category if it is not meager.

Example. Q is meager as it is a countable union of points.

Baire Category Theorem [p 161]. Let X be a complete metric space.
1. If {U, 352 is a sequence of open dense subsets of X, then NS U, is dense in X.
2. X is not the countable union of nowhere dense subsets of X.

Proof. Since X is a metric space, if a set E is not dense in X, then there exists z € X such that x ¢ E, which implies there
exists an open set A C X such that x € A and AN E = . To prove (1), it suffices to show that for any open set W C X
we have W N (N52,U;) # (. Since each U, is dense, we must have ANU; # O for all open sets A. In particular, W NU; # 0.
Thus there exists a ball B(ry,z1) € W NU;. Now, B(ry,x1) is open, so we may find B(rg,z3) C B(%rl,xl) N U, and note
B(ry, 29) € B(ry, 1) N Uy. Continuing inductively, we obtain {B(rj,x;)}32, such that B(rj,z;) C B(3rj-1,2j-1)NU; and
B(rj,xz;) C B(rj_1,xzj—1) NU;. Note rq > 2ry > 2%rg > ... > 20=1p; > ... Hence r; — 0. Also, if m,n > N € N, then
B(rp, xm) < 21"Nry. Thus {x,}5°, is a Cauchy sequence. As X is complete, there exists € X such that p(z,,z) — 0.
In particular, z € B(ry,zn) € Uy N B(r,21) € Uy NW for all N € N. Thus z € (N52,U;) N W. Hence, N2, U; is dense
in X. For (2), if {E£;}52, are each nowhere dense sets, then {X \ F;}22, would be a sequence of open dense sets. By (1),
N2, (X \ E;) is dense and thus # (). Of course

0# N2 (X\Ej) =X\ (U2, Ej) € X\ U2, E;.

So UX,E; # X. m

Consequences of the Baire Category Theorem

Open Mapping Theorem. Let X,9) by Banach Spaces. If T € L(X,9) is surjective, then T is an open mapping, that is

T(U) is open whenever U is open in X.

Corollary 23. If T is a bijection between X and ), then T and T~ are continuous and so T is an isomorphism.

Closed Graph Theorem. If T : X — Q) is a closed linear map of Banach Spaces, then T is bounded (and so continuous).
Definition. A linear map T is closed if the graph of T, {(x,y) € X xQ : Tax =y}, is a closed subspace in X x 2.

Remark. To show Tz, — Tz whenever z,, — x, it is sufficient to show Tx,, converges to some y in the range of T.



Example. There exists a nowhere differentiable function on [0, 1].

Proof: Endow C([0,1]) with the uniform norm. Let D = {f € C([0,1]) : f'(x0) exists for some zg € [0,1]}. We will show

that D is a countable union of nowhere dense sets in C([0,1]) and thus D # C([0,1]) by the Baire Category Theorem.

f(@)—f(2o)
0

xTr—x

If f/(x0) exists then lim,_,,, exists. Furthermore, if f'(z¢) exists, then for some m,n € N, we must have

M‘ < n for all z with 0 < |z — 29| < L. Define E,, ,, = {f € C([0,1]) : for some zy € [0,1],|f(z) — f(zo)| <

r—xo

n|z — xo| for all x € [0,1] with 0 < |z — x| < %} So D CUSL, Uy By .

Claim: E, ., are closed.
Proof: Let {f;}32, C Eyn m be such that ||f — f;|fx — 0 for some f € C([0, 1]). For each j, we have |f;(z) — f;(z;)| <

nlz — x;| for all z such that 0 < |z — x| < L. Extract a subsequence (unrelabeled, for simplicity) so that

xp — xg € [0,1]. Then

[f(@) = flxo)l < |f(2) = ()| +1f5(2) = fi(x)| + | f5(x5) = f3(@o)| + | fi(20) — F(wo)]
—_———

—0 —0 —0

Lz — ]

IN

— %|x—m0\.

To show that E,, ,, are nowhere dense, note that it is enough to show that for all e > 0 and f € E,, ,,, that there exists
g € C(]0,1]) such that ||g — f|lu < €, but g &€ E,, . Of course, we can do this- just take g to be a piecewise linear

continuous function with slope > n everywhere.
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