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EXPONENTIAL STABILITY OF A THERMOELASTIC SYSTEM
WITH FREE BOUNDARY CONDITIONS WITHOUT MECHANICAL

DISSIPATION∗

GEORGE AVALOS† AND IRENA LASIECKA‡

SIAM J. MATH. ANAL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 29, No. 1, pp. 155–182, January 1998 010

Abstract. We show herein the uniform stability of a thermoelastic plate model with no added
dissipative mechanism on the boundary (uniform stability of a thermoelastic plate with added bound-
ary dissipation was shown in [J. LAGNESE, Boundary Stabilization of Twin Plates, SIAM Stud. Appl.
Math. 10, SIAM, Philadelphia, PA, 1989], as was that of the analytic case—where rotational forces
are neglected—in [Z. LIU and S. ZHENG, Quarterly Appl. Math., 55 (1997), pp. 551–564]). The proof
is constructive in the sense that we make use of a multiplier with respect to the coupled system
involved so as to generate a fortiori the desired estimates; this multiplier is of an operator theoretic
nature, as opposed to the more standard differential quantities used for related work. Moreover,
the particular choice of our multiplier becomes clear only after recasting the PDE model into an
associated abstract evolution equation.
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1. Introduction.

1.1. Statement of the problem. Let Ω be a bounded open subset of R2 with
sufficiently smooth boundary Γ = Γ0 ∪ Γ1, Γ0 and Γ1 both nonempty, and Γ0 ∩ Γ1 =
∅. We consider here the following thermoelastic system taken from J. Lagnese’s
monograph [12]:

 ωtt − γ∆ωtt + ∆2ω + α∆θ = 0

βθt − η∆θ + σθ − α∆ωt = 0
on (0,∞) × Ω;

ω =
∂ω

∂ν
= 0 on (0,∞) × Γ0;

∆ω + (1 − µ)B1ω + αθ = 0

∂∆ω

∂ν
+ (1 − µ)

∂B2ω

∂τ
− γ

∂ωtt

∂ν
+ α

∂θ

∂ν
= 0

on (0,∞) × Γ1;

∂θ

∂ν
+ λθ = 0 on (0,∞) × Γ, λ ≥ 0;

ω(t = 0) = ω0, ωt(t = 0) = ω1, θ(t = 0) = θ0 on Ω.

(1.1)
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156 GEORGE AVALOS AND IRENA LASIECKA

Here, α, β, and η are strictly positive constants; positive constant γ is proportional
to the thickness of the plate and assumed to be small with 0 < γ ≤ M ; the constant
σ ≥ 0 and the boundary operators Bi are given by

B1ω ≡ 2ν1ν2
∂2ω

∂x∂y
− ν2

1
∂2ω

∂y2 − ν2
2
∂2ω

∂x2 ;

(1.2)

B2ω ≡ (ν2
1 − ν2

2)
∂2ω

∂x∂y
+ ν1ν2

(
∂2ω

∂y2 − ∂2ω

∂x2

)
;

the constant µ is the familiar Poisson’s ratio ∈ (0, 1
2 ), and [ν1, ν2] denotes the outward

unit normal to the boundary. The given model mathematically describes a Kirchoff
plate, the displacement of which is represented by the function ω subjected to a
thermal damping as quantified by θ. We are concerned here with the uniform stability
of solutions [ω, θ] to (1.1).

1.2. Preliminaries and abstract formulation. As a departure point for ob-
taining the proofs of well posedness and of exponential stability, we will consider the
system (1.1) as an abstract evolution equation in a certain Hilbert space, for which
we introduce the following definitions and notation:

• With Hk
Γ0

(Ω) ≡ {ω ∈ Hk(Ω) : ∂jω
∂νj |Γ0 = 0 for j = 0, ..., k − 1}, we define

Å: L2(Ω) ⊃ D
(
Å

)
→ L2(Ω) to be Å= ∆2, with domain

D(Å) =
{

ω ∈ H4(Ω) ∩ H2
Γ0

(Ω) : ∆ω + (1 − µ)B1ω = 0 on Γ1 and

∂∆ω

∂υ
+ (1 − µ)

∂B2ω

∂τ
= 0 on Γ1

}
.(1.3)

• Å is then positive definite, self-adjoint, and consequently from [8] we have
the characterizations

D(Å
1
4 ) = H1

Γ0
(Ω);

D(Å
1
2 ) = H2

Γ0
(Ω);

D(Å
3
4 ) =

{
ω ∈ H3(Ω) ∩ H2

Γ0
(Ω) : ∆ω + (1 − µ)B1ω = 0 on Γ1

}
.

(1.4)

Moreover, using the Green’s formula in [12], we have that for ω, ω̂ “smooth
enough,” ∫

Ω
(∆2ω)ω̂dΩ = a (ω, ω̂)

+
∫

Γ

[
∂∆ω

∂ν
+ (1 − µ)

∂B2ω

∂τ

]
ω̂dΓ

−
∫

Γ
[∆ω + (1 − µ)B1ω]

∂ω̂

∂ν
dΓ,

(1.5)

where a(·, ·) is defined by

a (ω, ω̂) ≡
∫

Ω
[ωxxω̂xx + ωyyω̂yy + µ (ωxxω̂yy + ωyyω̂xx) + 2(1 − µ)ωxyω̂xy] dΩ.

(1.6)
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In particular, this formula and the second characterization in (1.4) give that
for all ω, ω̂ ∈ D(Å

1
2 ),〈

Åω, ω̂
〉[

D(Å
1
2 )

]′
×D(Å

1
2 )

=
(
Å

1
2 ω, Å

1
2 ω̂

)
L2(Ω)

= a (ω, ω̂)L2(Ω) ,(1.7)

and in addition,

‖ω‖2
D(Å

1
2 )

=
∥∥∥Å 1

2 ω
∥∥∥2

L2(Ω)
= a (ω, ω) .(1.8)

• We define AD : L2(Ω) ⊃ D (AD) → L2(Ω) to be AD = −∆, with Dirichlet
boundary conditions, viz.

D(AD) = H2(Ω) ∩ H1
0 (Ω).(1.9)

AD is also positive definite, self-adjoint, and, by [8],

D(A
1
2
D) = H1

0 (Ω).(1.10)

• The space L2
σ+λ(Ω) will be defined as

L2
σ+λ(Ω) ≡

 L2(Ω) if σ + λ > 0,

L2
0(Ω) if σ + λ = 0,

(1.11)

where L2
0(Ω) =

{
θ ∈ L2(Ω) 3

∫
Ω θ = 0

}
.

• We designate as AR : L2(Ω) ⊃ D (AR) → L2(Ω) the following second-order
elliptic operator:

AR = −∆ +
σ

η
I,

D(AR) =
{

θ ∈ H2(Ω) :
∂θ

∂ν
+ λθ = 0

}
;

(1.12)

AR is self-adjoint, positive semidefinite on L2(Ω), and, once more by [8],

D(A
1
2
R) = H1(Ω).(1.13)

When λ = σ = 0, we shall denote the corresponding operator as AN (instead
of as AR).
Furthermore, as the bilinear form (∇θ, ∇θ̃)L2(Ω) is H1(Ω)-elliptic on H1(Ω)∩
L2

0(Ω), we can define the norm-inducing inner product on H1(Ω) ∩ L2
σ+λ(Ω)

as

(
θ, θ̃

)
H1(Ω)∩L2

σ+λ(Ω)
≡

(
∇θ, ∇θ̃

)
L2(Ω)

+ λ
(
θ, θ̃

)
L2(Γ)

+
σ

η

(
θ, θ̃

)
L2(Ω)

.

(1.14)

• (γ0, γ1) will denote the Sobolev trace maps, which yield for f ∈ C∞(Ω)

γ0f = f |Γ ; γ1f =
∂f

∂ν

∣∣∣∣
Γ

.(1.15)
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• We define the elliptic operators G1, G2, and D as thus:

G1h = v ⇐⇒



∆2v = 0 in (0,∞) × Ω;

v =
∂v

∂ν
= 0 on (0,∞) × Γ0;

∆v + (1 − µ)B1v = h

∂∆v

∂ν
+ (1 − µ)

∂B2v

∂τ
= 0

on (0,∞) × Γ1;

(1.16)

G2h = v ⇐⇒



∆2v = 0 in (0,∞) × Ω;

v =
∂v

∂ν
= 0 on (0,∞) × Γ0;

∆v + (1 − µ)B1v = 0

∂∆v

∂ν
+ (1 − µ)

∂B2v

∂τ
= h

on (0,∞) × Γ1;

(1.17)

Dh = v ⇐⇒

 ∆v = 0 on (0,∞) × Ω;

v|Γ = h on (0,∞) × Γ.
(1.18)

The classic regularity results of [19, p. 152] then provide that for s ∈ R,
D ∈ L

(
Hs(Γ), Hs+ 1

2 (Ω)
)

;

G1 ∈ L
(
Hs(Γ1), Hs+ 5

2 (Ω)
)

;

G2 ∈ L
(
Hs(Γ1), Hs+ 7

2 (Ω)
)

.

(1.19)

With the operators Å and Gi as defined above, one can readily show with
the use of the Green’s formula (1.5) that ∀ ω ∈ D(Å

1
2 ) the adjoints G∗

i Å
∈ L(D(Å

1
2 ), L2(Γ)) satisfy, respectively,

G∗
1Åω =


∂ω

∂ν

∣∣∣∣
Γ1

on (0,∞) × Γ1;

0 on (0,∞) × Γ0;
(1.20)

G∗
2Åω =

{
−ω|Γ1

on (0,∞) × Γ1;
0 on (0,∞) × Γ0.

• We define the operator Pγ by

Pγ ≡ I + γAN ,(1.21)

and make the following points:
(i) With the parameter γ > 0, we define a space H1

Γ0,γ(Ω) equivalent to
H1

Γ0
(Ω) with its inner product being

( ω1, ω2)H1
Γ0,γ(Ω) ≡ (ω1, ω2)L2(Ω) + γ (∇ω1,∇ω2)L2(Ω) ∀ω1, ω2 ∈ H1

Γ0
(Ω),

(1.22)
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and with its dual (pivotal with respect to L2 inner product) denoted as
H−1

Γ0,γ(Ω). After recalling that H1(Ω) = D(A1/2
N ), two extensions by con-

tinuity will then yield that

Pγ ∈ L
(
H1

Γ0,γ(Ω), H−1
Γ0,γ(Ω)

)
, with(1.23)

〈Pγω1, ω2〉H−1
Γ0,γ(Ω)×H1

Γ0,γ(Ω) = (ω1, ω2)H1
Γ0,γ(Ω) .(1.24)

Furthermore, the obvious H1
Γ0,γ(Ω)-ellipticity of Pγ and Lax–Milgram give us

that Pγ is boundedly invertible, i.e.,

P−1
γ ∈ L

(
H−1

Γ0,γ(Ω), H1
Γ0,γ(Ω)

)
;(1.25)

and moreover, Pγ being positive definite and self-adjoint as an operator Pγ :
L2(Ω) ⊃ D(Pγ) → L2(Ω), the square root P

1/2
γ is consequently well defined

with D(P 1/2
γ ) = H1

Γ0,γ(Ω) (using the interpolation theorem in [19, p. 10]; it
then follows from (1.22) and (1.24) that for ω and ω̂ ∈ H1

0,γ(Ω),∥∥∥P
1
2

γ ω
∥∥∥2

L2(Ω)
= ‖ω‖2

L2(Ω) + γ ‖∇ω‖2
L2(Ω) = ‖ω‖2

H1
Γ0,γ(Ω) ;(1.26)

(
P

1
2

γ ω, P
1
2

γ ω̂
)

L2(Ω)
= (ω, ω̂)H1

Γ0,γ(Ω) .(1.27)

(ii) Finally, inasmuch as Green’s formula yields for ω, ω̂ ∈ D(Å
1
2 ),

γ
〈(

∆ + ÅG2γ1
)
ω, ω̂

〉
H−1

Γ0,γ(Ω)×H1
Γ0,γ(Ω)

= −γ (∇ω, ∇ω̂)L2(Ω) + γ

(
∂ω

∂ν
, ω̂

)
L2(Γ1)

+ γ
(
γ1ω, G∗

2Åω̂
)
L2(Γ1)

= −γ (∇ω, ∇ω̂)L2(Ω) = −γ 〈ANω, ω̂〉H−1
Γ0,γ(Ω)×H1

Γ0,γ(Ω) ,(1.28)

after using (1.20). We thus obtain after two extensions by continuity to
H1

Γ0,γ(Ω) that

Pγ = I − γ
(
∆ + ÅG2γ1

)
as elements of L

(
H1

Γ0,γ(Ω), H−1
Γ0,γ(Ω)

)
.(1.29)

In obtaining the equality above, we have used implicitly the fact that for
every $∗ ∈ H−1

Γ0,γ(Ω) and $ ∈ D(Å1/2),

〈$∗, $〉H−1
Γ0,γ(Ω)×H1

Γ0,γ(Ω) = 〈$∗, $〉
[D(Å

1
2 )]′×D(Å

1
2 )

.(1.30)

• We denote the Hilbert space Hγ to be

Hγ ≡ D(Å
1
2 ) × H1

Γ0,γ(Ω) × L2
σ+λ(Ω),(1.31)

with the inner product ω1
ω2
θ

 ,

 ω̂1
ω̂2

θ̂


Hγ

=
(
Å

1
2 ω1, Å

1
2 ω̂1

)
L2(Ω)

+
(
P

1
2

γ ω2, P
1
2

γ ω̂2

)
L2(Ω)

+ β
(
θ, θ̂

)
L2(Ω)

.

(1.32)



160 GEORGE AVALOS AND IRENA LASIECKA

• With the above definitions, we then set Aγ : Hγ ⊃ D(Aγ) →Hγ to be

Aγ ≡

 I 0 0
0 P−1

γ 0
0 0 I


 0 I 0

−Å 0 (♣)
0 −α

β
AD(I − Dγ0) − η

β
AR

 ,

where (♣) ≡ α

(
AR − σ

η
− ÅG1γ0 + λÅG2γ0

)
,

with D(Aγ) =
{

[ω1, ω2, θ] ∈ D(Å
1
2 ) × D(Å

1
2 ) × D(AR) ∩ L2

σ+λ(Ω)

such that Åω1 + αÅG1γ0θ − αλÅG2γ0θ ∈ H−1
Γ0,γ(Ω)

and α ∆ω2 + η∆θ ∈ L2
σ+λ(Ω)

}
.

(1.33)

If we take the initial data
[
ω0, ω1, θ0

]
to be in Hγ , then the coupled system (1.1)

becomes the operator theoretic model

d

dt

 ω
ωt

θ

 = Aγ

 ω
ωt

θ

 ,

(1.34)  ω(0)
ωt(0)
θ(0)

 =

 ω0

ω1

θ0

 .

REMARK 1. For initial data
[
ω0, ω1, θ0

]
in D(Aγ), the two equations of (1.1) may

be written pointwise as

Pγωtt = −Åω − αÅG1γ0θ + αλÅG2γ0θ − α∆θ in H−1
Γ0,γ(Ω);(1.35)

βθt = η∆θ − σθ + α∆ωt in L2
σ+λ(Ω).(1.36)

1.3. Previous literature. In recent years, questions related to the controlla-
bility and stabilization of thermoelastic plates have drawn considerable attention in
the recent past (see [10], [12], [9], [21], [22], and [24]); we shall concentrate here on
detailing results of strong and uniform stability related to the present model, that
of the two-dimensional Kirchoff plate coupled with the heat equation. This partic-
ular model, associated with free boundary conditions, was introduced by J. Lagnese
in [12]. In that work, he established the well posedness and exponential stability of
(1.1) with γ strictly positive, and with the appropriately chosen feedback mechanisms
[F1(ωt),F2(ωt)] inserted into the natural boundary conditions of the Kirchoff plate
component of the system, viz.

ω =
∂ω

∂ν
= 0 on (0,∞) × Γ0,

∆ω + (1 − µ)B1ω + αθ = F1(ωt) on (0,∞) × Γ1,

∂∆ω

∂ν
+ (1 − µ)

∂B2ω

∂τ
− γ

∂ωtt

∂ν
+ α

∂θ

∂ν
= F2(ωt) on (0,∞) × Γ1;

(1.37)
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the proof of Lagnese is based on the use of differential multipliers, and it exploits the
fact that γ > 0. Since, from a physical point of view, the thermal effects present should
induce some measure of energy dissipation (in fact, one can show the homogeneous
system’s strong stability by routine methods; see [12, Chap. 7], including the remark
at the end of sect. 2.3 on p. 161), a natural question arising in this context is whether
the system is actually (uniformly) stable without the boundary feedbacks F1(ωt),
F2(ωt) in place, i.e., when there are no added mechanical forces. Indeed, in the case
γ = 0 and with different boundary conditions than those in (1.1) imposed upon the
system, the answer to the question is in the affirmative and has been provided by
several authors. With γ = 0, J. Kim in [10] showed the uniform stability of (1.1)
with the clamped boundary conditions ω = ∂ω

∂ν = θ = 0 on Γ, as did J. Rivera and R.
Racke in [25], who studied the coupled equation with the hinged boundary conditions
ω = ∆ω = θ = 0. Also with γ = 0, Z. Liu and S. Zheng in [21] proved the exponential
stability of (1.1) with the boundary conditions

ω =
∂ω

∂ν
= 0 on (0,∞) × Γ0,

ω = ∆ω + (1 − µ)B1ω + αθ = 0 on (0,∞) × Γ1,

(1.38)

leaving the case of free boundary conditions as an open question, even in the case
γ = 0. The proof of Liu and Zheng is indirect in the sense that it is based on a
contradiction argument applied to the exponential decay stability criterion (due to
L. Monauni, R. Nagel, and F. Huang), a criterion essentially dictating the uniform
estimate for that part of the resolvent which lies on the imaginary axis. On the
other hand, it is now known that the case γ = 0 is rather special as the corresponding
system (at least for certain boundary conditions) generates an analytic semigroup (see
[20]), a consequence of which will be the exponential stability of the system (recall
that the system is strongly stable). Given these results, the question of interest now is
whether the given thermoelastic system (without any additional boundary dissipation)
is uniformly stable in the nonanalytic case, viz. γ > 0, with consequently the elastic
part of the system being of hyperbolic character.

A partial answer to the question above was given by the present authors in [2],
[3]: with γ > 0 in (1.1) and the boundary conditions

ω = (1 − χ)
∂ω

∂ν
= 0

χ (∆ω + (1 − µ) B1ω) + αθ = 0

on (0,∞) × Γ(1.39)

replacing the higher order ones for ω which are being considered in this work, where
the parameter χ above is either 0 or 1, it is shown that the partial differential equa-
tion is uniformly stable with decay estimates which are “robust” with respect to the
parameter γ. The proof of this stability result is through an implementation of the
multiplier method (see [11] a for treatise of this technique), with an operator theoretic
quantity taken as the particular multiplier of choice.

The main goal of the present paper is to provide an affirmative answer to the ques-
tion of uniform stability of (1.1) with the free boundary conditions in place, again with
γ > 0. The fact that the presence of these higher order boundary conditions greatly
complicates the analysis was duly noted in [21], and the arguments employed in that
work do not carry over for plates with free boundary conditions, even when γ = 0.
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Like our earlier work in [2], [3], the proof of uniform decay here is “direct,” based on
pseudodifferential (or operator theoretic) multipliers, in contrast to the contradiction
argument supplied in [21] for the case γ = 0 and clamped boundary conditions. In
addition, our direct proof, making use as it does of the multiplier method, carries the
advantage of providing explicit estimates of the decay rates. However, an application
of the multiplier method alone is not enough to obtain the desired inequalities for
the equation (1.1) in the case when free boundary conditions are present. Indeed, in
proving the stability result (Theorem 1.3 below) we must couple the use of an oper-
ator theoretic multiplier with a decomposition of the solution ω into three separate
components, and a subsequent and crucial invocation of recently derived trace regu-
larity results to handle each of these in distinct fashion; in particular, we exploit the
observation that the time derivative of one of these components (modulo a change
of variable) solves a certain wave equation. This scrutiny of boundary traces for the
hyperbolic component ω of the dynamics is a sine qua non for obtaining the necessary
estimates for uniform decay. Finally, we must emphasize that the acute difficulty
of the problem which necessitates the use of microlocally derived trace estimates is
owing solely to the specific boundary conditions being considered here and does not
appear for other combinations of lower order boundary conditions.

1.4. Statement of the results. We shall begin by giving preliminary results
regarding the well posedness of the system (1.1) and the regularity of its solutions.

THEOREM 1.1 (well posedness). Again with the parameter γ > 0, Aγ , given
by (1.33), generates a C0-semigroup of contractions

{
eAγ t

}
t≥0 on the energy space

Hγ ; therefore for initial data
[
ω0, ω1, θ0

]
in Hγ , the solution [ω, ωt, θ] to (1.34), and

consequently to (1.1), is given by ω
ωt

θ

 = eAγ(·)

 ω0

ω1

θ0

 ∈ C([0, T ] ,Hγ).(1.40)

The following regularity result is needed to justify the computations performed
below.

THEOREM 1.2. For initial data
[
ω0, ω1, θ0

]
∈ D

(
A2

γ

)
, we have the following:

(i) the solution [ω, ωt, θ] to (1.1) is an element of C([0, T ];H4(Ω) × H3(Ω) ×
H2(Ω)).

(ii) ω − γG2γ1ωtt + αG1γ0θ − αλG2γ0θ ∈ C([0, T ]; D(Å)).
Our main result is as follows.
THEOREM 1.3 (uniform stability). With γ > 0, the solution [ω, ωt, θ] of (1.1)

decays exponentially; that is to say, there exist constants δ > 0 and Mδ ≥ 1 such that
for all t > 0, ∥∥∥∥∥∥

 ω(t)
ωt(t)
θ(t)

∥∥∥∥∥∥
Hγ

≤ Mδe
−δt

∥∥∥∥∥∥
 ω0

ω1

θ1

∥∥∥∥∥∥
Hγ

.(1.41)

REMARK 2. The estimates obtained in Theorem 1.3 are not uniform with respect
to the parameter γ > 0. Indeed, the arguments used in the proof break down when
γ = 0, and consequently the estimates leading to the statement in Theorem 1.3 blow
up when γ → 0. This is due to technicalities of the proof which rely on the strict
hyperbolicity of the model (a property which is lost in the limit case γ = 0). On the
other hand, in the case γ = 0, it has been recently shown in [27] that the thermoelastic
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system with free boundary conditions generates an analytic semigroup. Therefore,
a posteriori (recalling the strong stability of the system), we conclude that uniform
stability holds true also for the case γ = 0. However, these estimates cannot be
reconstructed as a limiting case of the present problem when γ > 0. This is unlike the
case of other boundary conditions associated with this model (see [3]).

2. Proofs. The proofs of well posedness and of regularity (Theorems 1.1 and
1.2) are by now fairly routine (see [12, Chap. 7] for related well posedness/regularity
results). However, since these preliminaries are critical for our ultimate end of uniform
stability, we provide their concise proofs for the sake of completeness.

2.1. Proof of Theorem 1.1. In establishing the semigroup generation of Aγ ,
we will show that the conditions of the Lumer–Phillips theorem are satisfied; namely,
we demonstrate here that Aγ is maximal dissipative.

To show the dissipativity of Aγ : for [ω1, ω2, θ] ∈ D(Aγ) we have

Aγ

 ω1
ω2
θ

 ,

 ω1
ω2
θ


Hγ

=
(
Å

1
2 ω2, Å

1
2 ω1

)
L2(Ω)

+
(

P
1
2

γ P−1
γ

(
−Åω1 + αARθ − ασ

η
θ − αÅG1γ0θ + αλÅG2γ0θ

)
, P

1
2

γ ω2

)
L2(Ω)

−α (AD(I − Dγ0)ω2, θ)L2(Ω) − (ηARθ, θ)L2(Ω) ;

(2.1)

using the characterizations in (1.4) and (1.20), along with the equality posted in
(2.23), we have upon the taking of adjoints that

(2.1) =
(
Å

1
2 ω2, Å

1
2 ω1

)
L2(Ω)

−
〈
Åω1, ω2

〉[
D(Å

1
2 )

]′
×D(Å

1
2 )

+α

(
ARθ − σ

η
θ, ω2

)
L2(Ω)

− α

(
θ,

∂ω2

∂ν

)
L2(Γ1)

− αλ (θ, ω2)L2(Γ1)

−α (AD(I − Dγ0)ω2, θ)L2(Ω) − (ηARθ, θ)L2(Ω)

=
(
Å

1
2 ω2, Å

1
2 ω1

)
L2(Ω)

−
(
Å

1
2 ω1, Å

1
2 ω2

)
L2(Ω)

− α (∆θ, ω2)L2(Ω)

−α

(
θ,

∂ω2

∂ν

)
L2(Γ1)

− αλ (θ, ω2)L2(Γ1) + α (∆ω2, θ)L2(Ω) + (η∆θ − σθ, θ)L2(Ω)

=
(
Å

1
2 ω2, Å

1
2 ω1

)
L2(Ω)

−
(
Å

1
2 ω1, Å

1
2 ω2

)
L2(Ω)

+ α (∇θ, ∇ω2)L2(Ω)

−α (∇ω2,∇θ)L2(Ω) − η ‖∇θ‖2
L2(Ω) − λη ‖θ‖2

L2(Γ) − σ ‖θ‖2
L2(Ω)

≤ 0(2.2)

(here, we are using the fact that ∂θ
∂ν = −λθ); i.e., Aγ is dissipative.
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To show the maximality of Aγ : if for some ξ > 0 and arbitrary [f1, f2, f3] ∈Hγ ,
[ω1, ω2, θ] ∈ D(Aγ) solves the equation

(ξI − Aγ)

 ω1
ω2
θ

 =

 f1
f2
f3

 ,(2.3)

then this relation holds if and only if



ξω1 − ω2 = f1 in D(Å
1
2 ),

ξω2 + P−1
γ

(
Åω1 + αÅG1γ0θ − αλÅG2γ0θ − αARθ +

ασ

η
θ

)
= f2 in H1

Γ0,γ(Ω),

ξθ +
α

β
AD(I − Dγ0)ω2 +

η

β
ARθ = f3 in L2

σ+λ(Ω)

⇐⇒

(2.4)


ξ3Pγω1 + ξÅω1 + αξÅG1γ0θ − αλξÅG2γ0θ − αξARθ +

αξσ

η
θ

= ξPγf2 + ξ2Pγf1 in H−1
Γ0,γ(Ω),

αξAD(I − Dγ0)ω1 + βξθ + ηARθ = βf3 + αAD(I − Dγ0)f1 in L2(Ω).

(2.5)

At this point we bring forth the following proposition.
PROPOSITION 2.1. The operator F defined by

F ≡

 ξ3Pγ + ξÅ αξÅG1γ0 − αλξÅG2γ0 − αξAR +
αξσ

η
I

αξAD(I − Dγ0) βξI + ηAR

(2.6)

is an element of L(D(Å1/2) × H1(Ω) ∩ L2
σ+λ(Ω), [D(Å1/2)]′ × [H1(Ω) ∩ L2

σ+λ(Ω)]′)
and is boundedly invertible.

Proof of Proposition 2.1. Easily, from the definitions of the operators which make
up the components of F, all of which are given in section 1.2, we deduce that F is
bounded in the asserted topology. Moreover, we note by Green’s theorem that for
arbitrary θ ∈ D(AR) and ω ∈ D(Å1/2),〈

ARθ + αλξÅG2γ0, ω
〉
[D(Å

1
2 )]′×D(Å

1
2 )

= (∇θ, ∇ω)L2(Ω) +
σ

η
(θ, ω)L2(Ω) ;(2.7)

the characterization (1.13) and an extension by continuity will then have that (2.7)
holds for all θ in H1(Ω), and so for θ in H1(Ω)∩L2

σ+λ(Ω). (2.7) in turn, when coupled
with (2.23), (1.24), (1.14), (1.20), and Green’s formula will provide the following
coercivity inequality for all [ω, θ] ∈ D(Å1/2) × H1(Ω) ∩ L2

σ+λ(Ω) :〈
F

[
ω
θ

]
,

[
ω
θ

]〉
= ξ3 ‖ω‖2

L2(Ω) + ξ3γ ‖∇ω‖2
L2(Ω) + ξ

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)

−αξ (∇θ, ∇ω)L2(Ω) + αξ (∇θ, ∇ω)L2(Ω)

+η ‖∇θ‖2
L2(Ω) + λη ‖θ‖2

L2(Γ) + (σ + βξ) ‖θ‖2
L2(Ω)

(after noting the cancellation of boundary terms)

≥ C

[∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+ ‖θ‖2

H1(Ω)∩L2
σ+λ(Ω)

]
(2.8)
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(where 〈·, ·〉 in (2.8) denotes the pairing between D(Å1/2) × H1(Ω) ∩ L2
σ+λ(Ω) and

its dual, and where the constant C > 0). Thus, by Lax–Milgram, F−1 exists as an
element of

L
([

D(Å
1
2 )

]′
×

[
H1(Ω) ∩ L2

σ+λ(Ω)
]′

, D(Å
1
2 ) × H1(Ω) ∩ L2

σ+λ(Ω)
)

,

and the Proposition is proved.
To complete the proof of the maximality of Aγ , we apply the inverse assured by

Proposition 2.1 to both sides of (2.5) to obtain
[

ω1
θ

]
≡ F−1

[
ξPγf2 + ξ2Pγf1
βf3 + αAD(I − Dγ0)f1

]
,

ω2 ≡ ξω1 − f1,

(2.9)

and a fortiori, one has, by using the second equation in (2.5), that

ARθ = −βξ

η
θ − αξ

η
AD(I − Dγ0)ω1 +

β

η
f3 +

α

η
AD(I − Dγ0)f1 ∈ L2(Ω),

viz. θ ∈ D(AR)∩L2
σ+λ(Ω). This additional regularity of θ, in conjunction with that im-

plied in the first equation of (2.5) (namely, Åω1+αÅG1γ0θ−αλÅG2γ0θ ∈ H−1
Γ0,γ(Ω))

and along with the third equation of (2.4), gives that our constructively acquired so-
lution [ω1, ω2, θ] to (2.3) is in D(Aγ) as defined in (1.33). Hence, Aγ is maximal
dissipative and the proof of Theorem 1.1 is complete.

2.2. Proof of Theorem 1.2. By definition, if
[
ω0, ω1, θ0

]
∈ D (Aγ), then ω1 ∈

D(Å1/2) and θ0 ∈ D(AR), and

Åω0 + αÅG1γ0θ
0 − αλÅG2γ0θ

0 = g ∈ H−1
Γ0,γ(Ω) =

[
D(Å

1
4 )

]′
;(2.10)

as Å−1 : [D(Å1/4)]′ → D(Å3/4) ⊂ H3(Ω) (this containment deduced by the last
characterization in (1.4)), we have after applying Å−1 to (2.10), the use of trace
theory and the regularity posted in (1.19) that

ω0 = Å−1g − αG1γ0θ
0 + αλG2γ0θ

0 ∈ H3(Ω).(2.11)

Thus for
[
ω0, ω1, θ0

]
∈ D

(
A2

γ

)
,

Aγ

 ω0

ω1

θ0



=


ω1

P−1
γ

[
−Åω0 − αÅG1γ0θ

0 + αλÅG2γ0θ
0 + α

(
ARθ0 − σ

η
θ0

)]
− η

β
ARθ0 − α

β
AD(I − Dγ0)ω1

 ∈ D (Aγ) ,

(2.12)

and (2.12) coupled with (2.11) implies that

ω1 ∈ H3(Ω).(2.13)
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Moreover, (2.12) also has that

P−1
γ

[
Åω0 + αÅG1γ0θ

0 − αλÅG2γ0θ
0 − α

(
ARθ0 − σ

η
θ0

)]
= g,(2.14)

where g ∈ D(Å1/2), or equivalently

Åω0 + γÅG2γ1g + αÅG1γ0θ
0 − αλÅG2γ0θ

0 = g − γ∆g − α∆θ0 ∈ L2(Ω),(2.15)

after using (1.29). A fortiori then, ω0 + γG2γ1g + αG1γ0θ
0 − αλG2γ0θ

0 ∈ D(Å) ⊂
H4(Ω). But trace theory and the smoothing specified in (1.19) give that G2γ1g, G1γ0θ

0

and G2γ0θ
0 ∈ H4(Ω), and thus D(A2

γ) ⊂ H4(Ω) × H3(Ω) × H2(Ω) with the inclusion
being continuous. The solution [ω, ωt, θ] will consequently have the asserted regu-
larity upon consideration of the fundamental property that for ξ ≥ 0,

[
ω0, ω1, θ0

]
∈ D

(
Aξ

γ

)
⇒  ω

ωt

θ

 = eAγ(·)

 ω0

ω1

θ0

 ∈ C
(
[0, T ];D

(
Aξ

γ

))
.(2.16)

To prove (ii), we note that with
[
ω0, ω1, θ0

]
∈ D

(
A2

γ

)
, ωtt ∈ C([0, T ];D(Å1/2)),

so the solution [ω, ωt, θ] to (1.1) satisfies

−Åω + γÅG2γ1ωtt − αÅG1γ0θ + αλÅG2γ0θ = ωtt − γ∆ωtt + α∆θ(2.17)

in C([0, T ]; L2(Ω)), which establishes the result.
REMARK 3. Because of the regularity result posted in Theorem 1.2 (ii), we have

for sufficiently smooth initial data the valid pointwise representation

ωtt + ∆2ω − γ∆ωtt + α∆θ = 0.(2.18)

REMARK 4. If either λ or σ > 0, then for initial data
[
ω0, ω1, θ0

]
∈ D

(
A2

γ

)
, we

will also have that the solution component θ of 1.1 is in C([0, T ];H3(Ω)). In fact, the
last component on the right-hand side of (2.12), the definition of D (Aγ), and (2.13)
give that

ARθ0 = h +
α

η
∆ω1 ∈ H1(Ω),(2.19)

where h ∈ H2(Ω). Applying AR
−1 (which exists for λ or σ > 0) to both sides of (2.19)

thus yields

θ0 ∈ H3(Ω),(2.20)

and the result will follow from the semigroup property posted in (2.16).

2.3. Proof of Theorem 1.3. In proving Theorem 1.3, we begin with a prelim-
inary energy identity.

LEMMA 2.2. Again, with initial data
[
ω0, ω1, θ0

]
∈ Hγ , we have that the compo-

nent θ of the solution of (1.1) is an element of L2
(
0,∞;H1(Ω) ∩ L2

σ+λ(Ω)
)
; indeed,

we have the following relation ∀ T > 0:

−2η

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt = Eγ(T ) − Eγ(0),(2.21)
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where the “energy” Eγ(t) is defined by

Eγ(t) ≡
∥∥∥Å 1

2 ω(t)
∥∥∥2

L2(Ω)
+

∥∥∥P
1
2

γ ωt(t)
∥∥∥2

L2(Ω)
+ ‖θ‖2

L2
σ+λ(Ω) ,(2.22)

and where the norm of H1(Ω) ∩ L2
σ+λ(Ω) is as defined in (1.14).

Proof. Starting with initial data in D(Aγ) which will provide ∀ T > 0 that the
solution [ω, ωt, θ] ∈ C([0, T ];D(Aγ)) and [ωt, ωtt, θt] ∈ C([0, T ];Hγ), we have pointwise
on (0, T )

d

dt

∥∥∥∥∥∥
 ω(t)

ωt(t)
θ(t)

∥∥∥∥∥∥
2

Hγ

= 2

Aγ

 ω(t)
ωt(t)
θ(t)

 ,

 ω(t)
ωt(t)
θ(t)


Hγ

,

and for this special choice of initial data we will have the desired equality (2.21) upon
integration and using the fact from (1.12) that

(ARθ, θ)L2(Ω) =
(

−∆θ +
σ

η
θ, θ

)
L2(Ω)

= ‖∇θ‖2
L2(Ω) +

σ

η
‖θ‖2

L2(Ω) + λ ‖θ‖2
L2(Γ)

for θ ∈ D(AR).(2.23)

The asserted L2-regularity follows immediately from (2.21), using the norm definition
(1.14) for H1(Ω) ∩ L2

σ+λ(Ω), and the fact that
{
eAγt

}
t≥0 is a contraction semigroup.

A density argument concludes the proof.
REMARK 5. J. Lagnese in [12] first showed the dissipativity property (2.21) through

a formal integration and a subsequent justification through variational arguments, and
the alternate proof is included here as a simple consequence of contractive semigroups.

We next derive a trace regularity result for the model under consideration here,
a regularity which does not follow from the standard Sobolev trace theory, and which
is critical in our estimates of uniform decay. We note that related trace regularity
results for Euler–Bernoulli plates were proved in [18] and for Kirchoff plates in [14].

LEMMA 2.3. One has the component ω of the solution [ω, ωt, θ] of (1.1) satisfies
∆ω|Γ0

∈ L2(0, T ;L2(Γ0)) with the estimate∫ T

0
‖∆ω‖2

L2(Γ0) dt ≤ C

(∫ T

0

[∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+

∥∥∥P
1
2

γ ωt

∥∥∥2

L2(Ω)
+ ‖θ‖2

H1(Ω)∩L2
σ+λ(Ω)

]
dt

+Eγ(T ) + Eγ(0)

)
,(2.24)

where C does not depend on the parameter γ.
Proof. If we take initial data

[
ω0, ω1, θ0

]
in D(A2

γ), then Theorem 1.2 provides
that [ω, ωt, θ] is a classical pointwise solution of (1.1). We will work to extract the
desired estimate (2.24) in this special case—and consequently for all initial data after
an extension by continuity—by multiplying the first equation of (1.1) by the quantity
h · ∇ω, where h(x, y) ≡ [h1(x, y), h2(x, y)] is a

[
C2(Ω)

]2
vector field1 which satisfies

h|Γ =
{

[ν1, ν2] on Γ0,
0 on Γ1,

(2.25)

1Here is where we use the fact that Γ0 and Γ1 are separated.
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followed by an integration from 0 to T ; i.e., we will work with the equation∫ T

0

(
ωtt − γ∆ωtt + ∆2ω + α∆θ, h · ∇ω

)
L2(Ω) dt = 0.(2.26)

(i) First,

∫ T

0
(ωtt, h · ∇ω)L2(Ω) dt = (ωt, h · ∇ω)L2(Ω)

∣∣∣T
0

−
∫ T

0
(ωt, h · ∇ωt)L2(Ω) dt

= (ωt, h · ∇ω)L2(Ω)

∣∣∣T
0

− 1
2

∫ T

0

∫
Ω

div
(
ω2

t h
)
dtdΩ

+
1
2

∫ T

0

∫
Ω

ω2
t [h1x + h2y] dtdΩ

= (ωt, h · ∇ω)L2(Ω)

∣∣∣T
0

+
1
2

∫ T

0

∫
Ω

ω2
t [h1x + h2y] dtdΩ,

(2.27)

after making use of the divergence theorem and the fact that ωt = 0 on Γ0.
(ii) Next,

∫ T

0
(−∆ωtt, h · ∇ω)L2(Ω) dt

= (∇ωt,∇ (h · ∇ω))L2(Ω)

∣∣∣T
0

−
∫ T

0
(∇ωt,∇ (h · ∇ωt))L2(Ω) dt

= (∇ωt,∇ (h · ∇ω))L2(Ω)

∣∣∣T
0

− 1
2

∫ T

0

∫
Ω

div
(
|∇ωt|2 h

)
dtdΩ

−
∫ T

0

∫
Ω

[
ω2

txh1x

2
+

ω2
tyh2y

2

]
dtdΩ −

∫ T

0

∫
Ω

[ωtxωtyh2x + ωtxωtyh1y] dtdΩ

+
∫ T

0

∫
Ω

[
ω2

txh2y

2
+

ω2
tyh1x

2

]
dtdΩ

= (∇ωt, h · ∇ω)L2(Ω)

∣∣∣T
0

+
∫ T

0

∫
Ω

[
ω2

txh2y

2
+

ω2
tyh1x

2
− ω2

txh1x

2
−

ω2
tyh2y

2

]
dtdΩ

−
∫ T

0

∫
Ω

[ωtxωtyh2x + ωtxωtyh1y] dtdΩ,

(2.28)

after again using the divergence theorem and the fact that∫
Ω

div
(
|∇ωt|2 h

)
dΩ =

∫
Γ0

|∇ωt|2 dΓ0 = 0(as ωt(t) ∈ H2
Γ0

(Ω)).
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(iii) To handle the fourth-order term, we use Green’s theorem (1.5), the given
boundary conditions of (1.1), (2.25), and the fact that ω ∈ H2

Γ0
(Ω) to obtain

∫ T

0

(
∆2ω, h · ∇ω

)
L2(Ω) dt =

∫ T

0
a (ω, h · ∇ω) dt

+α

∫ T

0

∫
Γ1

θ · ∂h · ∇ω

∂ν
dΓ1dt −

∫ T

0

∫
Γ0

(∆ω + (1 − µ)B1ω)
∂2ω

∂ν2 dΓ0dt.

(2.29)

We note at this point that we can rewrite the first term on the right-hand
side of (2.29) as

∫ T

0
a (ω, h · ∇ω) dt =

1
2

∫ T

0

∫
Ω

h · ∇
[
ω2

xx + ω2
yy + 2µωxxωyy + 2(1 − µ)ω2

xy

]
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt

)
,

(2.30)

where O(
∫ T

0 ‖Å1/2ω‖2
L2(Ω)dt) denotes a series of terms which can be ma-

jorized by the L2(0, T ;D(Å1/2))-norm of ω; we consequently have by the
divergence theorem that∫ T

0
a (ω, h · ∇ω) dt =

1
2

∫ T

0

∫
Ω

h · ∇
[
ω2

xx + ω2
yy + 2µωxxωyy + 2(1 − µ)ω2

xy

]
dtdΩ

+O
(∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt

)

=
1
2

∫ T

0

∫
Ω

div
{
h

[
ω2

xx + ω2
yy + 2µωxxωyy + 2(1 − µ)ω2

xy

]}

+ O
(∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt

)

=
1
2

∫ T

0

∫
Γ0

[
ω2

xx + ω2
yy + 2µωxxωyy + 2(1 − µ)ω2

xy

]
dtdΓ0

+O
(∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt

)

=
1
2

∫ T

0

∫
Γ0

(∆ω)2 dt + O
(∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt

)
,

(2.31)

where in the last step above, we have used the fact (as reasoned in [12, Ch.
4] that ω|Γ0 = ∂ω

∂ν |Γ0 = 0 implies that ω2
xx + ω2

yy + 2µωxxωyy + 2(1 − µ)ω2
xy =

(∆ω)2 on Γ0.
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To handle the last term on the right-hand side of (2.29), we note that B1ω = 0
on Γ0, which implies that

∆ω = ∆ω + (1 − µ)B1ω =
∂2ω

∂ν2 on Γ0 ;(2.32)

we consequently have upon the insertion of (2.31) into (2.29), as well as by
the consideration of (2.32), that∫ T

0

(
∆2ω, h · ∇ω

)
L2(Ω) dt = −1

2

∫ T

0
‖∆ω‖2

L2(Γ0) dt

+α

∫ T

0

∫
Γ1

θ · ∂h · ∇ω

∂ν
dΓ1dt + O

(∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt

)
.(2.33)

(iv) To handle the last term on the left-hand side of equation (2.26), we again use
Green’s theorem and the boundary conditions posted in (1.1) to obtain∫ T

0
(∆θ, h · ∇ω)L2(Ω) dt = −

∫ T

0
(∇θ, ∇ (h · ∇ω))L2(Ω) dt.(2.34)

To finish the proof, we rewrite (2.26) by collecting the relations given above in
(2.27), (2.28), (2.33), and (2.34) to attain the desired inequality (2.24), upon the
taking of norms and a subsequent majorization.

In showing the exponential decay of the semigroup
{
eAγt

}
t≥0 (Theorem 1.3) it

will suffice as usual, to prove that there exists a time 0 < T < ∞ which satisfies for
all initial data in Hγ ,

Eγ(T ) ≤ ξEγ(0) with ξ < 1.(2.35)

By a density argument, it will then be enough by Lemma 2.2 to show the existence of
a time T , 0 < T < ∞, and a positive constant CT (independent of γ) for initial data
in

[
ω0, ω1, θ0

]
∈ D

(
A2

γ

)
such that

Eγ(T ) ≤ CT

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt,(2.36)

to which end we will proceed to work.

2.4. Proof of inequality (2.36). Because of Theorem 1.2, we have for initial
data

[
ω0, ω1, θ0

]
∈ D

(
A2

γ

)
a classical pointwise solution [ω, ωt, θ] of (1.1); we can thus

multiply the first equation in (1.1) by A−1
D θ and integrate in time and space to obtain∫ T

0

(
ωtt − γ∆ωtt + ∆2ω + α∆θ, A−1

D θ
)
L2(Ω) dt = 0;(2.37)

the bulk of the work from here on out will be the scrutiny of the left-hand side of this
equation.

(A.1) Dealing with
∫ T

0

(
ωtt − γ∆ωtt, A

−1
D θ

)
L2(Ω) dt. Using an integration by parts,

the second differential equation of (1.1) and the fact that ARθ = −∆θ + σ
η θ = −∆θ +
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∆Dγ0θ + σ
η θ = AD(I−Dγ0)θ + σ

η θ produce∫ T

0

(
ωtt − γ∆ωtt, A

−1
D θ

)
L2(Ω) dt

=
(
ωt, A

−1
D θ

)
L2(Ω)

∣∣∣T
0

+ γ
(
∇ωt,∇A−1

D θ
)
L2(Ω)

∣∣∣T
0

−
∫ T

0

[(
ωt, A

−1
D θt

)
L2(Ω) + γ

(
∇ωt,∇A−1

D θt

)
L2(Ω)

]
dt

= αβ−1
∫ T

0

[
‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω)

]
dt

−αβ−1
∫ T

0

[
(ωt, Dγ0ωt)L2(Ω) + γ (∇ωt,∇Dγ0ωt)L2(Ω)

]
dt

+ηβ−1
∫ T

0

[
(ωt, (I − Dγ0)θ)L2(Ω) + γ (∇ωt,∇(I − Dγ0)θ)L2(Ω)

]
dt

+σβ−1
∫ T

0

[(
ωt, A

−1
D θ

)
L2(Ω) + γ

(
∇ωt,∇A−1

D θ
)
L2(Ω)

]
dt

+
(
ωt, A

−1
D θ

)
L2(Ω)

∣∣∣T
0

+ γ
(
∇ωt,∇A−1

D θ
)
L2(Ω)

∣∣∣T
0

.(2.38)

A further integration by parts, an application of Green’s theorem (1.5) to the term∫ T

0 (∇ωt,∇Dγ0ωt)L2(Ω) dt, and a consideration of the boundary conditions posted in
(1.1) yield

−γ

∫ T

0
(∇ωt,∇Dγ0ωt)L2(Ω) dt

= −γ (∇ωt,∇Dγ0ω)L2(Ω)

∣∣∣T
0

+ γ

∫ T

0
(∇ωtt,∇Dγ0ω)L2(Ω) dt

= −γ (∇ωt,∇Dγ0ω)L2(Ω)

∣∣∣T
0

− γ

∫ T

0
(∆ωtt, Dγ0ω)L2(Ω) dt

+γ

∫ T

0

(
∂ωtt

∂ν
, γ0ω

)
L2(Γ1)

dt

= −γ (∇ωt,∇Dγ0ω)L2(Ω)

∣∣∣T
0

−
∫ T

0

(
ωtt + ∆2ω + α∆θ, Dγ0ω

)
L2(Ω) dt

+γ

∫ T

0

(
∂ωtt

∂ν
, γ0ω

)
L2(Γ1)

dt

= −γ (∇ωt,∇Dγ0ω)L2(Ω)

∣∣∣T
0

− (ωt, Dγ0ω)L2(Ω)

∣∣∣T
0

+
∫ T

0
(ωt, Dγ0ωt)L2(Ω) dt

−
∫ T

0
a (Dγ0ω, ω) dt −

∫ T

0

(
αθ,

∂Dγ0ω

∂ν

)
L2(Γ1)

dt −
∫ T

0

(
∆ω,

∂Dγ0ω

∂ν

)
L2(Γ0)

dt

+α

∫ T

0
(∇θ, ∇Dγ0ω)L2(Ω) dt.

(2.39)
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Given that Dγ0 ∈ L(Hs(Ω)) for all real s and further using the fact that A−1
D is

“smoothing,” viz.
∥∥A−1

D θ
∥∥

H2(Ω) ≤ C ‖θ‖L2(Ω), we have the following estimates for the
solution [ω, ωt, θ] of (1.1) corresponding to arbitrary initial data in Hγ :

‖(I − Dγ0)θ‖L2(Ω) +
∥∥A−1

D θ
∥∥

L2(Ω) ≤ C ‖θ‖H1(Ω)∩L2
σ+λ(Ω) ;(2.40)

‖∇(I − Dγ0)θ‖L2(Ω) +
∥∥∇A−1

D θ
∥∥

L2(Ω) ≤ C ‖θ‖H1(Ω)∩L2
σ+λ(Ω) ;(2.41)

‖∇Dγ0ω‖L2(Ω) ≤ C
∥∥∥Å 1

2 ω
∥∥∥

L2(Ω)
;(2.42)

∥∥∥∥∂Dγ0ω

∂ν

∥∥∥∥
H

1
2 (Γ)

≤ C
∥∥∥Å 1

2 ω
∥∥∥

L2(Ω)
.(2.43)

Thus a substitution of (2.39) into (2.38) and a subsequent majorization which
makes use of the inequalities (2.40)–(2.43) will give the estimate

∣∣∣∣∣
∫ T

0

(
ωtt − γ∆ωtt, A

−1
D θ

)
L2(Ω) dt − αβ−1

∫ T

0

[
‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω)

]
dt

∣∣∣∣∣
≤ C

∫ T

0

[
‖ωt‖L2(Ω) ‖θ‖H1(Ω)∩L2

σ+λ(Ω) + γ ‖∇ωt‖L2(Ω) ‖θ‖H1(Ω)∩L2
σ+λ(Ω)

]
dt

+C [Eγ(0) + Eγ(T )] +

∣∣∣∣∣
∫ T

0
a (Dγ0ω, ω) dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

(
∆ω,

∂Dγ0ω

∂ν

)
L2(Γ0)

dt

∣∣∣∣∣
≤ ε

∫ T

0

[∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+ ‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω)

]
dt + Cε

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt

+C [Eγ(0) + Eγ(T )] +
α

β

∣∣∣∣∣
∫ T

0
a (Dγ0ω, ω) dt

∣∣∣∣∣
+

α

β

∣∣∣∣∣
∫ T

0

(
∆ω,

∂Dγ0ω

∂ν

)
L2(Γ0)

dt

∣∣∣∣∣ ,

(2.44)

where the constants C and Cε do not depend on γ, 0 < γ ≤ M.

(A.2) Dealing with
∫ T

0

(
∆2ω, A−1

D θ
)

dt. Yet another application of Green’s theo-
rem in (1.5) and the use of the enforced boundary conditions in (1.1) give∫ T

0

(
∆2ω, A−1

D θ
)
dt =

∫ T

0
a

(
ω, A−1

D θ
)
dt −

∫ T

0

(
∆ω,

∂A−1
D θ

∂ν

)
L2(Γ0)

dt

+α

∫ T

0

(
θ,

∂A−1
D θ

∂ν

)
L2(Γ1)

dt.(2.45)
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Estimating the right-hand side of (2.45) yields, after the use of trace theory,
elliptic regularity and the mean inequality,∣∣∣∣∣

∫ T

0

(
∆2ω, A−1

D θ
)
dt

∣∣∣∣∣
≤ C0

∫ T

0

∥∥∥Å 1
2 ω

∥∥∥
L2(Ω)

‖θ‖H1(Ω)∩L2
σ+λ(Ω) dt

+
ε

2C

∫ T

0
‖∆ω‖2

L2(Γ0) dt + Cε

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt

(where the inverted C is the same constant present in (2.24))

≤ C0

∫ T

0

∥∥∥Å 1
2 ω

∥∥∥
L2(Ω)

‖θ‖H1(Ω)∩L2
σ+λ(Ω) dt

+
ε

2

[∫ T

0

(∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+

∥∥∥P
1
2

γ ωt

∥∥∥2

L2(Ω)

)
dt+

+ Eγ(0) + Eγ(T )

]
+ Cε

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt

(by Lemma 2.3)

≤ ε

∫ T

0

[∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+

∥∥∥P
1
2

γ ωt

∥∥∥2

L2(Ω)

]
dt

+C [Eγ(0) + Eγ(T )] + Cε

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt,(2.46)

after the use of the mean inequality.
(A.3) Dealing with

∫ T

0

(
α∆θ, A−1

D θ
)
L2(Ω) dt. Finally, for the last term of (2.37),

again using the fact that ARθ = AD(I−Dγ0)θ + σ
η θ, we have easily

α

∫ T

0

(
AD(I − Dγ0)θ +

σ

η
θ, A−1

D θ

)
L2(Ω)

dt

= α

∫ T

0

[
‖θ‖2

L2(Ω) − (Dγ0θ, θ)L2(Ω) +
(

ασ

η
A−1

D θ, θ

)
L2(Ω)

]
dt

≤ C

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ̄+λ(Ω) .

(2.47)

(A.4) Combining (2.37), (2.44), (2.46), and (2.47) thus results in the following.
For ε > 0 small enough there exists a constant C > 0 (independent of γ) such that
the solution [ω, ωt, θ] of (1.1) satisfies(

α

β
− 2ε

) ∫ T

0

[
‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω)

]
dt

≤ C

[∫ T

0
‖θ‖2

H1(Ω)∩L2
σ̄+λ(Ω) dt + Eγ(T ) + Eγ(0)

]

+2ε

∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt +

α

β

∣∣∣∣∣
∫ T

0
a (Dγ0ω, ω) dt

∣∣∣∣∣
+

α

β

∣∣∣∣∣
∫ T

0

(
∆ω,

∂Dγ0ω

∂ν

)
L2(Γ0)

dt

∣∣∣∣∣ ,(2.48)

where the noncrucial dependence of C upon ε has not been noted.
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(A.5) Estimating the residual terms |
∫ T

0 a(Dγ0ω, ω)dt| and |
∫ T

0 (∆ω, ∂Dγ0ω
∂ν )L2(Γ0)dt|.2

At this point we will find it advantageous to consider a decomposition of the solution
component [ω, ωt] into ω = ω(1) + ω(2) + ω(3) (again with the corresponding initial
data [ω0, ω1] ∈ D(A2

γ)), where the ω(i) solve, respectively,

−γ∆ω
(1)
tt + ∆2ω(1) = −α∆θ on (0,∞) × Ω,

ω(1) =
∂ω(1)

∂ν
= 0 on (0,∞) × Γ0,

∆ω(1) + (1 − µ)B1ω
(1) + αθ = 0

∂∆ω(1)

∂ν
+ (1 − µ)

∂B2ω
(1)

∂τ
− γ

∂ω
(1)
tt

∂ν
= 0

on (0,∞) × Γ1,

ω(1)(t = 0) = ω
(1)
t (t = 0) = 0;

(2.49)



−γ∆ω
(2)
tt + ∆2ω(2) = −ωtt on (0,∞) × Ω;

ω(2) =
∂ω(2)

∂ν
= 0 on (0,∞) × Γ0;

∆ω(2) + (1 − µ)B1ω
(2) = 0

∂∆ω(2)

∂ν
+ (1 − µ)

∂B2ω
(2)

∂τ
− γ

∂ω
(2)
tt

∂ν
+ α

∂θ

∂ν
= 0

on (0,∞) × Γ1;

ω(2)(t = 0) = ω
(2)
t (t = 0) = 0.

(2.50)



−γ∆ω
(3)
tt + ∆2ω(3) = 0 on (0,∞) × Ω;

ω(3) =
∂ω(3)

∂ν
= 0 on (0,∞) × Γ0;

∆ω(3) + (1 − µ)B1ω
(3) = 0

∂∆ω(3)

∂ν
+ (1 − µ)

∂B2ω
(3)

∂τ
− γ

∂ω
(3)
tt

∂ν
= 0

on (0,∞) × Γ1;

ω(3)(0) = ω0; ω
(3)
t (0) = ω1.

(2.51)

Through a semigroup formulation, the well posedness of (2.50) and (2.51) can be
handled just as easily as the entire system (1.1); to wit, defining on the state space

2Notice that at this point, one might be tempted to straightaway majorize
∫ T
0 a (Dγ0ω, ω) dt so

as to obtain something like |
∫ T
0 a(Dγ0ω, ω)|dt ≤ C

∫ T
0 ‖Å1/2ω(t)‖2

L2(Ω)dt. However, this will not
suffice as we do not have control over the constant C (C may not be small << 1). Therefore, we
need a different, more complex argument which will culminate in the estimate (2.72) below; likewise
for the term |

∫ T
0 (∆ω, ∂Dγ0ω

∂ν
)L2(Γ0)dt|.
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D(Å1/2) × H1
Γ0,γ(Ω) the operator Ãγ as

Ãγ ≡
(

0 I
−P̃−1

γ Å 0

)
(2.52)

(where P̃γ ≡ γAN ∈ L(H1
Γ0,γ(Ω), H−1

Γ0,γ(Ω)))(2.53)

with domain D(Ãγ) =
{

[ω1, ω2] ∈ D(Å
3
4 ) × D(Å

1
2 )

}
;(2.54)

then with the same degree of effort as in the proof of Theorem 1.1, we can show
that Ãγ generates a unitary C0-group {eÃγt}t≥0 on D(Å1/2) × H1

Γ0,γ(Ω) (note we
are using the knowledge that P̃−1

γ exists, inasmuch as AN is elliptic on H1
Γ0,γ(Ω),

and that P̃γ = γ
(
∆ + ÅG2γ1

)
from (1.29)). Consequently we have that ω(2) ∈

C([0, T ] ;D(Å1/2) × H1
Γ0,γ(Ω)), with this unique solution of (2.50) written explicitly

as [
ω(2)(t)
ω

(2)
t (t)

]
=

∫ t

0
eÃγ(t−s)

[
0

P̃−1
γ

(
−ωtt(s) + αλÅG2γ0θ(s)

) ]
ds,(2.55)

where again ωtt is the second time derivative of the solution component ω. Re-
call that we are taking the initial data

[
ω0, ω1, θ0

]
to be in D(A2

γ), and so ωtt ∈
C

(
[0, T ] ;H1

Γ0,γ(Ω)
)
. Moreover, for arbitrary initial data, θ ∈ L2(0, T ;H1(Ω) ∩

L2
σ+λ(Ω)), by Lemma 2.2, and this regularity, coupled with the facts contained in

(1.17), (1.19), and (1.4), provide that ÅG2γ0θ(t) ∈ L2(0, T ;H−1
Γ0,γ(Ω)). Hence the

formula (2.55) is well defined. Likewise, ω(3) ∈ C([0, T ] ;D(Å1/2) × H1
Γ0,γ(Ω)) with

ω(3)(t) = eÃγt

[
ω0

ω1

]
.(2.56)

Regarding the well posedness of the system (2.49), we have the following result
from [14] and [13].

REGULARITY THEOREM. For arbitrary initial data [ω0, ω1] ∈ D(Å1/2)×H1
Γ0,γ(Ω),

parameter ξ ≥ 0, f ∈ L2(0, T ;H−1
Γ0,γ(Ω)), and g ∈ L2(0, T ;H1/2(Γ1)), the following

system is well posed :

ξωtt − γ∆ωtt + ∆2ω = f on (0,∞) × Ω;

ω =
∂ω

∂ν
= 0 on (0,∞) × Γ0;

∆ω + (1 − µ)B1ω = g

∂∆ω

∂ν
+ (1 − µ)

∂B2ω

∂τ
− γ

∂ωtt

∂ν
= 0

on (0,∞) × Γ1;

ω(0) = ω0, ωt(0) = ω1,

(2.57)

with the solution [ω, ωt] ∈ C([0, T ] ;D(Å1/2) × H1
Γ0,γ(Ω)).

To make use of the above theorem for the resolution of (2.49) with arbitrary
θ in H1(Ω) ∩ L2

σ+λ(Ω) subject to Robin boundary conditions, we note that −∆ =
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AR − σ
η ∈ L(H1(Ω),

[
H1(Ω)

]′) and consequently ∆θ ∈ L2(0, T ;H−1
Γ0,γ(Ω)); moreover,

θ|Γ ∈ L2(0, T ;H1/2(Γ)) by the trace theorem, and so the regularity theorem will give
us that

ω(1) ∈ C([0, T ] ;D(Å
1
2 ) × H1

Γ0,γ(Ω)),(2.58)

with the pointwise estimate∥∥∥∥ ω(1)(t)
ω

(1)
t (t)

∥∥∥∥2

D(Å
1
2 )×H1

Γ0,γ(Ω)

≤ C

[∫ T

0
‖∆θ(t)‖2

H−1
Γ0,γ(Ω) dt + α

∫ T

0
‖θ(t)‖2

H
1
2 (Γ1)

dt

]

≤ C

∫ T

0
‖θ(t)‖2

H1(Ω)∩L2
σ+λ(Ω) dt.(2.59)

A simple uniqueness argument which makes use of the regularity theorem verifies
that indeed the solution component ω ≡ ω(1) + ω(2) + ω(3). Moreover, concerning the
explicit representation (2.55), an integration by parts has that∫ t

0
eÃγ(t−s)

[
0

P̃−1
γ ωtt(s)

]
ds = eÃγ(t−s)

[
0

P̃−1
γ ωt(s)

]∣∣∣∣t
0

+
∫ t

0
eÃγ(t−s)Ãγ

[
0

P̃−1
γ ωt(s)

]
ds

= eÃγ(t−s)
[

0
P̃−1

γ ωt(s)

]∣∣∣∣t
0

−
∫ t

0
eÃγ(t−s)

[
P̃−1

γ ωt(s)
0

]
ds,(2.60)

where the last equality above makes sense pointwise in [D(Ãγ

∗
)]′ = [D(Å

3
4 )]′ ×

[D(Å1/2)]′; hence upon majorizing (2.55) with the expression (2.60) in mind (and
using the contraction of the semigroup {eÃγ(t)}t≥0), we have

∥∥∥∥ ω(2)(t)
ω

(2)
t (t)

∥∥∥∥2

D(Å
1
2 )×H1

Γ0,γ(Ω)

≤ CT

[
‖θ‖2

L2(0,T ;H1(Ω)∩L2
σ+λ(Ω)) + ‖ωt‖2

C([0,T ];L2(Ω))

]
.

(2.61)

Thus, using (2.59), (2.61), and the explicit representation (2.56), we have∥∥∥∥[
ω(1)(t) + ω(2)(t)
ω(1)(t) + ω

(2)
t (t)

]∥∥∥∥2

D(Å
1
2 )×H1

Γ0,γ(Ω)

≤ CT

[
‖θ‖2

L2(0,T ;H1(Ω)∩L2
σ+λ(Ω)) + ‖ωt‖2

C([0,T ];L2(Ω))

]
;(2.62)

∥∥∥∥[
ω(3)(t)
ω

(3)
t (t)

]∥∥∥∥2

D(Å
1
2 )×H1

Γ0,γ(Ω)

≤ Eγ(0).(2.63)

Further analyzing ω(3), if we make the substitution z ≡ ∆ω(3), we then note that
z solves the wave equation

γztt = ∆z,(2.64)
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with [z, zt] ∈ C([0, T ] ;L2(Ω)×H−1(Ω)). Consequently, the recent regularity result of
[26] (specifically, apply Theorem 3 therein together with Remark 2.3 and the remark
after Theorem 9 in [26]) reveals that z has a “trace” on Γ with a positive constant
C(T, γ) and a ρ > 0 such that the following estimate holds:3

‖z|Γ‖
L2(0,T ;H− 1

2 +ρ(Γ))
≤ C(T, γ) ‖[z, zt]‖C([0,T ];L2(Ω)×H−1(Ω)) ;(2.65)

and as pointwise we have

‖z(t)‖2
L2(Ω) + ‖zt(t)‖2

H−1(Ω) ≤ CEγ(0)(2.66)

(from the estimate (2.63)), we end up with∥∥∥∆ω(3)
∣∣∣
Γ

∥∥∥2

L2(0,T ;H− 1
2 +ρ(Γ))

≤ C(T, γ)Eγ(0).(2.67)

Recall that ω(3), as the solution of (2.51), satisfies

∆ω(3) − (1 − µ)
∂2ω(3)

∂τ2 = (1 − µ)κ
∂ω(3)

∂ν
on (0, T ) × Γ1,(2.68)

where κ denotes the curvature, and so (2.68), coupled with the estimates (2.67) and∥∥∥∥∂ω(3)

∂ν

∥∥∥∥
C([0,T ];H

1
2 (Γ1))

≤ C
∥∥∥ω(3)

∥∥∥
C([0,T ];H2(Ω))

≤ C(T )Eγ(0),

gives that
∂2ω(3)

∂τ2 ∈ L2(0, T ;H− 1
2+ρ(Γ1)) with

∥∥∥∥∂2ω(3)

∂τ2

∥∥∥∥
L2(0,T ;H− 1

2 +ρ(Γ1))
≤ C(T, γ)Eγ(0),(2.69)

and (2.69) is in turn equivalent to∥∥∥γ0ω
(3)

∥∥∥
L2(0,T ;H

3
2 +ρ(Γ1))

≤ C(T, γ)Eγ(0).(2.70)

REMARK 6. The estimate in (2.70) can also be derived independently of Tataru’s
result in [26] by decomposing problem (2.51) microlocally into respective elliptic and
hyperbolic parts. In the elliptic sector, we can use standard elliptic regularity and the
boundary conditions on Γ1 to deduce the regularity of the trace γ0ω

(3) in H2(0, T ×Γ1).
In the hyperbolic sector, we apply the transformation z ≡ ∆ω(3), and we are subse-
quently led to the study of the wave equation with its forcing term in L2(0, T ;H−1(Ω))
(due to microlocalization). The arguments presented in [16] and (see also [17]) ap-
ply to the hyperbolic sector specifically and provide the estimate (2.70) valid in that
sector. Combining elliptic and hyperbolic estimates yields (2.70) with the value of ρ
being at least 1

10 . Instead, the estimate obtained by using Tataru’s result [26] leads to
the optimal value of ρ = 1

6 .

3We note that the value of ρ depends on the geometry; however, we always have ρ > 0.
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Given this extra regularity for the trace of ω(3)
∣∣
Γ1

, we can hence invoke a classical
PDE interpolation inequality to finally obtain

∥∥∥γ0ω
(3)

∥∥∥2

L2(0,T ;H
3
2 (Γ1))

≤ C(T, γ)−1
∥∥∥γ0ω

(3)
∥∥∥2

L2(0,T ;H
3
2 +ρ(Γ1))

+CT,γ

∥∥∥γ0ω
(3)

∥∥∥2

L2(0,T ;H
1
2 (Γ1))

(where C(T, γ) is as in (2.70), and CT,γ denotes another positive constant depen-
ding on T and γ)

≤ Eγ(0) + CT,γ

∥∥∥ω(3)
∥∥∥2

L2(0,T ;H1(Ω))
(after using the estimate (2.70) and trace theory)

≤ Eγ(0) + CT,γ ‖ω‖2
L2(0,T ;H1(Ω)) + CT,γ

∥∥∥ω(1) + ω(2)
∥∥∥2

L2(0,T ;H1(Ω))

(after using the decomposition ω = ω(1) + ω(2) + ω(3))
≤ Eγ(0) + CT,γ

[
‖θ‖2

L2(0,T ;H1(Ω)∩L2
σ+λ(Ω)) + ‖ω‖2

L2(0,T ;H1(Ω)) + ‖ωt‖2
C([0,T ];L2(Ω))

]
,

(2.71)

after using the inequality (2.62).
With the decomposition of ω in hand, along with its accompanying norm es-

timates, particularly that of the trace γ0ω
(3) in (2.71), we can now deal with the

recalcitrant terms |
∫ T

0 a (Dγ0ω, ω) dt| and |
∫ T

0 (∆ω, ∂Dγ0ω
∂ν )L2(Γ0)dt|:

(A5.i) Dealing with
∣∣∣∫ T

0 a (Dγ0ω, ω) dt
∣∣∣:∣∣∣∣∣

∫ T

0
a (Dγ0ω, ω) dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0
a

(
Dγ0

(
ω(1) + ω(2) + ω(3)

)
, ω

)
dt

∣∣∣∣∣
≤

∫ T

0
C

∥∥∥Dγ0

(
ω(1) + ω(2) + ω(3)

)∥∥∥
H2(Ω)

∥∥∥Å 1
2 ω

∥∥∥
L2(Ω)

dt

(after using the fact that Dγ0 ∈ L(H2(Ω)))

≤ ε

∫ T

0

∥∥Åω
∥∥2

L2(Ω) dt + CT,γ

[∫ T

0
‖θ‖2

H1(Ω)∩L2(Ω) dt + ‖ω‖2
L2(0,T ;H1(Ω))

+ ‖ωt‖2
C([0,T ];L2(Ω))

]
+C [Eγ(T ) + Eγ(0)] ,(2.72)

after using the boundedness of the Dirichlet map D followed by the standard mean
inequality as well as the crucial estimates (2.71) and (2.62) (here we have not noted
the noncrucial dependence of ε in the constant CT,γ).

(A.5ii) Dealing with |
∫ T

0 (∆ω, ∂Dγ0ω
∂ν )L2(Γ0)dt|. By Lemma 2, ∆ω|Γ0

∈ L2(0, T ;L2(Γ0)),
and so with this bit of information we have∣∣∣∣∣

∫ T

0

(
∆ω,

∂Dγ0ω

∂ν

)
L2(Γ0)

dt

∣∣∣∣∣
≤ C

∫ T

0
‖∆ω‖L2(Γ0) ‖Dγ0ω‖H2(Ω) dt

(by the trace theorem)
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= C

∫ T

0
‖∆ω‖L2(Γ0)

∥∥∥Dγ0

(
ω(1) + ω(2) + ω(3)

)∥∥∥
H2(Ω)

dt

≤ ε

C

∫ T

0
‖∆ω‖2

L2(Γ0) dt + CT,γ

[∫ T

0
‖θ‖2

H1(Ω)∩L2(Ω) dt + ‖ω‖2
L2(0,T ;H1(Ω))

+ ‖ωt‖2
C([0,T ];L2(Ω))

]
+C [Eγ(T ) + Eγ(0)]
(again using the mean inequality followed by (2.71) and (2.62),
and where the inverted positive constant C is that in (2.24))

≤ ε

∫ T

0

[∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+

∫ T

0

∥∥∥P
1
2

γ ω
∥∥∥2

L2(Ω)

]
dt + CT,γ

[∫ T

0
‖θ‖2

H1(Ω)∩L2(Ω) dt

+ ‖ω‖2
L2(0,T ;H1(Ω)) + ‖ωt‖2

C([0,T ];L2(Ω))

]
+ C [Eγ(0) + Eγ(T )] .(2.73)

Combining (2.48), (2.72), and (2.73), we finally have(
α

β
− 3ε

) ∫ T

0

[
‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω)

]
dt

≤ 3ε

∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt + CT,γ

[∫ T

0
‖θ‖2

H1(Ω)∩L2
σ̄+λ(Ω) dt

+ ‖ω‖2
L2(0,T ;H1(Ω)) + ‖ωt‖2

C([0,T ];L2(Ω))

]
+C [Eγ(0) + Eγ(T )] .(2.74)

(B) Conclusion of the Proof of Theorem 3. To majorize the norm of the component
ω, we multiply (1.35) by ω, integrate from 0 to T and employ Green’s theorem to
obtain (after accounting for the boundary conditions and using (1.20))(

P
1
2

γ ωt, P
1
2

γ ω
)

L2(Ω)

∣∣∣∣T
0

−
∫ T

0

∥∥∥P
1
2

γ ωt

∥∥∥2

L2(Ω)
dt

= −
∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt − α

∫ T

0

(
θ,

∂ω

∂ν

)
L2(Γ1)

dt

+α

∫ T

0
(∇θ, ∇ω)L2(Ω) dt;(2.75)

since by the trace theorem we have pointwise∣∣∣∣∣
(

θ,
∂ω

∂ν

)
L2(Γ1)

∣∣∣∣∣ +
∣∣∣(∇θ, ∇ω)L2(Ω)

∣∣∣
≤ C

[
‖θ‖

H
1
2 (Γ)

∥∥∥∥∂ω

∂ν

∥∥∥∥
H

1
2 (Γ1)

+ ‖θ‖H1(Ω) ‖ω‖H1(Ω)

]

≤ C ‖θ‖H1(Ω) ‖ω‖H2(Ω) ≤ ε
∥∥∥Å 1

2 ω
∥∥∥2

L2(Ω)
+ Cε ‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) ,(2.76)

we thus arrive at the following.
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There exists a constant C > 0 such that for ε > 0 small enough, the solution
[ω, ωt, θ] of (1.1) satisfies

(1 − ε)
∫ T

0

∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
dt ≤ C

∫ T

0

[
‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω)

]
dt

+C

(∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt + Eγ(T ) + Eγ(0)

)
,(2.77)

where the noncrucial dependence of C upon ε has not been noted.
Thus, if ε is small enough, we then have, upon combining (2.74) and (2.77), the

existence of constants C and CT,γ such that∫ T

0

[∥∥∥Å 1
2 ω

∥∥∥2

L2(Ω)
+ ‖ωt‖2

L2(Ω) + γ ‖∇ωt‖2
L2(Ω) + ‖θ‖2

L2(Ω)

]
dt

≤ CT,γ

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt + C [Eγ(T ) + Eγ(0)]

+CT,γ

[
‖ω‖2

L2(0,T ;H1(Ω)) + ‖ωt‖2
C([0,T ];L2(Ω))

]
.(2.78)

From here, we apply the relation (2.21) and its inherent dissipativity property
(that is, Eγ(T ) ≤ Eγ(t) ∀ 0 ≤ t ≤ T ) to (2.78) to finally attain the preliminary
inequality; namely, for T > 2C (with C as in (2.78) independent of T ),

Eγ(T ) ≤ CT,γ + 2Cη

T − 2C

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt

+CT,γ

[
‖ω‖2

L2(0,T ;H1(Ω)) + ‖ωt‖2
C([0,T ];L2(Ω))

]
.(2.79)

A straightforward compactness–uniqueness argument similar to that employed in [15]
and [1] will subsequently eliminate the lower order terms in (2.79), viz. we have the
following proposition.

PROPOSITION 2.4. The presence of the inequality (2.79) implies that there exists
a constant CT which satisfies

‖ω‖2
L2(0,T ;H1(Ω)) + ‖ωt‖2

C([0,T ];H2(Ω)) dt ≤ CT

∫ T

0
‖θ‖2

H1(Ω)∩L2
σ+λ(Ω) dt.(2.80)

Hence, the inequalities (2.79) and (2.80) give the desired estimate (2.36) (and
consequently (2.35)), and so the proof of Theorem 1.3 is now complete.

Note added in proof. As one reads through the arguments in the present paper,
he or she gathers the understanding that the key ingredient in our stability proof is the
selection of the “right” multiplier A−1

D θ (which is novel when compared to the standard
differential multipliers used in plate theory). This multiplier was first devised in our
paper [3] (which initially considered the easier case of the thermoelastic plate with
lower order “clamped” or “hinged” boundary conditions), and we have since invoked
it in later problems (see [4], [13], [6], [5]. In particular, [4] is a preliminary version
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of our present paper). In our present paper, it is this particular choice of multiplier
which allows us to obtain sharp results on the uniform stabilization of thermoelastic
plates with the higher order “free” boundary conditions in place, results which include
the attainment of explicit decay rates.

Related work on this problem includes that of E. Bisognin, V. Bisognin, P. Men-
zala, and E. Zuazua in [7], who employed an alternative and indirect argument for
the stabilization of the nonlinear thermoelastic plate in the case of clamped/hinged
boundary conditions only. This method, even in the case of linear models, yielded
weaker results than those posted in [2], [3]. (We assume that at the time of their work
the four authors were unaware of [3].) Indeed, the indirect (proof by contradiction)
method in [7] has the following shortcomings:
(i) The method requires two different treatments of the problem, corresponding to

the respective cases γ > 0 and γ = 0. This dichotomy is necessitated by the
fact that the accompanying decay rates they obtain blow up as γ ↓ 0.

(ii) The decay rates they obtain are not explicit.
(iii) In the specific case γ = 0, the analyticity of the underlying semigroup is used in

an essential way, which precludes the possibility that their indirect method
can be adjusted so as to give a unified treatment of the problem for all cases
γ ≥ 0 (recall that γ > 0 corresponds to hyperbolic-like dynamics).

In contrast, the paper [3] (which is critical and constitutes a basis for the present
paper) obtains decay estimates which are uniform in the parameter γ ≥ 0, this being
accomplished via the use of the multiplier A−1

D θ. As the authors of [7] were apparently
informed much before the date of submission of [23] of this comparison between their
work and that in [3] (this is a documented fact), one may then view as perplexing the
subsequent appearance of the paper [23], which now claims for itself the right (and
much improved with respect to [7]) result using the very same techniques and ideas
as in [3] (which again are radically different from those in [7]). In particular, [23] uses
the same multiplier and the same trace result, the latter being proclaimed therein as
“hidden regularity.” Perhaps adding to the perplexity is the fact that the two authors
in [23], while freely addressing the aforementioned shortcomings of [7], make neither
acknowledgment nor reference to [3]. Our main point here is to stress the fact that
the critical multiplier and the resulting technique for proving uniform decay rates for
thermoelastic plates takes its origin in [2], [3], and not in [23].
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