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Nonlinear mixed effects models provide a flexible and powerful platform for the analysis
of clustered data that arise in numerous fields, such as pharmacology, biology, agriculture,
forestry, and economics. This dissertation focuses on fitting parametric nonlinear mixed

effects models with single- and multi-level random effects. A new, efficient, and
accurate method that gives an error of order O(1/n”), fully exponential Laplace

approximation EM algorithm (FELA-EM), for obtaining restricted maximum likelihood
(REML) estimates in nonlinear mixed effects models is developed. Sample codes for
implementing FELA-EM algorithm in R are given. Simulation studies have been
conducted to evaluate the accuracy of the new approach and compare it with the Laplace
approximation as well as four different linearization methods for fitting nonlinear mixed
effects models with single-level and two-crossed-level random effects. Of all
approximations considered in the thesis, FELA-EM algorithm is the only one that gives
unbiased or close-to-unbiased (%Bias < 1%) estimates for both the fixed effects and
variance-covariance parameters. Finally, FELA-EM algorithm is applied to a real dataset
to model feeding pigs’ body temperature and a unified strategy for building crossed and

nested nonlinear mixed effects models with treatments and covariates is provided.
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CHAPTER 1

INTRODUCTION

Nonlinear mixed effects models are mixed effects models in which both fixed and
random effects are allowed to have a nonlinear relationship to the response variable. They
are natural extensions of the nonlinear regression models for handling data from several
individuals and the linear mixed effects models to the case of a nonlinear response
function. Nonlinear mixed effects models provide a flexible and powerful platform for
the analysis of clustered data. Since the first developments of nonlinear mixed effects
models appear in Sheiner and Beal in 1980, nonlinear mixed effects models have been
widely used in numerous fields, such as pharmacokinetics, biology, agriculture,

environment, medicine, and economics.

1.1  Motivation

The evaluation of the log-likelihood function in nonlinear mixed effects models is a
rather complex numerical issue because it involves the evaluation of a multiple integral
that, in most cases, does not have a closed-form expression. Different approximation
methods have been proposed to circumvent this problem. The most popular
approximation methods used to estimate the parameters in nonlinear mixed effects
models are linearization methods. Linearization methods use a first-order Taylor series
expansion to approximate the nonlinear model function around the current estimates of
the fixed effects and a choice of expansion locus for the random effects — either around

zero that is the expected value of the random effects (Sheiner and Beal, 1980; Wolfinger



and Lin, 1997, zero-expansion method), or around the current estimates of the random
effects (Lindstrom and Bates, 1990; Wolfinger and Lin, 1997, EBLUP-expansion
method), and then maximize the likelihood corresponding to the resulting approximate
linear mixed effects model. Linearization methods are computationally simple because
they avoid complicated numerical integrations; however, they may produce substantial
bias in parameter estimation with limited number of observations per stratum and large

variability of random effects (Ge, Bickel and Rice, 2004).

This bias has motivated researchers to seek more accurate methods to improve the
estimation in nonlinear mixed effects models. Laplace approximation is a popular
method, which is based on using a second-order Taylor series expansion to integrate out
either the random effects (Pinheiro and Bates, 1995; Vonesh, 1996), or both the random
effects and the fixed effects by assuming a flat prior for the fixed effects (Wolfinger,
1993) from the marginal likelihood. While Laplace approximation methods provide
more accurate estimates than linearization methods and are computationally efficient,
they can also introduce a bias in parameter estimation when the number of subjects is
small (Breslow and Lin, 1995; Shun and McCullagh, 1995; Kauermann, Xu, and Vaida,
2008). Other methods include Gaussian quadrature approach (Pinheiro and Bates, 1995),
importance sampling approach (Pinheiro and Bates, 1995), and Markov Chain Monte
Carlo technique (Wakefield, Smith, Racine-Poon, and Gelfand, 1994). These numerical
integration methods are often referred to as “exact” methods in statistical literature,
“exact” in the sense that they can be made as accurate as desired by taking sufficient

large number of grid points or simulated samples. The numerical integration methods



work extremely well for single-level nonlinear mixed effects models with a small number
of random effects (i.e., one or two), but can become computationally intensive as the

number of random effects increases (Vonesh, Wang, Nie, and Majumdar, 2002).

An alternative to the direct approximate to the marginal likelihood of nonlinear mixed
effects models is the use of the expectation-maximization (EM) algorithm (Dempster,
Laird, and Rubin, 1977). Since the traditional EM algorithm has the same difficulty that
the exact maximum likelihood approach has in fitting nonlinear mixed effects models,
various simulated EM algorithms for handling nonlinear mixed effects models have
received increasing interest in the statistical literature. The Monte Carlo version EM
algorithms use Monte Carlo integration to approximate conditional expectations in the E-
step and generate simulated samples either from the assumed distribution of the random
effects (Walker, 1996) or via importance sampling from a mixture distribution that is
simple in the form, easy to sample from, and efficient (Wang, 2007). The stochastic
approximation version EM algorithm (Kuhn and Lavielle, 2005) replaces the E-step by a
simulation step and a stochastic approximation step to obtain simulation samples from a
Markov Chain Monte Carlo procedure. Like the numerical integration methods for direct
approximation to the marginal likelihood of nonlinear mixed effects models, the
computation of the simulated EM algorithms can also be challenging as the number of

random effects increases.

The purpose of this dissertation is to develop a new, efficient, and accurate method, fully

exponential Laplace approximation EM algorithm (FELA-EM), for obtaining restricted



maximum likelihood (REML) estimates in parametric nonlinear mixed effects models

with single- and multi-level random effects. The proposed FELA-EM algorithm gives
more accurate estimates, an error of order O(l1/n”) , than those from Laplace
approximation, an error of order O(1/n), while preserving the numerical simplicity of

Laplace approximation and thus, the proposed FELA-EM algorithm is computationally

much simpler than numerical integration methods and simulated EM algorithms.

1.2 Summary of the remaining chapters

In Chapter 2, we review the literature of four kinds of nonlinear mixed effects models
(parametric modeling, nonparametric modeling, semi-parametric modeling, and Bayesian
modeling) and their corresponding parameter estimation methods. A review of software

packages available for fitting mixed effects models is also given.

In Chapter 3, we propose the EM algorithm using the fully exponential Laplace method
to approximate the conditional expectations of the complete data sufficient statistics in
the E-step for obtaining restricted maximum likelihood estimates in single-level nonlinear
mixed effects models. We compare the FELA-EM algorithm with the Laplace
approximation and four different linearization methods using simulation results to
evaluate the accuracy of the new approach. These comparisons provide a useful
foundation for the relative potential strengths and weaknesses of the considered

estimation methods for fitting nonlinear mixed effects models.



In Chapter 4, the FELA-EM algorithm for single-level nonlinear mixed effects models is
generalized to fit multi-level nonlinear mixed effects models with two crossed random
effects, to which none of the numerical integration methods and simulated EM algorithms

are currently directly applicable.

Chapter 5 contains an application of the proposed FELA-EM algorithm to a real dataset,
where a multilevel nonlinear mixed effects model with both crossed and nested random
effects applied in a replicated Latin square design is developed to model feeding pigs’
body temperature in conjunction with three thermal environmental treatments, the
amount of feed intake, and the duration of the meal. Random effects associated with
three classification factors are introduced into a modified first-order compartment model.

The within-event correlation is described by an AR(1) model.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Mixed effects models are often used to handle correlation that arises in longitudinal or
other clustered data (Crowder and Hand, 1990; Verbeke and Molenberghs, 2000; Littell,
Milliken, Stroup, Wolfinger, and Schabenberger, 2006). Longitudinal data can be loosely
defined as data in the form of repeated measurements on the same unit over time or over
another set of conditions, like repeated measurement of physiological effect on the same
subject in response to different doses of a drug in pharmacodynamic studies. The unit in
which the observations are measured repeatedly is also referred to as the individual or
cluster and may correspond to diverse entities such as humans, animals, plants,
laboratories, or experiments. Longitudinal data appear, frequently, both in observational
studies which are longitudinal in nature, and in experimental studies incorporating
repeated measures designs and include a broad range of research areas, such as forestry,
agriculture, animal science, life sciences, pharmacokinetics, medical and public health
research. Examples occur in many fields:

e In forestry, a measure of growth may be taken on the same tree monthly over
several years and trees are associated with different site preparation treatments or
soil types.

e In animal science, a measure of the body temperature may be taken at hourly
intervals on the same animal and animals are assigned to different thermal

environments.



e In pharmacokinetics, a measure of the drug concentration may be taken at several
times on the same rat following administration and rats are initially given
different amounts of oral dose.

The scientific questions often involve not only how the mean response differs among
treatments, but also how the mean response changes over time and whether or not that

change depends on treatment effects.

Observations on the same unit usually cannot be considered independent and mixed
effects models provide a convenient way for modeling such dependence. In the mixed
effects model, the response is assumed to be a function of fixed effects, non-observable
individual specific random effects, and an error term. Observations within the same unit

share common random effects and are therefore statistically dependent.

A mixed effects model contains two types of parameters: fixed effects and variance-
covariance components. In many practical applications, estimates of the random effects,
which are associated with individual units randomly drawn from a population, are also of

interest.

Different estimation methods have been studied for mixed effects models. While
methods (maximum likelihood and restricted maximum likelihood) for solving linear
mixed effects models are available in many software packages and described in many

references (Harville, 1977; Longford, 1993; Pinheiro and Bates, 2000; SAS Institute,
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2004), methods for nonlinear mixed effects models are still being explored (Davidian and

Giltinan, 1995; Vonesh and Chinchilli, 1997; Davidian and Giltinan, 2003).

2.2 Linear mixed effects models
Linear mixed effects models are mixed effects models in which both the fixed and the
random effects enter linearly into the model function. Laird and Ware (1982) have

presented a general form of such models,

yi =Xzﬂ+Z1b1 +£i’ i=1,2,...,M,
22.1)
b ~N(0,D), & ~N(O0,¥),

where y, is an (n, x1) vector of responses for the ith unit, f# is an px1 vector of fixed
effects, b, is an g x1 vector of random effects distributed as normal with mean 0 and
variance-covariance matrix D, X, is an n, x p design matrix corresponding to fixed
effects, Z, is an n, xg design matrix corresponding to random effects, and & is an
n, x1 vector of within unit errors and is normally distributed with mean 0 and variance-
covariance matrix ¥. It is further assumed that the random effects b, and the within unit
errors & are independent for different units and independent of each other for the same

unit.

Several methods have been proposed to estimate parameters in the linear mixed effects

models and the most common ones are likelihood-based methods: maximum likelihood
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(ML) and restricted maximum likelihood (REML). To find (RE)ML estimates, we need
to maximize the objective function associated with ML or REML over all unknown
parameters. The optimization is usually conducted using the Expectation-Maximization
(EM) algorithm (Dempster, Laird and Rubin, 1977) or Newton-Raphson methods
(Thisted, 1988). There are no closed form expressions for the distribution of (RE)ML
estimates and inference (hypothesis tests and confidence intervals) are generally based on

asymptotic normality.

23 Nonlinear regression models

Nonlinear regression is a powerful tool for analyzing scientific data. Many real-life
phenomena can be described by a nonlinear regression function, such as in pharmacology,
physiology, biology, and etc. Usually, the model parameters are easier to interpret
compared to those from linear models because the parameters in nonlinear models
generally have a natural physical interpretation. Before the age of computers, nonlinear
regression was not readily available to most scientists. Instead, scientists transformed
their data to make a linear relationship, and then analyzed the transformed data with
linear regression. These methods are outdated and should not be used to analyze data
since the linear transformation always distorts the experimental error. Estimation for a
nonlinear regression model is an iterative process. The general steps for fitting a
nonlinear regression model are: (1) Give an initial value for each parameter in the model;
(2) Generate the curve defined by the initial values and calculate the residual sum of
squares; (3) Adjust the value for each parameter to make the curve come closer to the

data points. There are a number of different algorithms for adjusting the value for each
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parameter, such as steepest-descent or gradient method, Newton method, Gauss-Newton
method, Marquardt method, etc. All these methods use derivatives (or approximations to
derivatives) of the residual sum of squares with respect to the parameters to search for the
parameter estimates that produce the smallest residual sum of squares; (4) Use the
adjusted estimates as new starting values. Repeat steps (2), (3), and (4) until a

termination criterion is satisfied.

24 Nonlinear mixed effects models

Nonlinear mixed effects models are mixed effects models in which some of the fixed
and/or random effects enter nonlinearly to the model function. Nonlinear mixed effects
models may be regarded as an extension of 1) the nonlinear regression models to fit data
from several individuals and 2) the linear mixed effects models to the case of a nonlinear
response function. Nonlinear mixed effects models are a popular platform for analyzing
clustered data when interests focuses on individual-specific characteristics. They first
received widespread attention in the statistical literature in the late 1980s, and a number
of new computational methods for these models were developed in the 1990s. Currently,
nonlinear mixed effects models have been widely used in numerous fields, such as
biology, agriculture, environment, medicine, and economics, and several different

general-purpose software packages are also available.

The general form of nonlinear mixed effects models is as follows:

y=f(B,b)+¢ (2.4.1)
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where y is the response vector, f'is a general nonlinear function, f# is the vector of fixed

effects, b is the vector of random effects, and & is the error vector. It is further assumed
that the random effects b have a density and the errors & are normally distributed with

mean 0 and variance-covariance matrix ¥, with b independent of ¢.

The first developments of nonlinear mixed effects models go back to Sheiner and Beal
(1980). Since then, a number of statistical approaches to nonlinear mixed effects
modeling have been discussed in the literature and applied in data analyses. Basically,
they can be classified into four categories: parametric modeling, nonparametric modeling,

semi-parametric modeling, and Bayesian modeling.

2.5 Four categories of nonlinear mixed effects models

2.5.1 Parametric nonlinear mixed effects models

For parametric nonlinear mixed effects models, we have a model similar to (2.4.1) with a
further assumption that the random effects b have a normal distribution. A major
complication of parameter estimation in the parametric nonlinear mixed effects model is

the likelihood function, which is based on the marginal distribution of y, does not

usually have a closed form solution. Different methods have been presented for
estimating the parameters in the parametric nonlinear mixed effects model and there is an
ongoing debate in the literature about which is the most adequate method. Most of the
estimation methods can be divided into three categories: linearization methods (Sheiner

and Beal, 1980; Lindstrom and Bates, 1990; Wolfinger and Lin, 1997), integral
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approximation methods (Wolfinger, 1993; Pinheiro and Bates, 1995; Vonesh, 1996), and
EM algorithms (Walker, 1996; Kuhn and Lavielle, 2005; Wang, 2007). The linearization
methods approximate the nonlinear mixed effects model by a first-order Taylor series
expansion to arrive at a pseudo-model that is typically of the linear mixed effects model
form. Integral approximation methods use Laplace approximation, Gaussian quadrature,

or importance sampling to calculate the marginal distribution of y and then maximize

the likelihood directly. As an alternative to the direct approximate to the marginal
likelihood, EM algorithms approximate the conditional expectation of the log likelihood
in the E step and then maximize the expected log likelihood to obtain the estimates in the
next E step. The linearization methods are by far the most popular approaches due to

their numerically simplicity. More details are discussed in Section 2.6.

2.5.2 Nonparametric nonlinear mixed effects models

For nonparametric nonlinear mixed effects models, a maximum likelihood method was
proposed by Mallet, Mentre, Steimer and Lokiek (1988). The difference between their
model and a parametric model is that they make no assumptions about the distribution of
the random effects, except that it is a probability measure. The conditional distribution of
the response y given the random effects is assumed to be known. The objective of the
estimation procedure is to get the probability distribution of the cluster-specific effects, b,
that maximizes the likelihood of the data. Mallet (1986) proved that the maximum
likelihood solution is a discrete distribution with the number of discontinuity points less

or equal to the number of clusters in the sample.
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2.5.3 Semi-parametric nonlinear mixed effects models

For semi-parametric nonlinear mixed effects models, a maximum likelihood estimation
method was proposed by Davidian and Gallant (1992). The difference between their
model and a parametric model is that they allow the distribution of the random effects to
be free to vary within a class of smooth densities, H, defined in Gallant and Nychka
(1987). Densities in H may be skewed, multi-modal, and fat-tailed or thin-tailed relative
to the k-variate normal density. Class H also contains the normal density. However,
densities in H may not exhibit unusual behavior such as kinks, jumps, or oscillation. A
density from H can be expressed as an infinite linear combination of normal densities. In
the likelihood calculations the summation is truncated to a finite number of terms and
numerical integration is carried out using Gauss-Hermite quadrature. This semi-
parametric approach is implemented in the Nlmix software, available through StatLib

(Davidian and Gallant, 1992).

2.5.4 Bayesian approach to nonlinear mixed effects models

A Bayesian approach to nonlinear mixed effects models is proposed by Bennett and
Wakefield (1993), Wakefield (1993), and Wakefield, Smith, Racine-Poon, and Gelfand
(1994). They use a three-stage model and Markov Chain Monte Carlo (MCMC). In the
first stage, they specify the conditional density of the observation y given the random
effects b and the fixed effects f. In the second stage, they specify the density of the
random effects b given £, and in the third stage, a prior density for f. The posterior
density of the random effects can be obtained using Markov chain Monte Carlo methods

and then any desired feature of the posterior density, such as the mode, moments,
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probabilities and credible intervals can be approximated. MCMC techniques have been
implemented in WinBUGS (Spiegelhalter, Thomas, Best and Lunn 2003), which is an
all-purpose software package for Bayesian analysis. The most popular MCMC method is
the Gibbs Sampler. For a detailed account of the Gibbs Sampler and general MCMC, see
Gilks, Richardson and Spiegelhalter (1996). MCMC has a great potential in its ability to
handle mixed effects models with high dimensional random effects given currently
available computing resources.  However, because of difficulties of assessing
convergence to stationarity and the error in estimates, Evans and Swartz (1995) comment
that Markov chain methods are recommended only when there are no other adequate

alternatives.

2.6 Estimation methods for parametric nonlinear mixed effects models
There are different formulations of nonlinear mixed effects models available in the
literature. In this dissertation, we focus on the parametric nonlinear mixed effects model

with normally distributed random-effects and error terms, which is given by

vy =f(Bb)+ey, i=lo,M, j=l..n, (2.6.1)

where y, is the jth observation on the ith subject, f is a nonlinear function, £ is a p-
dimensional vector of fixed effects, b, is a g-dimensional random effects vector
associated with the ith subject (not varying with ;) and assumed i.i.d. normal with mean

0 and variance-covariance matrix D, ;18 the error and assumed i.i.d. N(0,07), M is
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the number of subjects, and n, is the number observations on the ith subject. It is further
assumed that b, and ¢, are independent. As mentioned in Section 2.5.1, there are three

main approaches for parametric nonlinear mixed effects models: linearization methods,
integral approximation methods, and EM algorithms, and all of them are approximation
methods since the likelihood function of the parametric nonlinear mixed effects model

does not generally have a closed form solution.

2.6.1 Linearization methods

The basic idea of linearization is as follows: 1) Take a first-order Taylor series expansion
of the model around some values of the random effects b and the current estimates of the
fixed effects #, which yields a pseudo-model that is of the linear mixed effects model
form; 2) Fit this pseudo-model; 3) Update the values of the random effects and the
estimates of the fixed effects; 4) Repeat the process until a convergence criterion is met.

The first-order Taylor series of the model function f(f,b;) in the model (2.6.1) around

f and b, is

F (B.b,)

£ (8- 3)s LI (5 5) (2.6.2)

i b, ps

f(B.b)~ f(B,b,)+ ===

Substituting for f(f,b;) in (2.6.1) with (2.6.2), we obtain

o (B.b,)

7 (2.6.3)

3 (ﬂ—ﬂ)+% B (b,. —I;i)+g,.j.
B.b; i g

~ f(B.b)+=——
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Rearranging terms in (2.6.3) produces the following approximate model that is of the

linear mixed effects model form

' oB.b) , (B.b)|
;=3 (BB e,
(2.6.4)
JTBb)|p TBE)
B B.b; ob; B.b; '

Linearization methods are natural extensions of the linearization algorithms for classical
nonlinear regression.  The advantages of linearization methods are: 1) it is
computationally simple; 2) multiple levels of nested or crossed random effects can be
accommodated; 3) it is implemented in popular software packages such as NLINMIX
macro in SAS and NLME in both S-PLUS and R. However, despite its popularity, the
drawbacks of linearization methods are: 1) it may produce substantial bias in parameter
estimation with limited number of observations per unit and large variability of random
effects (Ge, Bickel and Rice, 2004); 2) it maximizes the likelihood of some pseudo-data,

not the original data.

Linearization methods differ in the expansion locus of the random effects. Beal and
Sheiner (1982) propose a first-order method, which approximates the likelihood by taking
a first-order Taylor series expansion of the model function around the mean of the

random effects (Notice: the mean of any random effects is simply 0). They have
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implemented their method in the software package NONMEM (Beal and Sheiner, 1992),
which is widely used in pharmacokinetics. It is also available in SAS proc nlmixed (SAS
Institute, 2004) via the method=firo option. Lindstrom and Bates (1990) suggest a more
accurate approximation compared to the first-order method, which takes a first-order
Taylor series expansion of the model function around the current estimated best linear
unbiased predictor (BLUP) of the random effects. Their method is implemented in
another popular software package, called NLME (Pinheiro and Bates 2000), available in
both S-PLUS (Insightful Corporation 2007) and R (R development core team 2009). The
function NLME can only be used to solve nonlinear mixed effects model with nested
random effects. Wolfinger and Lin (1997) use a different algorithm to implement both
Beal and Sheiner’s and Lindstrom and Bates’ linearization methods in the SAS macro
NLINMIX. NLINMIX can be used to solve nonlinear mixed effects model with both

crossed and nested random effects.

2.6.2 Integral approximation methods

The basic idea of integral approximation is as follows: 1) Approximate the marginal
likelihood of the response y using a technologically available numerical integration
routine; 2) Maximize the approximated likelihood numerically. Integral approximations
are generally computationally more demanding than linearization methods. However,
integral approximations usually maximize the likelihood of the original data and they can
generate more consistent and accurate estimates in parameter estimation compared to
linearization methods (Schabenberger and Pierce 2001). Therefore, it is usually a good

idea to use linearization methods to provide starting values for the more accurate integral
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approximation methods. Different methods based on integral approximation have been
proposed to fit nonlinear mixed effects models. They include Laplace approximation,

Importance Sampling, and Gaussian quadrature methods.

The Laplace approximation is a method for approximating integrals using local
information about the integrand at its maximum. Therefore, it is most useful when the
integrand is highly concentrated about its maximizing value. The Laplace approximation
has been widely used in Bayesian analyses to compute posterior means and variances of
parametric functions and it is also useful for approximating the likelihood in nonlinear
mixed effects models when the integrals in the likelihood do not have closed form
solutions (Naylor and Smith, 1982; Tierney and Kadane, 1986; Leonard, Hsu and Tsui,
1989; Tierney, Kass and Kadane, 1989). In both cases, the Laplace approximation
converges to the correct value of the integral as the sample size goes to infinity. Given a
one-dimensional integral of a positive function p(b) and denoted the log of the positive

function p(b) as /(b), the Laplace approximation in its simplest form is

[ pb)db ~ 27 exp(U(B)(-1"(D)) 2, (2.6.5)

where / maximizes [(b). Note that this form of the approximation only applies to

positive integrands. The idea for this approximation comes from a second order Taylor

series expansion of /(b) about b = b . That is, for b near b ,
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1(b) ~ I(h) +I'(b)(b— b) + %l”(l?)(b —b)?,

and ['(b) =0 since b maximizes /(b). Thus

j p(b)db = j exp(I(b))db
~ j exp(/(h) + %l"(é)(b —b)*)db
= exp(/(b)[ exp(%z"(é)w — b))db

Z”(b

= exp(I(b)) ) exp(~(~ 1"(B)/2)(b— bY* )b

-1 ”(b ‘[

= 27 exp((b))(~I"(h)) 2,

since _12 ) exp(—(—1"(b)/2)(b— b)?) is the density function of a normal distribution
T

”(b ) exp(—(— 1"(b)/2)(b - b)*)db = 1.

with mean b and variance — 1/ [ "(b) and then J-

Given g-dimensional integrals of a positive function p(b) and the log of the integrand (),

the Laplace approximation with similar results is

~A |—
14

[ pbyab = 27) exp(l(é))‘— (2.6.6)
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where 5 maximizes /(b) and ‘—l”(I;)‘ denotes the determinant of the matrix (—l"(l;)).

Equation (2.6.6) differs from the univariate case (2.6.5) in that the second derivative of
[(b) has been replaced by the determinant of the matrix of second-order derivatives, and
the power of 27 is multiplied by the dimension g to give a power of g/2. Laplace
approximation to nonlinear mixed effects models has different variations. The ML
version proposed by Pinheiro and Bates (1995) treats the marginal likelihood of the
nonlinear mixed effects model as an integral with respect to the random effects only
while the REML version presented by Wolfinger (1993) integrates out both the random
effects and the fixed effects by assuming a flat prior for the fixed effects from the
marginal likelihood of nonlinear mixed effects models. While Laplace approximation
provides more accurate estimates than linearization methods and is computationally
efficient, the ML version Laplace approximation procedure can introduce a bias for
mixed effects models when the number of subjects is small (Breslow and Lin, 1995; Shun
and McCullagh, 1995; Kauermann, Xu, and Vaida, 2008). The performance of the
REML version Laplace approximation still needs further investigated. The ML version
Laplace approximation is implemented in the nlmixed procedure of SAS (SAS Institute,
2004) for fitting single-level nonlinear mixed effects models. Bates, Maechler, and Dai
(2008) extend the ML version of Laplace approximation for single-level nonlinear mixed
effects models to multilevel nonlinear mixed effects models with both crossed and nested

random effects and implement their approach in the new R function NLMER.
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Importance sampling is a common method to approximate an integral numerically. It
takes advantage of the fact that any integral can be thought of as an expectation function.

For an arbitrary multiple integral, we can always represent it by

1= [ eoe= [ L p o = LD

), xeR", (2.6.7)
x)

X

where X is any random variable with p.d.f. p,(x) and E(-) represents the expectation.

We then take a sample X,,..., X, from the p.d.f. of p, (x) and approximate the integral

lz”: f(x)

(2.6.7) by the sample mean [ =
nig py(x;)

. Importance Sampling provides a simple

and efficient way of performing Monte Carlo integration. The critical step for the
success of this method is the choice of an importance distribution from which the sample
is drawn and importance weights are calculated. For more details about Importance

sampling, see Pinheiro and Bates (1995).

Gaussian quadrature method makes use of the Gauss-Hermite quadrature rule to

approximate an integral. It essentially replaces the integral with a fixed set of spaced

intervals and associated weights. In the univariate case, the integral _[ h(x)dx can be

approximated by

jh(x)dx = j FO)W(x)dx ~ %wi f(x) (2.6.8)
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where h(x) = f(x)w(x), w(x) is the weight function, w, are weights, x, are abscissas,
and N, is the number of the quadrature points. If the intervals are selected around the

conditional mode of the random effects, the resulting quadrature approximation is called
adaptive Gaussian quadrature approximation. For more details about Gaussian
quadrature approximation, see Abramowitz and Stegun (1964), Golub and Welsch (1969),

Golub (1973), Pinheiro and Bates (1995).

Numerical integration methods including Gaussian quadrature, importance sampling, and
other Monte Carlo (MC) integration methods work extremely well for nonlinear mixed
effects models with a small number of random effects (e.g., one or two). However, they
become computationally intensive as the number of random effects increases (Vonesh,

Wang, Nie, and Majumdar, 2002).

2.6.3 EM algorithms

The EM algorithm introduced by Dempster, Laird, and Rubin (1977) is an iterative
method that alternates between performing an expectation step (E-step) and a
maximization step (M-step). Its simplicity and stability have made it a popular approach
for finding maximum likelihood estimates of parameters in statistical models that depend
on missing data or unobserved variables. Let y, , y,., and @ represent the observed
data, missing data, and the vector of parameters to be estimated, respectively. On the

(k +1)th iteration, the E-step generally computes the expectation of the complete data

log-likelihood #(y,,., y,.;0) with respect to the conditional distribution of the missing

data y,, given the observed data y,, under the current estimates of the parameters 8,
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Q(a‘a(k)) = E[g(yobs b ymis ’ 0) yobs 7 0(1{) ]

The M-step is then to find 8“*" to maximize Q(ﬁ‘ﬂ(“) for all @ in the parameter space

Q. The two steps are repeated until convergence.

For nonlinear mixed effects models, similar to the evaluation of the log-likelihood

function, the assessment of the expectation Q(B‘H(“) also involves the evaluation of a

multiple integral that, in most cases, does not have a closed-form expression. Various
simulated EM algorithms for nonlinear mixed models have been presented to
approximate the E-step. Walker (1996) suggests using Monte Carlo integration to handle
conditional expectations in the E-step and he also shows that the M-step is analytically
tractable. The simulated samples used in Walker (1996) are from the assumed
distribution of the random effects. Wang (2007) presents a Monte Carlo EM (MCEM)
algorithm that uses samples obtained from an easy-to-simulate and efficient importance
distribution so that the computational intensity and complexity can be somewhat reduced.
The stochastic approximation version EM (SAEM) algorithm proposed by Kuhn and
Lavielle (2005) decomposes the E-step into a simulation step and a stochastic

approximation step and samples of missing data are either simulated under the

y,,.:0") or obtained from Markov Chain Monte Carlo

conditional distribution p(y, .

(MCMC) procedure. The SAEM algorithm requires the simulation of only one

realization of the missing data for each iteration and, thus, substantially reduces the
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computation time compared to MCEM. Like that of the numerical integration methods
for direct approximation to the marginal likelihood of nonlinear mixed effects models,
the computation of the simulated EM algorithms can also be intensive as the number of

random effects increases.

Research on parameter estimation methods for the nonlinear mixed model is still in
progress. There are questions on how to implement the methods, how well the methods
work, what are the asymptotic and finite-sample properties. For example, Vaida,
Fitzgerald, and DeGruttola (2007) discuss a hybrid Monte Carlo and numerical
integration EM algorithm for computing the maximum likelihood estimates for linear and
nonlinear mixed models with censored data. Noh and Lee (2008) propose the use of Lee
and Nelder (1996) hierarchical-likelihood approach for the analysis of nonlinear mixed
effects model and show that it gives statistically and computationally efficient estimates.
Panhard and Samson (2009) use an extension of the stochastic approximation version of
EM (SAEM) algorithm for obtaining maximum likelihood estimates of multilevel
nonlinear mixed effects models with two nested random effects and show that their

approach can achieve gains in accuracy over the linearization methods.
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2.7 Software review

Software packages offering the capacity to fit nonlinear mixed effects models are
available from a few sources such as NONMEM, SAS, S-PLUS/R, and random effects
modeling in AD Model Builder (ADMB-RE). The first software package developed to
fit nonlinear mixed effects models is NONMEM (Beal and Sheiner, 1992), which
approximates maximum likelihood estimation based on the first-order and conditional
first-order methods. NONMEM has been widely used in the area of pharmacokinetic and

pharmacodynamic analysis and it currently does not handle crossed random effects.

With Release 8.0 and the later version, the NLMIXED procedure in SAS is available to
fit nonlinear mixed effects models with Gaussian errors (The MIXED/NLMIXED
Procedure, 1999). The NLMIXED procedure approximates the integral for a nonlinear
mixed effects model using Laplace approximation, importance sampling, and adaptive
Gauss quadrature methods together with Beal and Sheiner’s first-order method. So far,
the NLMIXED procedure allows only one random statement, which limits nonlinear
models to data with a single classification factor, that is, the NLMIXED procedure can

only handle nonlinear mixed models without nested and crossed random effects.

A SAS macro NLINMIX fits nonlinear mixed effects models with Gaussian outcomes
based on linearization methods (Wolfinger and Lin, 1997). The NLINMIX macro can

handle nonlinear mixed models with both crossed and nested random effects.
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The package NLME, written by Pinheiro and Bates, is very powerful for fitting nonlinear
mixed effects models with nested random effects based on Lindstrom and Bates’
linearization method. NLME is available in both S-PLUS and R. A general description

of the capabilities of NLME is given by Pinheiro and Bates (2000).

A latest developed R function NLMER fits nonlinear mixed effects models by the ML
version Laplace approximation (Bates, Maechler, and Dai, 2008). NLMER can handle

nonlinear mixed effects models with both crossed and nested random effects.

The software package ADMB-RE (Skaug and Fournier, 2006) can handle nonlinear
mixed models with both crossed and nested random effects. ADMB-RE evaluates the
marginal likelihood by either the Laplace approximation or importance sampling and
calculates exact derivatives using Automatic Differentiation (AD). Sampling from the
Bayesian posterior in ADMB-RE uses MCMC (Metropolis-Hastings algorithm).
Automatic Differentiation refers to a collection of techniques that exploit the chain rule
of calculus to automatically evaluate derivatives of functions defined in computer
programs. To use ADMB-RE, users need to formulate the likelihood function in a
template file using a C++ like language and then turn the template file into an executable
program using a C++ compiler. As noted by the authors, the program runs very slowly
when handling random effects models. The reason is that integration of the likelihood,
the way ADMB-RE deals with random effects, is more computationally intensive than

optimization.
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There are many other popular software packages which can only handle linear mixed
and/or generalized linear models, but not nonlinear mixed ones. A major statistical
software package, SPSS (Statistical Package for the Social Sciences) is among the most
widely known and used programs for statistical analysis in social science (Landau and
Everitt, 2004). However, multilevel modeling in SPSS has definite limitations. First, it
cannot fit nonlinear mixed models. Second, for fitting linear mixed models, it can not
specify the covariance matrix at the lowest level. In addition, the restriction to normal
response models means that it cannot handle multilevel logistic regression and multilevel

Poisson regression models.

STATA is an integrated statistical package for Windows and other platforms such as
UNIX, Macintosh and LINUX (Rabe-Hesketh and Everitt, 2004). This package is
becoming more widely used in the statistical community. STATA Corporation has
developed a set of commands for longitudinal data under the x¢ prefix. However, as the
commands were not developed to handle hierarchical data, only variance component
models were available in the STATA 7.0 core package. One user-defined command,
gllamm, extends STATA capacity to fit hierarchical models, including generalized linear

latent and mixed models.

SYSTAT is one of the products from SYSTAT Software Inc. (Hedeker, Marcantonio and
Pechnyo, 2000). It is a statistics and graphics package for technical professionals in the
areas of Data Analysis and Modeling. In the past twenty years, it has been used in the

fields of Life Sciences, Bio-medical, Environmental Sciences, Automobile,
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Pharmaceuticals and etc. With Release 10 of SYSTAT the mixed regression tool has
become available for random effects analysis of hierarchical data. However, SYSTAT

cannot handle nonlinear and nonlinear mixed models.

The Mixed-Up Suite is a family of standalone programs that fits 2-level mixed effects
models (Hedeker and Gibbons, 1996a and b). The first family member MIXOR that fits
random-effects probit and logistic model for ordinal outcomes came out in 1993,
followed by MIXREG, MIXNO, MIXPREG and MIXGSUR. The Mixed-Up Suite can
be used to fit mixed-effects linear regression, mixed-effects logistic regression for
nominal or ordinal outcomes, mixed-effects probit regression for ordinal outcomes,
mixed-effects Poisson regression, and mixed-effects grouped-time survival analysis.
Thus, it cannot handle nonlinear mixed models. As a free package with friendly interface
and good documentation to cover standard two-level random effect models for Normal,
categorical and count outcomes, the Mixed-Up Suite is a very good tool for researchers

and newcomers to multilevel modeling.

HLM (Hierarchical Linear Models) is a stand-alone software package handling mixed
effects models and has been a popular program used by professional researchers and
research students worldwide in areas of education and social science research as well as
public health research (Raudenbush, Bryk, Cheong and Congdon, 2001). With the
version 5.04 for Windows, HLM allows for the analysis of linear and generalized linear

mixed models with two or three levels of NESTING.
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MLwiN has been created by the Centre for Multilevel Modeling team based at the
Institute of Education together with various colleagues in other centers (Browne, 2003;
Rasbash, Steele and Browne, 2003; Yang and Goldstein, 2003). The package can be used
to fit linear and generalized linear mixed models with both nested and crossed random

effects but it does not handle either nonlinear or nonlinear mixed models.

GenStat was first developed in the 1960s at Rothamsted Experimental Station for use in
design and analysis of agricultural experiments and has been in continuous development
since (VSN International Ltd., 2006). The major user group of GenStat is statisticians
and scientists working in biological research. Although most areas of statistical
application are covered, GenStat’s particular strengths are in its ANOVA algorithm,
which analyses balanced multi-level data, and the efficient REML algorithm which
analyses multi-level data, allowing for correlated errors at any level of the data.

Currently, GenStat supports the analysis of linear and generalized linear mixed models.

EGRET was originally developed at the School of Public Health of University of
Washington USA (Mauritsen, R.H., 1984) and it is widely used by Epidemiologists and
Biostatisticians (Cytel Software Corporation, 2000). Being dedicated to binomial and
count data as well as survival data, EGRET is unable to fit Normal response models.
EGRET concentrates on models for categorical data collected from Epidemiology and
Biomedical studies and can be used to fit generalized linear models with and without

random effects and survival models.
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CHAPTER 3
REML ESTIMATION IN NONLINEAR MIXED EFFECTS MODELS VIA THE

FULLY EXPONENTIAL LAPLACE APPROXIMATION EM ALGORITHM

3.0 Abstract

A new EM algorithm using the fully exponential Laplace method to approximate the
conditional expectations of the complete data sufficient statistics in the E-step for
obtaining restricted maximum likelihood estimates in nonlinear mixed effects models is
developed. The main advantages of this approach are its combination of computational
efficiency (preserving the numerically simplicity of Laplace approximation) and great

estimation accuracy (giving an error of order O(1/n*) for estimating variance-covariance

components). Four simulation studies have been conducted to evaluate the accuracy of
the new approach and compare it with the Laplace approximation as well as four different
linearization methods. Of all approximations considered in the paper, our proposed EM
algorithm is the only one that gives unbiased or close-to-unbiased (%Bias < 1%,
Ratkowsky 1983) estimates for all the fixed effects and variance-covariance components
with 95% confidence interval coverages similar to the nominal values for all the fixed

effects.

Keywords: Nonlinear mixed effects model; EM; Laplace; Restricted maximum likelihood
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3.1 Introduction

Nonlinear mixed effects models have been used in numerous fields, such as
pharmacokinetics, biology, medicine, and economics for analyzing repeated measure data.
Estimation in nonlinear mixed effects models, typically, cannot be performed directly
because the likelihood of these models has no closed-form expression due to the random
effects entering nonlinearly in the models. Different approximation methods have been
proposed to circumvent this problem. The most popular approximation methods used to
estimate the parameters in nonlinear mixed effects models are linearization methods,
which are based on using a first-order Taylor series expansion to approximate the
nonlinear model function around zero that is the expected value of the random effects
(Sheiner and Beal, 1980; Wolfinger and Lin, 1997, zero-expansion method), or around
the current estimates of the random effects (Lindstrom and Bates, 1990; Wolfinger and
Lin, 1997, EBLUP-expansion method), and then maximize the likelihood corresponding
to the resulting approximate model. Linearization methods are computationally simple
and have been implemented in a number of software packages such as NONMEM (Beal
and Sheiner, 1992), the %nlinmix macro and the nlmixed procedure in SAS (SAS
Institute, 2004), and the nlme function (Pinheiro and Bates, 2000) in both S-PLUS

(Insightful Corporation, 2007) and R (R development core team, 2009).

Although linearization methods are popular and numerically simple, they can produce
substantial bias in parameter estimation when the number of observations for each subject
is small or the variability of the random effects is large (Ge, Bickel and Rice, 2004). This

has motivated the researchers to use more accurate methods like Laplace approximation,
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numerical integration methods such as Gaussian quadrature (Pinheiro and Bates, 1995),
and Monte Carlo methods such as importance sampling (Pinheiro and Bates, 1995) and
Markov Chain Monte Carlo technique (Wakefield, Smith, Racine-Poon, and Gelfand,
1994) to improve the estimation in nonlinear mixed effects models. Laplace
approximation methods are based on using a second-order Taylor series expansion to
integrate out either the random effects (Pinheiro and Bates, 1995; Vonesh, 1996), or both
the random effects and the fixed effects by assuming a flat prior for the fixed effects
(Wolfinger, 1993) from the marginal likelihood of nonlinear mixed models. While
Laplace approximation methods provide more accurate estimates than linearization
methods and are computationally efficient, the maximum likelihood (ML) Laplace
approximation procedure, the one that integrates out the random effects only, can
introduce a bias for mixed effects models when the number of subjects is small (Breslow
and Lin, 1995; Shun and McCullagh, 1995; Kauermann, Xu, and Vaida, 2008). The
performance of the restricted maximum likelihood (REML) Laplace approximation, the
one that integrates out both the random and fixed effects, still needs further investigation.
Numerical integration methods and Monte Carlo methods are often referred as “exact”
methods in statistical literature in the sense that they can be made as accurate as desired
by taking sufficient large number of grid points (numerical integration methods) or
simulated samples (Monte Carlo methods). The “exact” approach works extremely well
only for single-level nonlinear mixed models with small number of random effects (e.g.,
one or two), but can become computationally great intensive as the number of random

effects increases (Vonesh, Wang, Nie, and Majumdar, 2002).



44

As an alternative to the direct approximate to the marginal likelihood of nonlinear mixed
effects models, various simulated EM algorithms for nonlinear mixed models have
received increased interest in the statistical literature. The Monte Carlo version EM
algorithms approximate conditional expectations in the E-step by Monte Carlo integration
and simulated samples are either from the distribution of the random effects (Walker,
1996) or via importance sampling from a mixture distribution that is simple in the form,
easy to sample from, and efficient (Wang, 2007). The stochastic approximation version
EM algorithm (Kuhn and Lavielle, 2005) replaces the E-step by a simulation step and a
stochastic approximation step and then simulation samples are obtained from a Markov
Chain Monte Carlo procedure. Like the Monte Carlo methods for direct approximation
to the marginal likelihood of nonlinear mixed effects models, the computation of the
simulated EM algorithms can also be challenging as the number of random effects

Increases.

The problems of the current estimation methods for nonlinear mixed effects models
(either producing biased estimates or numerically intensive) form the motivation of this
study. In this paper, we developed a new, efficient, and accurate EM algorithm, fully
exponential Laplace approximation EM algorithm (FELA-EM), for obtaining restricted
maximum likelihood (REML) estimates in parametric nonlinear mixed effects models. In
the E-step of the FELA-EM algorithm, the fully exponential Laplace method (Tierney
and Kadane 1986; Tierney, Kass, and Kadane 1989) is used to approximate the
conditional expectations of the complete data sufficient statistics. The resulting

approximations are generally as accurate as those based on third-order expansions and
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requiring the evaluation of third derivatives. We prefer REML estimation for variance
parameters because it reduces bias by taking account of the degrees of freedom lost in
estimating the fixed effects. The bias of the maximum likelihood (ML) estimators can be
substantial when the number of subjects is small in the nonlinear mixed effects model.
Similar to Wolfinger (1993) and Noh and Lee (2008), we obtain REML estimates for
variance parameters by integrating out the fixed effects from the conditional likelihood of

nonlinear mixed models assuming a flat prior for the fixed effects. We show that the
FELA-EM algorithm gives more accurate estimates, an error of order O(1/n”), than
those from Laplace approximation, an error of order O(1/n), while preserving the

numerically simplicity of Laplace approximation. Thus, the FELA-EM algorithm is

computationally much simpler than numerical integration and Monte Carlo methods.

This paper is organized as follows. In Section 3.2, we present the nonlinear mixed model
and the likelihood of the model. The FELA-EM algorithm is introduced in Section 3.3.
In Section 3.4, we compare the proposed EM algorithm with the ML version of Laplace
approximation as well as four linearization methods based on simulation data. We give

our overall conclusions in Section 3.5 and summarize the paper in Section 3.6.

3.2 Model and likelihood

We consider the following nonlinear mixed effects model:

vy =f(Bb)+e, i=lo,M, j=l..n, (3.2.1)
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where y, is the jth observation on the ith subject, f* is a nonlinear function, £ is a p-
dimensional vector of fixed effects, b, is a g-dimensional random effects vector
associated with the ith subject (not varying with ;) and assumed i.i.d. normal with mean
0 and variance-covariance matrix D, ¢; is the error and assumed i.i.d. N(0, o’), M is
the number of subjects, and n, is the number observations on the ith subject. It is further

assumed that b, and ¢; are independent.

Because the random effects b are unobserved quantities, ML estimation in (3.2.1) is

based on the marginal density of y, which is calculated as

p(y1B.D,0%)= [ p(y.b| B,D,c*)db = [ p(y|b,B.5")p(b| D)db. (3.22)

Similarly, by assuming a flat prior for the fixed effects f, REML estimation for

variance-covariance components D and o in (3.2.1) can be obtained by integrating out

both the fixed effects and the random effects from the joint density of y, £, and b,
which is given by

p(y|D.0*) = [ p(y.p,b| D.c*)dpdb = [ p(y |b.B.0°)p(b| D)dpdb.  (3.2.3)

Since the model function f can be nonlinear in the fixed and random effects, both

integrals (3.2.2) and (3.2.3) generally do not have a closed-form expression.
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33 FELA-EM algorithm for REML estimates of variance-covariance
components

The EM algorithm introduced by Dempster, Laird, and Rubin (1977) has become a
popular approach for finding maximum likelihood estimates in incomplete data problems
due to its simplicity and stability. It is an iterative method that alternates between an

expectation step (E-step) and a maximization step (M-step). Let y,, and y,, represent
the observed and missing data, respectively. Let c(y,,,,y,;) represent the complete data
and @ be the vector of parameters to be estimated. On the (k + 1)th iteration, the E-step
generally computes the expectation of the complete data log-likelihood /(y,,., v, :;0)
conditional on the observed data y , at the current estimates of the parameters 8 (or

the initial values for the first iteration),

Q(a‘a(k)) = E[g(yabs b ymis ’ 0) yobs 7 H(k) ]

The M-step is then to find 8" to maximize Q(0‘0(k)) ,

Q(a(k+l)

0= 0(0p™).

for all @ in the parameter space €. The two steps are repeated until convergence. When
the complete data density belongs to the exponential family, the E-step is simplified to

compute the expected sufficient statistics of the complete data. The EM algorithm moves
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to a better point at each iteration and the log-likelihood of the observed data does not

decrease after an EM iteration.

For the nonlinear mixed effects model (3.2.1), assume a flat prior for the fixed effects f
and consider c(y,f,b) and c(f,b) as the complete data and the missing data,
respectively. Let @ = c(c”, D) represent the parameters for which REML estimates are

required. The E-step and M-step of the FELA-EM algorithm are described in sections

3.3.1 and 3.3.2 respectively.

3.3.1 E-step

The E-step gives the conditional expectation of the complete data log-likelihood

((y.B.b:0),

v,0")dpdb, (3.3.1)

00)0") = [ (v, B.b;0)p(B.b

where

N 2 1 M 2 M 1 M T —1
Uy, B.b;0)= —Elog(hﬁ )= 2|y~ F(B.b)| - Tlog(2ﬂ|D|) - Ezbi Db,
i=1 i=1

20% 4

(3.3.2)
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and N = Zzl n; 1s the total number of observations. The density of the missing data

c(f,b) conditional on the observed data y at 8%, p(p,b|y;0"), can be further written

as

pOLB.BO"™)  expit(y. p.5:0%))
pO)  [expii(y, 8,60} dpdb’

p(B.bly;0")) = (3.3.3)

It can be seen from (3.3.2) that the density of the complete data c(y, f,b) is from the

exponential family and the sufficient statistics of the complete data for o> and D are

M

R=3" Iy, —rB.8)| =|y-rB.b) and S,, =" bb, =b.b, for mn=1...q,

respectively. Thus, the E-step is simplified to compute the expectations of R and S, ,

conditional on y at @ that are given by

[ly=7B.B) expih(y, p.b;0)1dpdb

E(R
[expin(y. p.b;60™)}dpdb

y,0%) =

(3.3.4)

and

b),b, exp{h(y, B, b;0"))ydpdb
[exp{n(y, ,6;6“)ydpdb

E(S,,|y:0") = j

mn=1,...,q, (3.3.5)

where
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n(y,p.b;0") =~ ZHJ’ fB.B) ——sz{D”‘)} b;,

2o “”}

and the common terms that appear in both the numerator and denominator in (3.3.4) and

(3.3.5) and do not contain either f or b are cancelled. The integrals in both the
numerator and the denominator of (3.3.4) and (3.3.5) generally cannot be computed
analytically because both R and #(y, ,b;0")) can be nonlinear in the fixed and random

effects. In this paper, we approximate both (3.3.4) and (3.3.5) by the fully exponential

Laplace method that will be presented in Section 3.3.3.

3.3.2 M-step

The M-step is to find 8" by solving the equation

y;,0")dpdb = 0. (3.3.5)

0 (k) =i .
—5 Q00 =— [ (3. .b:00p(B.b

By allowing differentiation under the integral sign, the unique solution to (3.3.5) is given

by

{O_(k+l)}2 — %E(R y;a(k)), (336)

and
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Dr(nljl) = ﬁE(Sm,n y;a(k))a m,n = 19-“9 q (337)

See Walker (1996) and Wang (2007) for a more detailed derivation. Therefore, once the

conditional expectations of the sufficient statistics E(R|y;0") and ECS,, ;0" for

m,n =1,...,q are obtained, the process of the M-step is straightforward.

3.3.3 Fully exponential Laplace approximation
The fully exponential Laplace approximation to the ratio of two related integrals

introduced by Tierney and Kadane (1986) is given by

[s(p)expintp)idp _ [expint’ (p)idy
[expint(p)idp  [expint(p)}dp

(33.8)
[ det{=0%U(p)/ Opdp'}
det{—0°¢"(¢")/ Opdg"}

] exp{nl (¢p")—nl(§)},

where g(p) is a positive scalar function, /" (p) =log{g(p)}/n+((p), and ¢ and ¢
maximize ¢ and ¢", respectively. Although the errors in the Laplace approximations to
the two integrals (numerator and denominator) in (3.3.8) are of order O(1/n), the error in
the ratio (3.3.8) is of order O(1/n*) due to the cancellation of the similar error terms in

the approximation to the two integrals. The limitation of the Laplace approximation in

(3.3.8) is that it only applies to positive functions. Thus, it is not suitable for our problem
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because the covariance parameters can be negative and even the variance components are
not necessarily strictly positive and they can take values close to zero or zero. Tierney,

Kass and Kadane (1989) generalize the Laplace approximation in (3.3.8) so that g(¢)

can take on negative values. Their approach is to first approximate the moment
generating function of g(¢) so that it is strictly positive, and then approximate the ratio

in (3.3.8) by evaluating the first derivative of the approximation to the moment

generating function at 0. They showed that the accuracy of the moment generating

function approach is also of order O(1/n°).

We now show how to apply the moment generating function approach to estimate the

conditional expectations E(R ;0" for m,n =1,...,q given in (3.3.4)

hA 0“‘)) and E(Smﬂn

and (3.3.5), respectively.

The moment generating function of E(R|y;0") is given by

Jexpit]y— 7 (BB +n(y, B,b;0))ydpdb

M =
o0 [expin(y, p.b;0")}dpdb

(3.3.9)

with 7y, B,b;0")) as in (3.3.5). Applying the fully exponential Laplace approximation

(3.3.8) to0 (3.3.9) yields
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1/2

i) = det[-0°A(y, §.5:0") | dpog']
R - A% % 2 ¥ 1* !
detl~0>{l|y— f(B".67)| +h(y. B ,6":0")} 8909

(3.3.10)
xexptly—f(B" B +n(y. B 6" :0%) =y, p.b:0");

where ¢ =c(f",b") maximizes |y f(B.b)| +(y,5,b;0%) and ¢ =c(f.b)

maximizes #(y,f,b;0")) . Then E(R

y;0) can be approximated by M (t)/ot
evaluated at 0. Since the analytic differentiation of A #(#) with respect to ¢ requires the

third derivatives of |y — f (ﬂ,b)”2 and %(y, B,b;0")) with respect to ¢ and that is

substantial work, we apply the numerical differentiation approach to approximate

E(R|y;0"),

gy = Ma(0) _ M,(8) = My (=6)

E(R
ot 26

y;

for some small §. We choose 6 =107

Similarly, one can show that the fully exponential Laplace approximation to the moment

generating function of £ (Sm,n

;0" for m,n =1,...,q is given by
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A A 1/2
det[-0°(y, B,5;0“)/ 0pdp']
det[-0" {tb),b, + 1(y, B~ .60}/ Bpdp']

]V[s (f) = [

(3.3.11)
xexp{th.b, +h(y,f~,b";0%) — h(y, p.b;0")},

where @™ =c(f”,b") maximizes tb'b, +n(y,B,b;0") and ¢ =c(B,b) maximizes

n(y,p.5;0").

As pointed out by Tierney and Kadane (1986), once ¢, the maximum of %(y, §,b;0"),

has been determined, it can be used as starting values to find ¢" and ¢, the maximum
of f|y- f(ﬂ,b)||2+h(y, B.b;0%) and tb’ b +h(y,B,b;0") in (3.3.10) and (3.3.11),
respectively. Generally, the number of iterations needed to find ¢ and ¢~ from ¢ is

quite small. Replacing ¢ and ¢~ by two Newton steps from ¢ is usually sufficient.

Thus, the computational requirements of the fully exponential Laplace approximation are

comparatively minimal.

In summary, the FELA-EM algorithm takes the following steps:
1) Initialize 8 = c¢(c*,D) =c(c’,D)=0,.
2) E-step:

a) Find ¢ = c(B,b) to maximize A(y, B,b;0")
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b) Maximize |y~ f(.b) +n(y.8.6:6") and  ibb,+n(y,$.5:0)) by

replacing ¢ =c(B°,6") and ¢~ =c(B”,b”) with two Newton steps from ¢,
respectively.

y;ﬂ”‘)) and E(Smﬂn y;ﬂ“‘)) for

c) Approximate the conditional expectations E(R

m,n = 1,...,q with the numerical differentiation approach.
3) M-step: Obtain 8" = c({o*™"}*, D**V) according to (3.3.6) and (3.3.7).

4) Repeat steps 2 and 3 until convergence.

We stop the algorithm when either the difference between two successive log-likelihood
of model (3.2.1) or the absolute/relative changes in @ are less than 10°. The
convergence rate of the standard EM algorithm is slow (McLachlan and Krishnan, 2008).
When the absolute/relative changes in @ are less than 107, we switch to the accelerated
version of the EM algorithm, algorithm QNI1, proposed by Jamshidian and Jennrich
(1997). The QN1 algorithm is based on a quasi-Newton method, Broyden’s method, for
solving nonlinear equations and minimizing functions. Algorithm QNI is easy to
implement and its speed of convergence can be 19-87 times faster than that of the
standard EM algorithm. The idea of Algorithm QNI is as follows. For solving the
system of equations G(x) = 0, Broyden’s method uses search directions of the form —
AiG(xi). In Newton’s method A; is the inverse of the Jacobian of G(x), while in
Broyden’s method an approximation to the Jacobian of G(x) is used. The updates to A; in
Broyden’s method are chosen to satisfy a secant condition and the inverse Jacobian

updating formula is given by
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Aiy1 = A + (s’Aih) (s - Ajh)(s’A)) (3.3.12)
where s = Xi;; — X; and h = G(xi11) — G(xj). Let M(6y) be the value of 6 given by one
standard EM update from the current value 0y; that is, the value maximizing Q(0/6y). The
objective of the EM algorithm can be expressed as finding a solution to g(0) = M(0) - 6 =
0, so here g(0) takes the role of G(x) in the above discussion. In Jamshidian and
Jennrich’s approach, the Broyden update step is applied to the g(8) function, as follows.
First initialize by setting 0 = 0y, go = g(00), and A = -I (the negative of an identity matrix).
Then

1. Compute s =-Agoand h=g(0 +s)— go;
2. Update A using (3.3.12) and s and h from step 1;
3. Replace 6 by 6 + s and gy by go + h, and return to step 1, repeating until

convergence.

3.3.4 Calculating the information matrix

The EM algorithm does not automatically provide the information matrix from which the
standard errors of the estimates can be obtained. Let @ be the estimates of 6 = ¢(o>, D)
at convergence. The observed information matrix of 6 can be obtained by: 1) directly
approximating the REML version observed data log-likelihood log{p(y | D,c”)} by the
standard Laplace method, where p(y|D,c’) is the observed data density given in
(3.2.3), and 2) maximizing the approximated log-likelihood by one quasi-Newton step

from .
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3.3.5 Estimating the fixed and random effects

The FELA-EM algorithm proposed above is a REML method for estimating variance and
covariance parameters @ = ¢(c”, D) in the nonlinear mixed model (3.2.1) and it does not
provide estimates for both the fixed effects f# and the random effects . To estimate f
and b in (3.2.1), we first apply the standard Laplace approximation to the ML version
observed data log-likelihood log{p(y|f,D,c>)}, where p(y|B,D,c”) is the observed
data density given in (3.2.2). We then maximize the approximated log-likelihood with
respect to both B and b by holding 0 = c(c, D) at @, the estimates at convergence

from the FELA-EM algorithm, to obtain the “REML estimates” of f# and b.
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34 Comparing the approximations

In this section, we present a comparison of our proposed EM algorithm (FELA-EM-
REML), the ML version Laplace approximation (Laplace-ML), and four linearization
methods described in Section 3.1 via simulation studies. We restrict ourselves to two ML
linearization methods, Sheiner and Beal (1980) and Lindstrom and Bates (1990), denoted
as S-B-ML and L-B-ML, respectively, and two REML linearization methods proposed by
Wolfinger and Lin (1997), denoted as ZERO-REML and EBLUP-REML. Two models
are used in the simulation studies: a logistic model and a first-order compartment model.
Both models are widely used in statistical literature to illustrate the fitting of nonlinear
mixed models (Lindstrom and Bates, 1990; Pinheiro and Bates, 1995; Wolfinger and Lin,
1997; Kuhn and Lavielle, 2005; Wang, 2007). Each model is simulated under two
conditions: small and large variances-covariances. For each setting of the model, 4,000
simulated data sets from four random number seeds (1,000 data sets/seed) are generated
to avoid simulation bias and ML/REML estimates using the different approximation
methods are obtained. The FELA-EM algorithm presented here is performed using the
code written in R by the authors. The Laplace-ML approximation and L-B-ML method
are implemented using the nlmer and nlme functions in R, respectively. The S-B-ML
method is done using the nlmixed procedure in SAS while the two REML linearization

methods (ZERO-REML and EBLUP-REML) use the %nlinmix macro in SAS.
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3.4.1 Logistic model

A 3-parameter logistic model with two random effects used by Pinheiro and Bates (1995)
was used to generate the data. The values of fixed-effects parameters and covariate were
also similar to those used by Pinheiro and Bates (1995). The nonlinear mixed model is

given by

Y, = b+ by +&;, i=1L.,.M, j=1..n, 34.1
1+exp {_[xij —(B,+b )1 By

where b, = (b,,b,)" areiid. N(0,D). The &, areiid. N(0,07) and independent of b, .
We use M =15, n,=10 for i=1,...M , B=(B, B, )" =(200,700,350)" , and
x, =(100, 267, 433, 600, 767, 933, 1100, 1267, 1433, 1600)" . Two situations based on

the covariance matrix are considered, denoted as small variance and large variance,

respectively. For small variance, the settings are similar to those used by Pinheiro and

D21 D22

D, D, 100 -50
Bates (1995), D= =
-50 625

} and o> =10. For large variance, the

values for D are similar to those used by Wolfinger and Lin (1997); we multiply each
element of D and o° for the small variance settings by 25, that is,

{ 2500 -1250
D —

= and o> =250. Figure 3.1 shows sample profiles for each of the
—1250 15625

two settings of variance and covariance parameters.
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Figure 3.1: Example of simulated logistic curves for small and large variance and

covariance parameters

Small Variance Large Variance

250 | r 250 |

200 |

r 200 |

I 150 |

- 100 —

Tables 3.1 and 3.2 list the simulation results for the fixed-effects estimates in the logistic
model for small and large variance-covariance components D and o, respectively.
Assuming ér stands for a parameter estimate at the »™ simulation and 6, for the true
value of the parameter, the summary statistics for the parameters are defined as follows:

Mean denotes the average of the estimates é, across the 4000 simulations, i.e.,
4000 A . . . . . . .
Zrzl 0. /4000; %Bias denotes the relative bias in estimating the parameter, i.e.,

100 x (Mean — 6, )/|<9T

; RMSE denotes the square root of mean square error of the

estimator, i.e., \/ ij?o (é, -0,) / 4000 , which is a measure of accuracy that takes into

account both bias and variability; 95% CI denotes a 95% confidence interval, i.e.,

Mean+Z, /s’ /4000, where Z, is the normal critical value corresponding to 95%
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4000

confidence level and 57 =" (6, —6,)* /(4000—1). When a 95% CI does not cover

r=1
the true value of the parameter, we conclude that the estimate is significantly biased at
5% level; and finally, %CVR denotes the observed coverage of the #-distribution based
95% confidence intervals computed using the model-based standard errors. Only those
values for the fixed effects were presented in the paper because the standard errors for the
variance-covariance parameters were not provided by either the nlmer function in R or
the %nlinmix macro in SAS. The 95% coverage values marked with an asterisk are
outside the interval (93.97, 96.03). The half-width of this interval is three times the

binomial standard error, which is [(95)(5)/4000]1/2 = 0.3446. When the variance-

covariance components D and o are small, all six approximations considered provide
good results for the fixed-effects parameters. Although the 95% confidence intervals
show that the four linearization methods produce significantly biased estimates for some
fixed effects, the %Bias are relatively small with a maximum absolute value 0.20% for L-
B-ML approximation for estimating f3. The two approximations which give unbiased
estimates for all three fixed effects are FELA-EM-REML and Laplace-ML. For the
observed 95% confidence interval coverages, all six approximations attain their nominal
coverages for both £ and f,, which are fixed effects associated with the random effects.
The observed coverages are slightly different for £5, which is the only one not associated
with the random effects and enters the model nonlinearly. While both L-B-ML and
FELA-EM-REML methods give values similar to their nominal ones, the coverages tend

to increase from the nominal value for the other four methods (S-B-ML, Laplace-ML,

ZERO-REML, and EBLUP-REML). When D and o’ increase, the results for the fixed-

effects parameters are different. For £, which enters the nonlinear mixed model linearly
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and is associated with the random effects, the two eblup-expansion linearization methods
(L-B-ML and EBLUP-REML) underestimate the estimator by 1.90% and 1.83%,
respectively while the other four approximations provide more accurate estimates — either
unbiased (Laplace-ML) or close-to-unbiased (FELA-EM-REML, S-B-ML, and ZERO-
REML) with a maximum absolute value of %Bias 0.32%. The results for f,, which
enters the model nonlinearly and is associated with the random effects, are similar to
those for f;. The two eblup-expansion linearization methods (L-B-ML and EBLUP-
REML) again underestimate the estimator by 2.48% and 2.42%, respectively while the
other four approximations give more accurate estimates — all close-to-unbiased with a
maximum absolute value of %Bias 0.56% for Laplace-ML approximation. For 5, which
enters the model nonlinearly and is the only one not associated with the random effects,
the estimates obtained from FELA-EM-REML and Laplace-ML approximations are more
accurate than those from the four linearization methods. The two zero-expansion
linearization methods (S-B-ML and ZERO-REML) significantly overestimate S5 by 3%
while the two eblup-expansion linearization methods (L-B-ML and EBLUP-REML)
underestimate the estimator by more than 4%. Although FELA-EM-REML and Laplace-
ML approximations give significantly positive biased estimates for f;, the %Bias is
0.56% and 0.90%, respectively. That is more than three times smaller than those from
the four linearization methods.  For the 95% confidence interval coverages, the two
eblup-expansion linearization methods (L-B-ML and EBLUP-REML) give considerable
lower coverages for all three fixed effects. While Laplace-ML and the two zero-
expansion linearization methods (S-B-ML and ZERO-REML) attain their nominal

coverages for f; and f,, their coverages for S5 are significantly higher than the nominal
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ones. The only approximation method which gives coverages similar to the nominal
value for all three fixed effects is FELA-EM-REML. For each of the three fixed effects,
the square root of mean square errors (RMSE) are relatively similar for all six

approximations considered no matter the size of the variance-covariance components D

and o’ .
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Table 3.1: Simulation results for the fixed effects in the logistic model for small variance

and covariance parameters

Approximation Mean %Bias RMSE 95% CI %CVR
£, =200
S-B-ML 200.00 0.00 2.89 [199.91,200.09] 94.49
L-B-ML 199.80° -0.10 2.90 [199.71,199.89]  94.36
Laplace-ML 199.99 -0.01 2.89 [199.90,200.08]  94.37
ZERO-REML 200.00 0.00 2.89 [199.91,200.09]  95.19
EBLUP-REML 199.81% -0.10 2.90 [199.72,199.90]  95.23
FELA-EM-REML 200.00 0.00 2.89 [199.91,200.09] 94.50
£, =700
S-B-ML 699.78 -0.03 8.97 [699.50, 700.05]  95.52
L-B-ML 699.141 -0.12 8.98 [698.87,699.42]  95.39
Laplace-ML 700.06 0.01 8.97 [699.78,700.34]  95.40
ZERO-REML 699.77 -0.03 8.98 [699.50, 700.05]  95.93
EBLUP-REML 699.16" -0.12 8.97 [698.89, 699.44]  95.85
FELA-EM-REML 700.01 0.00 8.97 [699.73,700.28]  95.43
S5 =350
S-B-ML 350.42° 0.12 4.70 [350.27,350.56]  96.52*
L-B-ML 349.31° -0.20 4.70 [349.17,349.46] 95.92
Laplace-ML 350.12 0.04 4.68 [349.98,350.27]  96.62*
ZERO-REML 350.41° 0.12 4.71 [350.27,350.56]  96.64*
EBLUP-REML 349,337 -0.19 4.70 [349.18, 349.47]  96.05*
FELA-EM-REML 350.08 0.02 4.68 [349.93,350.22]  95.98

The 95% CI does not cover the true value of the parameter and the estimate is
significantly biased at 5% level.

* The %CVR is outside the interval (93.97, 96.03).



65

Table 3.2: Simulation results for the fixed effects in the logistic model for large variance

and covariance parameters

Approximation Mean %Bias RMSE 95% CI %CVR
£, =200
S-B-ML 200.60° 0.30 14.59 [200.15,201.06]  94.48
L-B-ML 196.20° -1.90 14.77 [195.75,196.64]  93.57*
Laplace-ML 200.36 0.18 14.53 [199.91,200.81]  94.43
ZERO-REML 200.64° 0.32 14.63 [200.19,201.09]  95.53
EBLUP-REML 196.34° -1.83 14.75 [195.90, 196.78]  93.66*
FELA-EM-REML 200.65° 0.32 14.57 [200.20,201.10]  94.63
£, =700
S-B-ML 696.46' -0.51 47.64 [694.99, 697.93]  94.91
L-B-ML 682.62" 248  46.43 [681.29, 683.95]  92.27*
Laplace-ML 703.92° 0.56  47.18 [702.46,705.37]  95.40
ZERO-REML 697.18" -0.40  47.24 [695.72, 698.64]  95.66
EBLUP-REML 683.06" 242 4644 [681.72, 684.40]  92.20%*
FELA-EM-REML 702.75° 039 4723 [701.29,704.21]  95.25
S =350
S-B-ML 360.48" 3.00  26.61 [359.72,361.23]  96.49*
L-B-ML 335.121 -4.25 25.85 [334.47,335.78]  90.25%
Laplace-ML 353.14 090  24.02 [352.40,353.88]  96.50*
ZERO-REML 360.51° 3.00  27.39 [359.72,361.29]  96.78%*
EBLUP-REML 335.47" -4.15 25.82 [334.81,336.13]  89.60*
FELA-EM-REML 351.96' 0.56  23.97 [351.22,352.70]  96.02

The 95% CI does not cover the true value of the parameter and the estimate is
significantly biased at 5% level.

* The %CVR is outside the interval (93.97, 96.03).
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Tables 3.3 and 3.4 contain the simulation results for the random-effects, the variance-
covariance components in the logistic model for small and large D and &, respectively.

When D and o are small, the three REML approximations (FELA-EM-REML, ZERO-
REML, and EBLUP-REML) all give unbiased estimates while the three ML
approximations (Laplace-ML, S-B-ML, and L-B-ML) can significantly underestimate the
estimators by up to 9.27%, i.e., L-B-ML for estimating D,,. For the variance component
associated with the random effects that enter the nonlinear mixed model linearly Dy, the
three ML approximations significantly underestimate the estimator by more than 6%
while the three REML approximations give unbiased estimates with a maximum value
of %Bias 0.79% for ZERO-REML. The results for D,,, which is the variance component
associated with the random effects that enter the model nonlinearly, are similar to those
for D;;. The three ML approximations again significantly underestimate the estimator
and the %Bias increases to about 9%. The three REML approximations give unbiased
estimates with a maximum absolute value of %Bias 0.44% for EBLUP-REML. For the
covariance component Dy; all six approximations give unbiased estimates. The relatively
large %Bias (greater than 1%) indicates that the covariance component D, is estimated
with less accuracy than the variance components of the random effects D;; and D,;. The
subject specific variance o is estimated with more relative accuracy than the elements
of the variance-covariance components of the random effects (D;;, D,;, and D,;). This
can be seen from the small %Bias for all six approximations (less than 1%). The possible
reason is that the estimate of o is determined by the total number of observations, while
the estimates of D are determined by the number of subjects. Although the 95%

confidence intervals show that the three ML approximations provide significantly
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negative biased estimates for o, the %Bias are small with a maximum value 0.82% for

Laplace-ML approximation. The three REML approximations again give unbiased

estimates. When D and o’ increase, the only approximation method which gives
unbiased estimates for all variance-covariance components is FELA-EM-REML. For Dy,
the three ML approximations significantly underestimate the parameter by more than 5%.
The two REML version linearization methods behave differently. The ZERO-REML
significantly overestimates D;; by 1.98% while the EBLUP-REML gives a significantly
negative biased estimate with %Bias equal to 1.33%. For D,;, both FELA-EM-REML
and S-B-ML approximations give unbiased estimates with %Bias less than 1%. The
ZERO-REML approximation again significantly overestimates D,; by up to 8.57% while
the other three approximations (Laplace-ML, L-B-ML, and EBLUP-REML) significantly
underestimate the estimator with a maximum value of %Bias up to 15.4% for L-B-ML.
The %Bias for EBLUP-REML (6.26%)) is similar to that for Laplace-ML (6.23%), which
indicates that the REML eblup-expansion approximation cannot correct the bias for D,
in this case. For covariance component D5, the three ML approximations and the two
REML linearization methods all give significantly positive biased estimates with a
maximum value of %Bias up to 18.64% for S-B-ML. Although the FELA-EM-REML
approximation gives an unbiased estimate for D,;, the large %Bias (4.48%) again

indicates that the covariance component is estimated with less accuracy than the variance

components. The subject specific variance o

is estimated with more relative accuracy
than the variance-covariance components D. The %Bias is significant for all but the

FELA-EM-REML approximation although the absolute value is small for all six

approximations with a maximum absolute value 0.81 for Laplace-ML. The RMSE’s for



68

each of the variance-covariance components D and o again are relatively similar for all

six approximations considered no matter the size of D and o .
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Table 3.3: Simulation results for the random-effects variation in the logistic model for

small variance and covariance parameters

Approximation Mean %Bias RMSE 95% CI

D,, =100
S-B-ML 93.67° -6.33 38.42 [ 92.50, 94.85]
L-B-ML 93.56" -6.44 38.36 [ 92.39, 94.73]
Laplace-ML 93.69° -6.31 38.41 [ 92.51, 94.86]
ZERO-REML 100.79 0.79 40.60 [ 99.53, 102.05]
EBLUP-REML 100.65 0.65 40.54 [ 99.40, 101.91]
FELA-EM-REML 100.76 0.76 40.60 [ 99.51, 102.02]

D,, =-50
S-B-ML -47.74 4.51 76.45 [ -50.11, -45.37]
L-B-ML -47.77 4.45 76.26 [ -50.14, -45.41]
Laplace-ML -47.80 4.40 76.48 [ -50.17, -45.43]
ZERO-REML -49.08 1.83 81.88 [ -51.62, -46.55]
EBLUP-REML -49.31 1.37 81.86 [ -51.85, -46.78]
FELA-EM-REML -49.39 1.21 81.95 [ -51.93, -46.85]

D,, = 625
S-B-ML 569.60" -8.86 318.86 [ 559.87, 579.33]
L-B-ML 567.06" 927  315.14 [ 557.46, 576.67]
Laplace-ML 569.41° -8.89 316.28 [ 559.76, 579.06]
ZERO-REML 625.91 0.15 335.36 [ 615.51, 636.30]
EBLUP-REML 622.24 -0.44 333.20 [611.91, 632.56]
FELA-EM-REML 624.87 -0.02 333.97 [ 614.52, 635.22]

o’ =10
S-B-ML 9.92 -0.76 1.28 [ 9.88, 9.96]
L-B-ML 9.92" -0.81 1.27 [9.88, 9.96]
Laplace-ML 9.92 -0.82 1.28 [9.88, 9.96]
ZERO-REML 10.01 0.08 1.28 [9.97,10.05]
EBLUP-REML 10.01 0.08 1.29 [9.97,10.05]
FELA-EM-REML 10.00 0.02 1.28 [ 9.96, 10.04]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.
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Table 3.4: Simulation results for the random-effects variation in the logistic model for

large variance and covariance parameters

Approximation Mean %Bias RMSE 95% CI

D,, =2500
S-B-ML 2370.64" -5.17 981.84 [2340.48, 2400.81]
L-B-ML 2290.59" -8.38 957.44 [2261.63, 2319.55]
Laplace-ML 2360.48" -5.58 981.46 [2330.37, 2390.59]
ZERO-REML 2549.58" 1.98 1043.38 [2517.28, 2581.89]
EBLUP-REML 2466.79" -1.33 1003.57 [2435.70, 2497.87]
FELA-EM-REML 2513.21 0.53 1039.63 [2480.99, 2545.43]

D,, =-1250
S-B-ML -1017.00° 18.64 2011.49 [-1078.93, -955.08]
L-B-ML -1136.47" 9.08 2011.24 [-1198.71,-1074.23]
Laplace-ML -1176.231 5.90 2151.18 [-1242.86, -1109.60]
ZERO-REML -1046.67" 16.27 2134.69 [-1112.53, -980.81]
EBLUP-REML -1168.19° 6.54 2165.45 [-1235.26, -1101.12]
FELA-EM-REML -1305.98 -4.48 2315.28 [-1377.72,-1234.24]

D,, =15625
S-B-ML 15608.36 -0.11 9824.41 [15303.87, 15912.86]
L-B-ML 13219.50° -15.40 8091.66 [12980.05, 13458.95]
Laplace-ML 14652.17 -6.23 8835.86 [14379.98, 14924.36]
ZERO-REML 16964.57" 8.57 10448.52 [16643.41, 17285.74]
EBLUP-REML 14646.60" -6.26 8450.22 [14386.46, 14906.74]
FELA-EM-REML 15695.81 0.45 9363.32 [15405.61, 15986.00]

o’ =250
S-B-ML 248.44" -0.62 32.00 [247.45, 249.43]
L-B-ML 248.95" -0.42 32.05 [247.96, 249.94]
Laplace-ML 247.98" -0.81 32.00 [246.99, 248.97]
ZERO-REML 251.02" 0.41 32.24 [250.03, 252.02]
EBLUP-REML 251.04 0.42 32.40 [250.04, 252.05]
FELA-EM-REML 249.81 -0.07 32.40 [248.81, 250.82]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.
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3.4.2 First-order compartment model

A 3-parameter first-order compartment model with two random effects used by Pinheiro
and Bates (1995) was used to generate the data. The values of the fixed-effects
parameters, the covariate, and the dose were also similar to those used by Pinheiro and

Bates (1995). The nonlinear mixed model is given by

_ Dose-exp[—(f, +b,)+ (5, +b,) + ]
. exp(f, +b;,) —exp(f;)

{exp [_ eXp(ﬂ3 )xl_',' ]

—exp[—exp(B, +b,)x; 1} + &, i=L..M, j=1..n,

(3.4.2)

where b, = (b,,b,)" areiid. N(0,D). The &; are 1.1.d. N(O, o) and independent of b, .
We use Dose =5, M =12, n, =11 for i=1,..,.M , B=(B., 5. B;) =(=3,0.5,-2.5)",
and x, = (0, 0.25,0.5,1,2,4,5,7,9,12,24)" . Again, two situations based on the
covariance matrix are considered, denoted as small variance and large variance,

respectively. For small variance, the settings are similar to those used by Pinheiro and

0.05 0

Dll D12
Bates (1995), D = =
0 02

} and o’ =0.1. For large variance, the
D21 D22

values for D are similar to those used by Wolfinger and Lin (1997); we multiply each

025 0
element of D and o for the small variance settings by 5, that is, D :{ 0 J and

o’ =0.5. Figure 3.2 shows sample profiles for each of the two settings of variance and

covariance parameters.
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Figure 3.2: Example of simulated first-order compartment curves for small and large

variance and covariance parameters

Small Variance Large Variance

- > 10

Tables 3.5 and 3.6 summarize the simulation results for the fixed-effects estimates in the

first-order compartment model for small and large variance-covariance components D

and o’ , respectively. When D and & are small, FELA-EM-REML, Laplace-ML, and
the two eblup-expansion linearization methods (L-B-ML and EBLUP-REML) provide
more accurate estimates for the fixed-effects parameters than the two zero-expansion
approximations (S-B-ML and ZERO-REML). For f;, the two zero-expansion
approximations significantly underestimate the estimator with %Bias by about 1.5%
while the other four approximations show very little bias with a maximum absolute value
of %Bias 0.11% for Laplace-ML and FELA-EM-REML. For f,, the two zero-expansion
approximations significantly overestimate the estimator by 2.85% and 7.08%,
respectively, while the other four approximations all give unbiased estimates with a
maximum absolute value of %Bias 0.61% for L-B-ML method. For 3, which is the only

non-random coefficient, the results are similar to those for f;. Both S-B-ML and ZERO-
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REML approximations again significantly underestimate the estimator with %Bias by
about 1.65% while the other four approximations show very little bias with a maximum
absolute value of %Bias 0.07% for the two eblup-expansion approximations (L-B-ML
and EBLUP-REML). When D and o increase, only FELA-EM-REML and Laplace-
ML approximations give unbiased or close-to-unbiased (%Bias < 1%) estimates for all
three fixed effects. For f;, the two zero-expansion approximations significantly
underestimate the estimator with %Bias by 5.7% and 6.35%, respectively, while the other
four approximations show very little negative bias with a maximum absolute value
of %Bias 0.31% for L-B-ML. For f,, the two zero-expansion approximations greatly
overestimate the estimator by 12.78% and 32.82%, respectively, while the two eblup-
expansion approximations significantly underestimate the estimator by about 7%. The
two approximations which give unbiased estimates for S, are FELA-EM-REML and
Laplace-ML. For the non-random coefficient fs, the results again are similar to those for
p1. Both S-B-ML and ZERO-REML approximations significantly underestimate the
estimator with %Bias by about 6% while the other four approximations provide very
slight bias with a maximum absolute value of %Bias 0.28% for EBLUP-REML. The
observed 95% confidence interval coverages are similar for both small and large variance
situations. For f;, the two zero-expansion linearization methods (S-B-ML and ZERO-
REML) give considerable lower coverages while the other four approximations (L-B-ML,
Laplace-ML, EBLUP-REML, and FELA-EM-REML) attain their nominal values. For $,,
both EBLUP-REML and FELA-EM-REML approximations give coverages similar to
their nominal values while the coverage rates decrease significantly from the nominal

ones for the other four methods (S-B-ML, L-B-ML, Laplace-ML, and ZERO-REML),
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with the lowest coverage of 52.61% for S-B-ML for large D and o”. For fs, the only
nor-random coefficient and entering the model nonlinearly, the coverage rates obtained
from all six approximations are significantly different from the nominal value. While the
two zero-expansion linearization methods (S-B-ML and ZERO-REML) provide lower
coverages compared with the nominal value, the coverages tend to increase from the
nominal one for the other four approximations (L-B-ML, Laplace-ML, EBLUP-REML,
and FELA-EM-REML). As in the logistic model analysis, we observe that the RMSE’s

for each of the three fixed effects are relatively similar for all six approximations

considered no matter the size of the variance-covariance components D and o~ .
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Table 3.5: Simulation results for the fixed effects in the first-order compartment model

for small variance and covariance parameters

Approximation Mean %Bias RMSE 95% CI %CVR
B =-3
S-B-ML -3.0437" -1.46  0.0818  [-3.0459,-3.0416] 89.92%*
L-B-ML -3.0026 -0.09 0.0671  [-3.0047,-3.0006] 94.28
Laplace-ML -3.0034 -0.11  0.0670  [-3.0054, -3.0013] 94.35
ZERO-REML -3.0449° -1.50 0.0818  [-3.0470,-3.0428] 92.23*
EBLUP-REML -3.0026" -0.09 0.0671  [-3.0046, -3.0005]  95.17
FELA-EM-REML -3.0033" -0.11 0.0671  [-3.0054,-3.0012] 95.10
B, =05
S-B-ML 0.5143" 2.85 0.1479 [0.5097,0.5188] 66.75*
L-B-ML 0.4969 -0.61  0.1360 [0.4927,0.5012]  93.08*
Laplace-ML 0.5006 0.12 0.1362 [0.4964, 0.5048] 93.23*
ZERO-REML 0.5354" 7.08 0.1401 [0.5312,0.5396]  93.40*
EBLUP-REML 0.4972 -0.57  0.1360 [0.4929,0.5014] 94.10
FELA-EM-REML 0.5007 0.15 0.1363 [0.4965, 0.5050]  94.07
Py =-25
S-B-ML -2.54147 -1.65 0.0522  [-2.5423,-2.5404] 76.73*
L-B-ML -2.4982f 0.07 0.0267  [-2.4991,-2.4974] 97.05%*
Laplace-ML -2.50117 -0.04 0.0267  [-2.5019,-2.5003] 97.13*
ZERO-REML 2.5421° -1.68  0.0532  [-2.5431,-2.5411] 76.98%*
EBLUP-REML -2.4982f 0.07 0.0267  [-2.4991,-2.4974] 97.25*
FELA-EM-REML -2.5012f -0.05  0.0267  [-2.5020,-2.5003] 97.22%*

significantly biased at 5% level.

* The %CVR is outside the interval (93.97, 96.03).

The 95% CI does not cover the true value of the parameter and the estimate is
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Table 3.6: Simulation results for the fixed effects in the first-order compartment model

for large variance and covariance parameters

Approximation Mean %Bias RMSE 95% CI %CVR
B =-3
S-B-ML -3.1711° -5.70  0.2384  [-3.1762,-3.1660]  79.57*
L-B-ML -3.0092f -0.31 0.1492  [-3.0138,-3.0046] 94.37
Laplace-ML -3.0087" -0.29  0.1490  [-3.0133,-3.0041] 94.43
ZERO-REML -3.1905" -6.35 0.2492  [-3.1955,-3.1855] 82.96*
EBLUP-REML -3.0086 -0.29  0.1493  [-3.0132,-3.0040] 95.07
FELA-EM-REML -3.0086" -0.29 0.1492  [-3.0132,-3.0039] 95.44
B, =05
S-B-ML 0.5639" 12.78 0.3074 [0.5546,0.5732] 52.61*
L-B-ML 0.4636 -7.27  0.2989 [0.4544,0.4728] 93.29*
Laplace-ML 0.4984 -0.33  0.3093 [0.4888,0.5080] 93.43*
ZERO-REML 0.6641 32.82  0.3408 [0.6549, 0.6734]  88.68*
EBLUP-REML 0.4652 -6.95 0.2998 [0.4560,0.4745] 94.12
FELA-EM-REML 0.5038 0.76  0.3127 [0.4941, 0.5135]  94.09
Py =-25
S-B-ML -2.6486" -5.94  0.1748  [-2.6515,-2.6458] 47.01*
L-B-ML -2.4932f 0.27 0.0541 [-2.4949, -2.4916] 97.05*
Laplace-ML -2.5048" -0.19  0.0531 [-2.5064, -2.5031]  97.13*
ZERO-REML -2.6698" -6.79  0.1938  [-2.6727,-2.6669] 46.45*
EBLUP-REML -2.49317 0.28 0.0533  [-2.4947,-2.4914] 97.06*
FELA-EM-REML -2.5049° -0.20  0.0613  [-2.5068, -2.5030] 97.12*

significantly biased at 5% level.

* The %CVR is outside the interval (93.97, 96.03).

The 95% CI does not cover the true value of the parameter and the estimate is
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Tables 3.7 and 3.8 show the simulation results for the variance-covariance components in
the first-order compartment model for small and large D and o, respectively. When

D and o’ are small, both FELA-EM-REML and EBLUP-REML approximations give
unbiased estimates for all the variance-covariance parameters. For D;;, the three ML
approximations (S-B-ML, L-B-ML, and Laplace-ML) significantly underestimate the
estimator by more than 6% while the ZERO-REML approximation gives a significant
positive biased estimate (1.91%). For Dy, the three ML approximations and the ZERO-
REML approximation all provide significant negative biased estimates with a maximum
value of %Bias 11.08% for S-B-ML. For the covariance component D,;, the %Bias
cannot be obtained since the true value of D, equals 0. However, by investigating the
95% confidence intervals of the covariance parameters, we found that the two zero-
expansion approximations (S-B-ML and ZERO-REML) significantly underestimate the
estimator, while L-B-ML and Laplace-ML approximations also give unbiased estimates.
For the subject specific variance o’ , the two zero-expansion approximations greatly
overestimate the estimator by 13.79% and 17.32%, respectively, while L-B-ML and
Laplace-ML both give close-to-unbiased estimates with a maximum value of %Bias
0.94% for Laplace-ML. When both D and o’ are large, the only approximation method
which gives unbiased or little biased estimates for all variance-covariance components is
FELA-EM-REML. For D;;, both L-B-ML and Laplace-ML approximations significantly
underestimate the parameter by more than 7%, while the two zero-expansion
approximations significantly overestimate the parameter by 2.72% and 9.29%,
respectively. Both FELA-EM-REML and EBLUP-REML give unbiased estimates for

Dy,. For Dy, the only approximation method which gives an unbiased estimate is FELA-
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EM-REML, while the other five approximations all give significantly negative biased
estimates. The two zero-expansion and L-B-ML approximations greatly underestimate
Dy, by 25.83%, 24.94%, and 14.85%, respectively, while Laplace-ML and EBLUP-
REML give moderately biased estimates with %Bias 8.2% and 6.24%, respectively. For
the covariance component D5, the two zero-expansion approximations significantly
underestimate the estimator while FELA-EM-REML shows very little positive bias. The

other three approximations all give unbiased estimates for D,;. For the subject specific

variance o, the two zero-expansion approximations greatly overestimate the estimator
by 39.06% and 48%, respectively, while the other four approximations provide more
accurate estimates — either unbiased (L-B-ML and FELA-EM-REML) or slightly biased
(Laplace-ML and EBLUP-REML) with a maximum absolute value of %Bias 1.28% for
Laplace-ML. The RMSE’s for each of the variance-covariance components D and o
are relatively similar for all six approximations considered no matter the size of D and

2
o .



79

Table 3.7: Simulation results for the random-effects wvariation in the first-order

compartment model for small variance and covariance parameters

Approximation Mean %Bias RMSE 95% CI

D,, =0.05
S-B-ML 0.0469" -6.13 0.0227 [0.0462, 0.0476]
L-B-ML 0.0457" -8.51 0.0206 [0.0451, 0.0464]
Laplace-ML 0.0459" -8.14  0.0207 [0.0453, 0.0466]
ZERO-REML 0.0510" 1.91 0.0242 [0.0502, 0.0517]
EBLUP-REML 0.0500 -0.07  0.0220 [0.0493, 0.0506]
FELA-EM-REML 0.0502 0.34  0.0221 [0.0495, 0.0509]

D, =0
S-B-ML -0.0022" N/A  0.0311 [-0.0031, -0.0012]
L-B-ML 0.0004 N/A 0.0281 [-0.0005, 0.0013]
Laplace-ML 0.0005 N/A  0.0282 [-0.0004, 0.0014]
ZERO-REML -0.0015" N/A 0.0325 [-0.0025, -0.0005]
EBLUP-REML 0.0005 N/A  0.0307 [-0.0004, 0.0015]
FELA-EM-REML 0.0007 N/A 0.0309 [-0.0002, 0.0017]

D,, =0.2
S-B-ML 0.1778" -11.08  0.0832 [0.1754, 0.1803]
L-B-ML 0.1822° -8.89  0.0850 [0.1796, 0.1848]
Laplace-ML 0.1831" -8.47  0.0855 [0.1805, 0.1857]
ZERO-REML 0.1853" -7.35 0.0836 [0.1828, 0.1879]
EBLUP-REML 0.1995 -0.26  0.0908 [0.1967, 0.2023]
FELA-EM-REML 0.2007 036  0.0917 [0.1979, 0.2036]

o’ =0.1
S-B-ML 0.1138" 13.79  0.0243 [0.1132, 0.1144]
L-B-ML 0.0991" -0.87  0.0135 [0.0987, 0.0995]
Laplace-ML 0.0991" -0.94  0.0135 [0.0986, 0.0995]
ZERO-REML 0.1173" 17.32  0.0278 [0.1166, 0.1180]
EBLUP-REML 0.1001 0.05 0.0136 [0.0996, 0.1005]
FELA-EM-REML 0.1000 -0.04  0.0135 [0.0995, 0.1004]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.
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Table 3.8: Simulation results for the random-effects wvariation in the first-order

compartment model for large variance and covariance parameters

Approximation Mean %Bias RMSE 95% CI

D,, =0.25
S-B-ML 0.2568" 2.72  0.1635 [0.2517,0.2619]
L-B-ML 0.2252" -9.93 0.1042 [0.2220, 0.2283]
Laplace-ML 0.2310" -7.59  0.1063 [0.2278, 0.2343]
ZERO-REML 0.2732" 929  0.1622 [0.2682, 0.2782]
EBLUP-REML 0.2473 -1.09  0.1277 [0.2433, 0.2512]
FELA-EM-REML 0.2516 0.65 0.1136 [0.2481, 0.2551]

D, =0
S-B-ML -0.0480" N/A  0.2007 [-0.0541, -0.0420]
L-B-ML -0.0026 N/A  0.1432 [-0.0070, 0.0018]
Laplace-ML 0.0037 N/A  0.1535 [-0.0011, 0.0084]
ZERO-REML -0.0314" N/A  0.1996 [-0.0375, -0.0252]
EBLUP-REML -0.0007 N/A  0.1694 [-0.0060, 0.0046]
FELA-EM-REML 0.0074 N/A  0.1667 [0.0022, 0.0126]

D,, =1
S-B-ML 0.7417" -25.83 0.4533 [0.7301, 0.7532]
L-B-ML 0.8515 -14.85 0.4234 [0.8392, 0.8638]
Laplace-ML 0.9180" -8.20  0.4754 [0.9035, 0.9325]
ZERO-REML 0.7506 -24.94  0.4448 [0.7392, 0.7620]
EBLUP-REML 0.9376 -6.24  0.4440 [0.9240, 0.9512]
FELA-EM-REML 1.0085 0.85 0.4952 [0.9932, 1.0239]

c’=05
S-B-ML 0.6953" 39.06  0.2625 [0.6899, 0.7008]
L-B-ML 0.4982 -0.36 0.0716 [0.4960, 0.5004]
Laplace-ML 0.4936" -1.28  0.0672 [0.4915, 0.4957]
ZERO-REML 0.7400" 48.00  0.3196 [0.7335, 0.7465]
EBLUP-REML 0.5031" 0.62  0.0855 [0.5004, 0.5057]
FELA-EM-REML 0.4984 -0.31 0.0705 [0.4963, 0.5006]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.



81

3.5 Discussion

We have developed a new EM algorithm, a fully exponential Laplace approximation EM
algorithm (FELA-EM), for REML estimation in parametric nonlinear mixed effects
models, where we assume that both random effects and error are normally distributed.
The new algorithm is generally as accurate as the direct approximations of marginal
likelihood estimation for nonlinear mixed models based on third-order expansions while
preserving the computational simplicity of those methods based on second-order
expansions (i.e., Laplace approximation). The proposed algorithm gives an error of

second order O(1/n”) compared with the first-order error O(1/n) from the standard

Laplace method for estimating variance-covariance components. The computing time of
the FELA-EM algorithm is about 4-5 times longer than that of the Laplace approximation
and 20-25 times than that of the linearization methods (i.e., L-B-ML) while the
computing time of numerical integration and Monte Carlo methods can be more than
1000 times longer than that of the linearization methods. Thus, the FELA-EM algorithm
is computationally much more efficient than numerical integration and Monte Carlo
methods. Simulation studies for both the logistic model and the compartment model
considered in this paper are performed for two situations-either small or large variability
in both random effects and residual error. This is a generalization of conditions used by
Pinheiro and Bates (1995) and Wolfinger and Lin (1997). Pinheiro and Bates (1995)
consider the small variability in both random effects and residual error, while Wolfinger
and Lin (1997) use both small and large variability for random effects but consider only

small variability in residual error.
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The results of Section 3.4 indicate that the proposed FELA-EM-REML algorithm for
nonlinear mixed effects models gives accurate and reliable REML estimate for both fixed
effects and variance-covariance components. It produces either unbiased or close-to-
unbiased (%Bias < 1%) estimates for both the fixed effects and the variance-covariance
components and gives 95% confidence interval coverages similar to the nominal value
for all the fixed effects. For the fixed-effects estimation, the estimates obtained from
FELA-EM-REML approximation are similar to those from the Laplace-ML
approximation, but are more accurate than those from the four linearization methods.
Both FELA-EM-REML and Laplace-ML approximations give unbiased or close-to-

unbiased estimates with 95% confidence interval coverages similar to the nominal value
for all fixed effects no matter the size of D and o* while the four linearization methods

frequently generate significantly biased estimates for large D and o°. The coverage
rates obtained from the four linearization methods can be much lower than the nominal
95% level with the lowest coverage of about 47% for the two zero-expansion
approximations for estimating f; in the compartment model when both of D and o’ are
large. We also observe that the two eblup-expansion approximations generally give
smaller bias than the two zero-expansion approximations and the two zero-expansion
approximations can give estimates with %Bias as high as 33%. The RMSE’s for each of

the fixed effects are relatively similar for all approximations considered no matter the

size of D and o?.

For the variance-covariance estimation, our proposed FELA-EM-REML algorithm is the

only approximation method that always gives unbiased estimates for variance and
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covariance parameters. Although the EBLUP-REML approximation also generates
unbiased estimates for variance-covariance components for small D and o, it generally
gives significantly biased estimates for large D and o”. The three ML approximations
(Laplace-ML, S-B-ML, and L-B-ML) generally underestimate the variance parameters
no matter the size of D and o”. For covariance parameters, the performance of the ML
approximations does have a consistent pattern. They can generate either unbiased or
significantly biased estimates. The ZERO-REML approximation generally gives more
accurate estimates than the three ML approximations for small D and . However, it
can generate very poor estimates with %Bias up to 48% when both D and o’ are large.
The RMSE’s for each of the variance-covariance components are relatively similar for all

approximations considered no matter the size of D and .

3.6 Conclusions

The proposed FELA-EM algorithm for nonlinear mixed effects models gives accurate
and reliable REML estimations (either unbiased or close-to-unbiased) for both fixed
effects and variance-covariance components. For the fixed-effects estimation, both the
FELA-EM algorithm and the Laplace approximation gives either unbiased or close-to-
unbiased estimates with 95% confidence interval coverages similar to the nominal value

for all fixed effects no matter the size of D and o while the four linearization methods

can frequently generate significantly biased estimates for large D and o”. For the

variance-covariance estimation, the EBLUP-REML approximation gives unbiased
estimates for small D and o’ but generates significantly biased estimates for large D

and o>. The three ML approximations frequently underestimate the variance parameters
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for both small and large D and o, and their performance for covariance is uncertain

(either unbiased or significantly biased). The ZERO-REML approximation is more
accurate than the three ML approximations for small D and o” but it can produce

generate very poor estimates when both D and o are large.
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3.7 Summary

In this paper we have developed a new EM algorithm to obtain REML estimates of
variance-covariance components as well as both the fixed and random effects parameters
in nonlinear mixed effects models. This new approach, called fully exponential Laplace
approximation EM algorithm ( FELA-EM-REML), can be considered as an improvement
of the Laplace approximation which preserves the computational efficiency and improves
the accuracy of the parameter estimation of Laplace approximation. This new approach
first applies the standard EM algorithm to nonlinear mixed effects models and then uses
the fully exponential Laplace method to approximate the conditional expectations of the
complete data sufficient statistics in the E-step. Four simulation studies (two models
each with small and large variance-covariance parameters) were conducted to evaluate
the accuracy of the new approach and compare it with the ML Laplace approximation
and four linearization methods. Of all approximations considered in the paper, the
proposed FELA-EM-REML algorithm is the only one that gives unbiased or close-to-
unbiased (%Bias < 1%) estimates for all the fixed effects and variance-covariance
components with 95% confidence interval coverages similar to the nominal value for all

the fixed effects.
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CHAPTER 4
EXTENSION OF THE FULLY EXPONENTIAL LAPLACE APPROXIMATION
EM ALGORITHM FOR NONLINEAR MIXED MODELS WITH TWO LEVELS

OF CROSSED RANDOM EFFECTS

4.0 Abstract

Multilevel nonlinear mixed effects models have received much interest in the statistical
literature in recent years. These models are useful for analyzing data presenting multiple
levels of grouping. Examples include pharmaceutical studies in which concentration
measurements are taken over time for patients from different clinical centers after given a
drug or field experiments where measurements are obtained weekly from plants that grow
in different fields. The most successful methods used to estimate the parameters in
multilevel nonlinear mixed models are called linearization methods, which are based on
using a first-order Taylor series expansion to approximate the nonlinear model function
and maximizing the likelihood corresponding to the resulting approximate model.
Although linearization methods are popular and computationally simple, they can
produce substantial bias in parameter estimation with limited number of observations per
stratum and large variability of random effects. = Recently, several more accurate
estimation methods for single-level nonlinear mixed models have been extended for
parameter estimation in multilevel nonlinear mixed models including the maximum
likelihood (ML) version of Laplace approximation and the stochastic approximation
version of EM algorithm. This paper focuses on parameter estimation of nonlinear mixed

effects models with two levels of crossed grouping. The restricted maximum likelihood
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estimates are obtained via the extension of the FELA-EM algorithm. Two simulation
studies have been conducted to evaluate the accuracy of the approach and compare it with
the ML version of Laplace approximation and different linearization methods. Of all
approximations considered in the paper, FELA-EM algorithm is the only one that gives
unbiased or close-to-unbiased (%Bias < 1%, Ratkowsky 1983) estimates for both the
fixed effects and variance-covariance parameters with 95% confidence interval coverages

similar to the nominal value for all the fixed effects.

Key Words: Nonlinear mixed models; linearization methods; Laplace approximation;
EM algorithm; Fully exponential Laplace approximation; Crossed random effects; ML

estimation; REML estimation.
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4.1 Introduction

Nonlinear mixed effects models with single-lever grouping factors have been widely used
in numerous fields, such as biology, agriculture, environment, medicine, and economics
for analyzing repeated measure data. In recent years, multilevel nonlinear mixed effects
models, including nonlinear mixed models with nested random effects, nonlinear mixed
models with crossed random effects, and nonlinear mixed models with both nested and
crossed random effects, have begun to receive much interest in the statistical literature
(Pinheiro and Bates 2000; Davidian and Giltinan 2003; Millar 2004; Panhard and Samson
2009). These models are useful for analyzing data presenting multiple levels of grouping
such as in pharmaceutical studies where concentration measurements are taken over time
for patients from different clinical centers after given a drug and in field experiments

where measurements are obtained weekly from plants that grow in different fields.

The most popular methods used to estimate the parameters in multilevel nonlinear mixed
models are called linearization methods, which are based on using a first-order Taylor
series expansion to approximate the nonlinear model function and maximize the
likelihood corresponding to the resulting approximate model. Linearization methods for
multilevel nonlinear mixed models are computationally simple and have been
implemented in a number of software packages such as NONMEM (Beal and Sheiner
1992), the %nlinmix macro (Wolfinger and Lin 1997) in SAS (SAS Institute 2004), and
the nlme function (Pinheiro and Bates 2000) in both S-PLUS (Insightful Corporation
2007) and R (R development core team 2009). The only popular program that can solve

multilevel nonlinear mixed models with both crossed and nested random effects is
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the %nlinmix macro in SAS and the other programs generally only deal with multilevel
nonlinear mixed models with nested random effects. The SAS macro solves the
nonlinear mixed model based on the following idea: 1) Take a first-order Taylor series of

the model around the current estimates of the fixed effects f and some values of the

random effects . This yields an approximate model of the linear mixed model form. 2)
Fit this model with a linear mixed model procedure (i.e., the Mixed Procedure in SAS). 3)
Update the expansion loci. 4) Repeat the process until a convergence criterion is met.
There are different ways to choose the expansion locus of the random effects and we
focus on two of them: expansion around zero that is the expected value of the random
effects, denoted as ZERO and expansion around the estimated best linear unbiased
predictor, denoted as EBLUP. Several different methods for estimating parameters in
linear mixed-effects models have also been proposed and we concentrate on two of them:
maximum likelihood, ML (Hartley and Rao 1967) and restricted maximum likelihood,
REML (Harville 1977). Although linearization methods are popular and computationally
simple, they can produce substantial bias in parameter estimation with limited number of
observations per subject and large variability in random effects (Vonesh 1996; Ge, Bickel,

and Rice 2004).

This bias has motivated researchers to search for more accurate methods for single-level
nonlinear mixed models to improve the estimation in multilevel nonlinear mixed models.
The ML version of Laplace approximation for single-level nonlinear mixed models
proposed by Pinheiro and Bates (1995) has been extended to nonlinear mixed models

with both crossed and nested random effects by Bates, Maechler, and Dai (2008). It is
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also possible to implement the adaptive Gaussian quadrature (AGQ) method for single-
level nonlinear mixed models proposed by Pinheiro and Bates (1995) in the SAS
procedure NLMIXED for nonlinear mixed models with two nested groupings. However,
due to the large number of quadrature points, the AGQ method often requires very high
computer resources and time. Moreover, in practice, the AGQ method frequently fails to

converge (Jaffrezic, Meza, Lavielle, and Foulley 2006).

As an alternative to the direct approximate to the marginal likelihood of nonlinear mixed
effects models, various versions of EM algorithms (Dempster, Laird, and Rubin 1977)
have been proposed for the parameter estimation in single-level nonlinear mixed models
including Monte Carlo EM-based algorithms (Walker 1996; Wang 2007) and stochastic
approximation EM algorithm (Kuhn and Lavielle 2005). The stochastic approximation
version of EM algorithm for single-level nonlinear mixed models has been successfully
extended to nonlinear mixed models with two nested grouping factors by Panhard and
Samson (2009) while none of the Monte Carlo EM-based algorithms are directly

applicable to the case of multilevel nonlinear mixed models.

The objective of this paper is to extend the FELA-EM algorithm (proposed in chapter 3)
to nonlinear mixed effects models with two levels of crossed grouping for obtaining
REML estimates. In Section 4.2, we present a general formulation for nonlinear mixed
models with two levels of crossed grouping. In section 4.3, we give both ML and REML
versions of Laplace approximation to the two-level crossed nonlinear mixed models. The

extension of the FELA-EM algorithm for single-level nonlinear mixed models to
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multilevel nonlinear mixed models with two crossed groupings is introduced in Section
4.4. In Section 4.5, we evaluate the accuracy of the extended approach and compare it
with the ML version of Laplace approximation and four different linearization methods
given in Wolfinger and Lin (1997). We give our overall conclusions in Section 4.6 and

summarize the paper in Section 4.7.

4.2 Model and likelihood
For a multilevel nonlinear mixed effects model with two crossed grouping factors, the

model can be written as

Vi = S(BB D)+, i=1. M, j=1.,M, k=1..n (4.2.1)

L RASTE)

where y,, is the kth observation on the ith unit of grouping factor 1 and the jth unit of
grouping factor 2, f is a nonlinear function, f# is a p-dimensional vector of fixed effects,
b is a g;-dimensional random effects vector associated with the ith unit of grouping
factor 1 and assumed iid. N(0,D"), b is a g,-dimensional random effects vector
associated with the jth unit of grouping factor 2 and assumed i.i.d. N(0, D), & 18 the
error and assumed i.i.d. N(0,5°), M; and M, are the number of units in grouping factors
1 and 2, respectively, and n, is the number of observations on the ith unit of grouping
factor 1 and the jth unit of grouping factor 2. It is further assumed that 5", b;.z) , and

&; are independent.
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The joint density of y, ", and »® of model (4.2.1) is p(y,b"",b> | B,6°,D"",D?)
where y is observed, but the random coefficients " and »'* are unobserved. Because

the random effects are unobserved quantities, ML estimation for model (4.2.1) is based

on the marginal density of the responses, y, which is calculated as

p(y| f.0*. DV, D) = [{p(y| f.5%.6".67) p(6" | D)
(4.2.2)
x p(b®? |D<2))}db<”db<2)

where p(y|f,0>,D",D?®) is the marginal density of y for ML estimation,
p(y|B.0°,6",b?) is the conditional density of y given the random effects b and
b®, and the marginal distributions of 5" and »* are p(b"” | D) and p(b"” | D?),

respectively.

Similarly, by assuming a flat prior for the fixed effects f#, REML estimation for

variance-covariance components D", D® and ¢’ in model (4.2.1) can be obtained by

integrating out both fixed effects and random effects from the joint density of y, g, b"",

and b, which is given by
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p(y|a*, DV, D) = [ p(y, 6,67 | >, D", D) dpb" db™

= [{o(r | p.0* 6" ) p(6 | D) (4.2.3)

x p(b® |D(2))}dﬁ‘db(”db‘2),

where o>, D", D®) is the marginal density of for REML estimation,
ply g y y

p(y|B.0°,6",b?) is the conditional density of y given both fixed effects f and
random effects b and b , and the marginal distributions of »" and b are

p(b" | DM and p(b” | D), respectively. Because the model function f can be

nonlinear in the random effects, the integrals in both (4.2.2) and (4.2.3) generally do not

have a closed-form expression.

4.3 Laplace approximation to the likelihood

The Laplace approximation is a method for approximating integrals using local
information about the integrand at its maximum. Therefore, it is most useful when the
integrand is highly concentrated about its maximizing value. The Laplace approximation
has been widely used in Bayesian inference to compute marginal posterior densities
(Tierney and Kadane 1986; Leonard, Hsu, and Tsui 1989) and it converges to the correct
value as the sample size goes to infinity. We first apply Laplace approximation to the

marginal density of y for ML estimation given in (4.2.2). The details are as follows.
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The integral (4.2.2) that we want to estimate can be further written as

-N —(Myq,+M,q,)

-y My
p(y|B,0°, DV, D?)=(2r0%)2 27x) *? ‘D(”‘ 2
4.3.1)

M,
X‘D(z)‘_zjexp[ g(p, 0_2 D, y,b)} dbVdp®,

where g(f,0°,D,y,b) = zz”yv S (B, bl(l)’bm)” Zb(”TD(” b“)+Zb(2)TD‘2) b

i=l j=1 i=1 i=1

M, M,
and N = Z Znij . Applying Laplace approximation to the integral in (4.3.1), we get

=1 j=l

-~ _M, My
p(y|ﬂ,0'2,D(1),D(2))z(27zo'2) 2 ‘D“)‘ 2 ‘D(”‘ 2
(4.3.2)

-1
—g(ﬂ,az,D,y,I;)—"g"(ﬂ,az,D,y,l;)|2 ,
2] 2

X eXp

A

where b minimizes the function g(f,0>,D,y,b) and g"(B,0°,D,y,b) is the second

derivative of g(f,c°, D, y,b) with respect to the random effects b evaluated at b = b.
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Similarly, the Laplace approximation to the marginal density of y for REML estimation

given in (4.2.3) can be obtained by

M,

PN -~ - My
p(y|c®, DV, DP)~(27) 2 (2757) 2 ‘D“)‘ 2 ‘Dm‘ 2
(4.3.3)

-1
—g(ﬁ,O'Z,D,y,bA)—||g"(ﬁ,O'2,D,y,bA)|2

e i

where pN is the number of fixed effects f in model (4.2.1), ﬁ and b jointly minimize
the function g(f,0°,D,y,b) and g"(B,0>,D,y,b) is the second derivative of
g(p,o°, D, y,b) with respect to the fixed effects # and the random effects b evaluated

at f=p and b =5, respectively.



100

4.4 FELA-EM algorithm

EM algorithm (Dempster, Laird, and Rubin 1977) has been widely used for finding
ML/REML estimates in incomplete data problems due to its simplicity and stability. It
alternates between two steps, an expectation step (E-step) and a maximization step (M-
step). Let c¢(y,,,,»,.,) be the complete data where y, and y, . represent the observed
and missing data, respectively, and @ be the vector of parameters to be estimated. On the

(K +1)th iteration, the E-step generally computes the expectation of the complete data

log-likelihood #(y,,.,y,.;0) conditional on the observed data y, at the current

estimates of the parameters " (or the initial values for the first iteration),

yobs 5 0(K) ]

0(6]6'7) = E[(3 5. 7,03 0)

The M-step is then to find 8™ to maximize Q(G‘H(K ’) for all @ in the parameter space,

Q(a(KJrl)

0" = 0(0)0).

The two steps are repeated until convergence is reached. When the complete data density
belongs to the exponential family the E-step can be further simplified to compute the
expected sufficient statistics of the complete data. After each iteration, the EM algorithm

moves to a better point and the log-likelihood of the observed data increases.
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For the multilevel nonlinear mixed effects model (4.2.1), assume a flat prior for the fixed
effects f and consider c(y,B,6",b”) as the complete data where y and
c(B,b", b)) are the observed and missing data, respectively. Let 8 = c(c”, D", D)

represent the parameters for which REML estimates are required. The E-step and M-step

of the FELA-EM algorithm are described as follows.

4.4.1 E-step
The E-step computes the conditional expectation of the complete data log-likelihood

000 = [ (v, B.6",67:0)p(B,6" b |y;0*")dpdb b, (4.4.1)

where

N 1 Ml Mz
(. p.b0.67:0) =~ log0?) -3 .
i=l j=1

_ M @4
= vy = F(B.6" .6

M, oy _ LSS po” potpo (4.4.2)
—Tlog(Zﬂ"D \)—521)1. Db 4.

i=1

M, oh_ 1S5 ,07 pol, o
—Tlog(Zﬂ‘D \)—521;_, Db

i=1
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Ml MZ
and N = ZZny is the total number of observations. The density of the missing data

i=1 j=I
c(B,b",b?) conditional on the observed data y at 8, p(/)’,b(”,b(z)‘y;ﬂ(m), can be

further written as

p(y.8.6°,2)0")
p(10™)

p(B. 6", 6% |y;0") =

(4.4.3)
_ exp{f(y,ﬂ,b(l),b(z);0(1())}
[expt(y, .6 670" dpdb"db™>

It can be seen from (4.4.2) that the density of the complete data c(y, #,b",b"?) is from
the exponential family and the sufficient statistics of the complete data for D", D®,

and o?are SO, =350 b pD bO for my,n, =1,...q,, SO =B b = B

my,n i=1 iy i my,ny 1 Jmy " iy

for my,n, =1,.,q, , and R= ZZ; ij ; —f(,ﬂ,bi(l),bj('z))u2 = Hy—f(ﬁ',b(l),b(z))u2

respectively. Thus, the E-step can be simplified to compute the expectations of R, S |

my,ny

and S'*  conditional on y at @) that are given by

my,n,

(=7 (B8 expin(y. p.6",67:0) dpdb " db
Iexp {h(y, ﬂ,b(l), b(z);ﬂ(K))}dﬂdb(l)db(z)

y.0%) = , (4.4.4)
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J' (1) b(l) exp{h(y ﬂ b(l) b(2) O(K))}dﬂdb(l)db(z)

E(SY, |p,0%) = (4.4.5)
. j exp {h(y, .6, 6;0)}dpdb" b
and
brElZ) (2) ex {h( \ ,b(l),b(z);ﬂ(m)}d db(l)db(Z)
E(SY |y, 0%y === pihiy.f ’ (4.4.6)
o | exp (3. 5.6 650 ) dpas s
where m ,n, =1,...,q,, m,,n, =1,...,q,, and
h(y.B.b",:0") = - — 1 (B.6". b
2(0%}® } P ’
mef (DO} 0 (4.4.7)

i=1

L3, 7 @ (K)q-1 p(2)
—E;bj (DD} 1 p®),

The common terms that appear in both the numerator and denominator in (4.4.4), (4.4.5),

and (4.4.6) and do not contain £, b, and b® are cancelled. The integrals in both the

numerator and the denominator of (4.4.4), (4.4.5), and (4.4.6) generally cannot be
computed analytically because both the sufficient statistics of the complete data for o

(R) and Ay, B,6",6;0)) can be nonlinear in the fixed and random effects. We
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approximate (4.4.4), (4.4.5), and (4.4.6) by the fully exponential Laplace method that will

be presented in Section 4.4.3.

4.4.2 M-step

The M-step is to find the estimates of the parameters for the next iteration, 8™, by

solving the equation

000"y =S [ 103, B.5.5:00p(5. ",

y;0%))dpdb" db® = 0.

(4.4.8)

By allowing differentiation under the integral sign (Walker 1996; Wang 2007), the

unique solution to (4.4.8) is given by

and

{JZ}(KH) — %E(R

1
(o e~ L pegm
Ml

{D(2) }(K+1) — LE(S(Z)

y.a(K))

y;a(K))’ ml’nl :15"':q17

my,m my,m

my,ny my,ny
2

7,0, my,n, =1,...,q,.

(4.4.9)

(4.4.10)

(4.4.11)
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Therefore, once the conditional expectations of the sufficient statistics E(R‘ 9.0,

E(S)

my,n

y,0'"°) for m,,n, =1,...,q, are obtained,

y,0°) for m,n, =1,...,q,, and E(S,’,

the process of the M-step is straightforward.
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4.4.3 Fully exponential Laplace approximation

The fully exponential Laplace approximation proposed by Tierney and Kadane (1986) is
useful for approximating the expectation and variance of a strictly positive function. It
has the advantage of requiring only second derivatives of the log-likelihood function to
achieve a second-order accuracy. The fully exponential Laplace approximation to the

ratio of two related integrals is given by

[s)expint(p)idp _ [expint’ (p)idy
[expint(p)idp  [expint(p)}dyp

N det{-0>((¢)/ Opdp"
det{-0°("(¢p")/ Opip"}

(4.4.12)

] exp{nl’(§") —nl(p)},

where g(@) is a positive scalar function, (" () =log{g(@)}/n+¢(¢), and ¢ and ¢

maximize ¢ and ¢, respectively. Note that the errors in the Laplace approximations to

both the numerator and the denominator in (4.12) are of order O(1/n) while the error in

the ratio (4.4.12) is of order O(1/n”) due to the cancellation of the similar error terms in

the approximation to the numerator and the denominator. The limitation of the Laplace
approximation in (4.4.12) is that it only applies to positive functions. Thus, it generally
does not work for our problem because the covariance parameters can be negative and
even the variance components are not necessarily strictly positive. They can take values
close to zero or zero. Tierney, Kass and Kadane (1989) generalize the Laplace

approximation in (4.4.12) so that g(¢) can take on negative values. Their approach is to

first approximate the moment generating function of g(¢) (Note that the moment
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generating function of any scalar function is always strictly positive), and then
approximate the ratio in (4.4.12) by evaluating the first derivative of the approximation to

the moment generating function at 0. They showed that the accuracy of the moment

generating function approach is also of order O(1/n7).

We now apply the moment generating function approach to estimate the conditional

expectations E(R ,0%)) for

y; 0(10) E(s(l)

y;e(K)) for m]anl =1>"': ql s and E(S;ZZ)’HZ

m,,n, =1,..,q, givenin (4.4.4), (4.4.5), and (4.4.6), respectively.

The moment generating function of E(R|y;0'") is given by

jexp{ruy—f(ﬁ,b<1),b(2>)H2 1y, B,6%,5;0%) b b

MR (t) = Iexp{h(y, ﬂ,bm,b(z);H(K))}dﬂdb(l)db(z)

. (4.4.13)

with a(y, £,6",67;0) as in (4.4.7). Let ¢ =c(f,b"",b?) and apply the fully

exponential Laplace approximation (4.4.12) to (4.4.13) yielding

1/2

det[-0°7(y,$;0'")/ 0pdgp']
N o ,
det[-0" {f|y— £ (") +1(y,9":0")}/ Opdp']

Mk(t) =

(4.4.14)
— o e o)y _ ~ k)
xexpitly— £ +1(r.6":0“) - n(y.9:0“))},
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where ¢ =c(f 6", b maximizes |y - f((p)”2 +1(p, 0,05 and

¢ =c(B,b",b?) maximizes h(y,p;0"). Then E(R|y;60™) can be approximated by

oM #(1)/0t evaluated at 0. Since the analytic differentiation of M # (1) with respect to ¢

requires the third derivatives of || y—f ((o)"2 and Ai(y,p;0"™) with respect to ¢ that can
be substantial work we apply the numerical differentiation approach to approximate

E(R|y;0'),

OM (0) _ My (8) =~ M 4 (=9)

E(R
ot 268

»;0") =

for some small & (i.e., 10).

Similarly, one can show that the fully exponential Laplace approximations to the moment

y;a(K)) for mlanlzla"'oql and E(Sr(nzz),nz y;H(K)) for

generating functions of E(S'"

my,n

m,,n, =1,...,q, are given by

1/2
det[-0*7i(y, ;0'") / 0p0p']

A ok

my.ny det[—az{l‘l;,(,,ll)** 5,53)** + h(y,(o ,0(1())}/6(08(0’]

(4.4.15)

xexp (b)) B +1(y,¢";0") —1(y,§;0")},

and
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1/2

7 9 A n(K) ,
My (1)= det[-0"h(y, §;0 fff"’a"’]

my det[_az {tb"r(ni)*** éif)*** " h(y,(ﬂ ;0(10)}/8(08(0’]

(4.4.16)

A ok

xexp{th”"™ b + h(y, " 10%)) — i(y, 9;0)},

Sxk Y

where (ﬁ=c(ﬁ,l;(”,l;<2)) maximizes #(y,9;0) , ¢  =c(f”,b" ,5(2)**) maximizes

!
BB +h(r.:0%) . and  §7 =c(BTBOEY) maximizes

th,,) b,” +1(y,9;0'“’). As noted by Tierney and Kadane (1986), the computation of the
fully exponential Laplace approximation is relatively minimal since 1) once ¢, the

maximum of 7(y,;0’), has been determined, it can be used as starting values to find
', 9", and ¢, the maximum of |y - f(p)|" +7(y,0:0%), b b +1(y,9;0),

and tb,ﬁfz) b,f) +h(y,0;0") in (4.4.14), (4.4.15), and (4.4.16), respectively; 2) generally,
the number of iterations needed to find ¢, ¢, and ¢~ from ¢ is quite small and

replacing ¢, ¢ ,and ¢ by two Newton steps from ¢ are usually sufficient.

In summary, the FELA-EM algorithm for multilevel nonlinear mixed models with two

crossed groupings takes the following steps:
1) Initialize @ = c¢(c>,D",D?)=0,.
2) E-step:

a) Find ¢ =c(B,6V,?) to maximize A(y,p;0'%)
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b) Maximize fly—f(p)| +2(y.0:0%) , b +1(y,9;:0%) , and

b b +1(y,9;0) by replacing ¢ =c(f bV, 6y

6" =c(B 007,67, and ¢ = (7.6 ,6PT) with two Newton
steps from ¢, respectively.
c) Approximate the conditional expectations E(R|y;0"), E(S\’, (y;0'") for

2
my,n,

m,n, =1,..,q, and E(S” |y;0") for m,,n, =1,...,q, with the numerical

differentiation approach.
3) M-step: Obtain 9% = ({2} X0 (DVYKD (DK gecording to  (4.4.9),

(4.4.10), and (4.4.11), respectively.

4) Repeat steps 2 and 3 until convergence.

We conclude convergence when either the difference between two successive log-
likelihood of model (4.2.1) or the absolute/relative changes in @ are less than 10°. The
convergence rate of the standard EM algorithm is slow (McLachlan and Krishnan, 2008).
When the absolute/relative changes in @ are less than 107, we switch to the accelerated
version of the EM algorithm, algorithm QNI, proposed by Jamshidian and Jennrich
(1997). The QN1 algorithm is based on a quasi-Newton method, Broyden’s method, for
solving nonlinear equations and minimizing functions. Algorithm QNI is easy to
implement and its speed of convergence can be 19-87 times faster than that of the

standard EM algorithm.
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4.4.4 Calculating the information matrix
One of the drawbacks of EM algorithm is that it does not provide a natural estimator for

the information matrix and thus the standard errors of the estimates cannot be readily

obtained. Let § be the estimates of @ = c(c?, D™, D®) at convergence. The observed

information matrix of @ can be obtained by directly maximizing the logarithm of the

Laplace approximated REML version of observed data likelihood p(y|g,c°,D",D™)

given in (4.3.3) with respect to 8 = c(o”, D", D) by one quasi-Newton step from 0.

4.4.5 Estimating the fixed and random effects

The proposed FELA-EM algorithm is a REML method for estimating variance and

covariance parameters 0 = c(c”, D", D) in the nonlinear mixed model (4.2.1) and it
does not provide estimates for both the fixed effects f and the random effects »" and
b® . We can directly maximize the logarithm of the Laplace approximated ML version
of observed data likelihood p(y|f,o>, D", D®) given in (4.3.2) with respect to both f#,
b, and b while holding 6 = c(c’, D", D?) at 0 , the estimates at convergence from
the FELA-EM algorithm, to obtain the “REML estimates” of #, b, and b in model

(4.2.1).
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4.5 Comparing the approximations

In this section, we present a comparison of our proposed EM algorithm (FELA-EM-
REML), the ML version Laplace approximation (Laplace-ML), and four variations of
linearization methods described in Section 4.1 via simulation studies. We restrict
ourselves to the linearization methods proposed by Wolfinger and Lin (1997). Both ML
and REML estimates are obtained for the linearization methods, denoted as ZERO-ML,
ZERO-REML, EBLUP-ML and EBLUP-REML, respectively. Two models are used in
the simulation studies, a logistic model and a first-order compartment model. Both
models are widely used in statistical literatures to illustrate the fitting of nonlinear mixed
models (Lindstrom and Bates, 1990; Pinheiro and Bates, 1995; Wolfinger and Lin, 1997;
Kuhn and Lavielle, 2005; Wang, 2007). For both models 2,000 simulated data sets from
two random number seeds (1,000 data sets/seed) are generated to avoid simulation bias
and ML/REML estimates using different approximations are obtained. The FELA-EM
algorithm presented here is done using the code written in R by the authors. The Laplace
approximation is done using the nlmer function in R package Ime4 (Bates, Maechler, and
Dai, 2008) and the four linearization methods (ZERO-ML, ZERO-REML, EBLUP-ML
and EBLUP-REML) are done using the %nlinmix macro in SAS. The sample code for

fitting the logistic model using the FELA-EM algorithm is given in the appendix.

4.5.1 Logistic model
A 3-parameter logistic model used by Wolfinger and Lin (1997), but with two crossed
grouping factors and two random effects associated with each of the grouping factor was

used to generate the data. The values of fixed-effects parameters, covariate, and
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variance-covariance parameters for random effects were also similar to those used by
Wolfinger and Lin (1997). The error o° was increased from 25, used in Wolfinger and
Lin (1997), to 625 to distinguish the performance of different approximation procedures.

The nonlinear mixed model is given by

B +by +b
1 +exp {_[x;,- -5+ bi(zl) + b,(;) )/ By}

Yie = +&

ijk >

(4.4.1)
i=l.,M,, j=l.,M, k=1..n

lj’

where b0 = (b6 are iid. N(0,D"), b = (b ,b )" are iid. N(0,D”)
and independent of the b, and ¢, areii.d. N(0,0”) and independent of b{" and b'*.
We wuwse M, =10 , M,=10 , n,=7 for i=1.,M, and j=1.,M,

2

B =B, 5, B,)" =(200,700,350)" , and x, = (118,484, 664,1004,1231,1372,1582)" .

For variance and covariance parameters, we let

DO _ DY Dy | | 2500 —1875
DY DY -1875 15625

and

Do _ D DY | | 2600 —1950
DY DP| |-1950 16250 |
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Tables 4.1 lists the simulation results for the fixed-effects estimates in the logistic model.
Assuming @, stands for a parameter estimate at the 7™ simulation and @, for the true
value of the parameter, the summary statistics for the parameters are defined as follows:

Mean denotes the average of the estimates é, across the 2000 simulations, i.e.,
Zﬁ)o ér /2000; %Bias denotes the relative bias in estimating the parameter, i.e.,

100 x (Mean — 6, )/|‘97

; RMSE denotes the square root of mean square error of the

estimator, i.e., \/ Zii?o (é,, -6, / 2000, which is a measure of accuracy that takes into

account both bias and variability; 95% CI denotes 95% confidence intervals, i.e.,

Mean+Z, /s /2000, where Z, is the normal critical value corresponding to 95%

2000

confidence level and s3 =) (6. —6,)* /(2000 —1). When 95% CI does not cover the

r=t
true value of the parameter, we conclude that the estimate is significantly biased at 5%
level; and finally, %CVR denotes the observed coverage of the standard normal based
95% confidence intervals computed using the model-based standard errors. Only those
values for the fixed effects were presented in the paper because the standard errors for the
variance-covariance parameters were not provided by both the nlmer function in R and
the %nlinmix macro in SAS. The 95% coverage values marked with an asterisk are
outside the interval (93.54, 96.46). The half-width of this interval is three times the
binomial standard error, which is [(95)(5)/2000]"* = 0.4873. For B, which enters the
nonlinear mixed model linearly and is associated with the random effects, the estimates
obtained from FELA-EM-REML, Laplace-ML, and the two zero-expansion

approximations (ZERO-ML and ZERO-REML) are more accurate than those from the
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two eblup-expansion approximations (EBLUP-ML and EBLUP-REML). The two eblup-
expansion approximations significantly underestimate the estimator by 1.61% and 1.54%,
respectively, while the other four approximations all provide unbiased estimates. For £,
which enters the model nonlinearly and is associated with the random effects, the
estimates obtained from FELA-EM-REML and Laplace-ML approximations are more
accurate than those from the four linearization methods. Although the 95% confidence
intervals show that all six approximations produce significantly biased estimates,
the %Bias are relatively small with an absolute maximum value 2.22% for EBLUP-ML
approximation. For f3, which enters the model nonlinearly and is the only non-random
coefficient, the estimates obtained from FELA-EM-REML and Laplace-ML
approximations are again more accurate than those from the four linearization methods.
The two zero-expansion approximations (ZERO-ML and ZERO-REML) significantly
overestimate (3 by 5.29% while the two eblup-expansion methods (EBLUP-ML and
EBLUP-REML) underestimate the parameter by 3.94% and 3.81%, respectively.
Although FELA-EM-REML and Laplace-ML approximations give significantly positive
biased estimates for f3, the %Bias is 0.89% and 0.67%, respectively, which is more than
three times smaller than those from the four linearization methods. The two
approximations that give unbiased or close-to-unbiased (%Bias < 1) estimates for all
three fixed effects are FELA-EM-REML and Laplace-ML approximations. The observed
95% confidence interval coverages obtained from FELA-EM-REML approximation are
more accurate than those from the other five methods (ZERO-ML, EBLUP-ML, Laplace-
ML, ZERO-REML, and EBLUP-REML). For f;, the EBLUP-ML method gives a

considerable lower coverage rate while the other five approximations all attain their
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nominal coverages. For f, the only approximation method which gives similar coverage
to the nominal value is FELA-EM-REML while the observed coverages tend to decrease
from the nominal one for the other five methods. For f, both Laplace-ML and FELA-
EM-REML approximations attain their nominal coverages while the other four
approximations all provide a significantly lower coverage rate compared to the nominal
value. The square root of mean square errors (RMSE) of 8, and f, are relatively similar
for all six approximations considered. For f3, the RMSE’s for the two zero-expansion
approximations (ZERO-ML and ZERO-RML) are roughly 30% larger than those from

the other four approximations.
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Table 4.1: Simulation results for the fixed effects in the logistic model

Approximation Mean %Bias RMSE 95% CI %CVR
£, =200
ZERO-ML 200.77 0.38 23.18 [199.75,201.78] 94.21
EBLUP-ML 196.77 -1.61 23.37 [195.76,197.79] 93.12*
Laplace-ML 200.24 0.12 22.99 [199.23,201.25]  93.90
ZERO-REML 200.77 0.38 23.18 [199.75,201.78] 94.62
EBLUP-REML 196.92° -1.54 23.35 [195.90, 197.93] 94.08
FELA-EM-REML 200.45 0.22 22.99 [199.44,201.46] 94.85
£, =700
ZERO-ML 685.31" -2.10 67.07 [682.44, 688.18] 91.84*
EBLUP-ML 684.46" -2.22 61.58 [681.85, 687.07]  92.35%*
Laplace-ML 702.81° 0.40 64.04 [700.01, 705.61]  92.80*
ZERO-REML 685.31" -2.10 67.07 [682.44, 688.18]  92.60*
EBLUP-REML 685.02° -2.14 61.57 [682.41, 687.64] 92.91*
FELA-EM-REML 703.63" 0.52 64.35 [700.81, 706.44]  93.55
S5 =350
ZERO-ML 368.52" 5.29 28.53 [367.57,369.47] 89.77*
EBLUP-ML 336.22¢ -3.94 21.67 [335.48,336.95] 86.29*
Laplace-ML 352.36 0.67 18.38 [351.56,353.16]  95.70
ZERO-REML 368.521 5.29 28.53 [367.57,369.47] 89.83*
EBLUP-REML 336.68" -3.81 21.32 [335.95,337.41] 86.99*
FELA-EM-REML 353.12¢ 0.89 18.62 [352.32,353.93] 95.65

The 95% CI does not cover the true value of the parameter and the estimate is
significantly biased at 5% level.

* The %CVR is outside the interval (93.54, 96.46).
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Table 4.2 contains the simulation results for the variance-covariance components in the

logistic model. For variance components associated with the random effects that enter

the nonlinear mixed model linearly (D} and D)}’), the estimate obtained from FELA-

EM-REML approximation has the smallest bias for both D' and D{’. All three ML
approximations (ZERO-ML, EBLUP-ML, and Laplace-ML) significantly underestimate
both parameters (D)}’ and D{}’) with a minimum %Bias 4.77% for ZERO-ML when
estimating D/}’ ; while the three REML approximations (ZERO-REML, EBLUP-REML,
and FELA-EM-REML) all give unbiased estimates with a maximum absolute %Bias
1.68% for EBLUP-REML for estimating D|”. For variance components associated with
the random effects that enter the nonlinear mixed model nonlinearly (DS} and D)), the
only approximation that gives unbiased estimates for both DY)’ and D{;’ is FELA-EM-

REML with a absolute %Bias of 0.38 and 0.69 for estimating D!} and D!}, respectively.
All three ML approximations (ZERO-ML, EBLUP-ML, and Laplace-ML) again give
significantly negative biased estimates with a maximum absolute %Bias 13.62% for
EBLUP-ML when estimating DS} ; while the results for the two linearization REML
approximations (ZERO-REML and EBLUP-REML) are different. The ZERO-REML

approximation significantly overestimates D!} and D{’ by 3.83% and 4.61%,

respectively while the EBLUP-REML approximation significantly underestimates D)

and D) by 6.48% and 5.54%, respectively. The results for covariance components

(D{) and D[;’) are different from each other. For D{,’, the EBLUP-ML approximation

and the two ZERO approximations (ZERO-ML and ZERO-REML) significantly

overestimate the parameter by 6.17%, 15.48%, and 11.68%, respectively while the other
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three approximations (Laplace-ML, EBLUP-REML, and FELA-EM-REML) all give
unbiased estimates with a maximum absolute %Bias of 3.60% for FELA-EM-REML.
For D{;’, FELA-EM-REML is the only approximation that gives an unbiased estimate
while the other five approximations all significantly overestimate the parameter with a
minimum %Bias of 5.34% for Laplace-ML. For the subject specific variance (o)
estimation, the estimate obtained from the FELA-EM-REML approximation has the
smallest absolute %Bias. Both ZERO approximations (ZERO-ML and ZERO-REML)
significantly overestimate the estimators by 3.33% and 3.47%, respectively while the
other four approximations all give unbiased estimates. The RMSE’s of the variance-
covariance components for the random effects are relatively similar for all six
approximations considered. For the subject specific variance, o>, the RMSE’s for the
two zero-expansion approximations (ZERO-ML and ZERO-RML) can be 20% larger

than those from the other four approximations.



120

Table 4.2: Simulation results for the variance-covariance components in the logistic

model

Approximation Mean %Bias RMSE 95% CI

D) =2500
ZERO-ML 2380.77" -4.77 1156.50 [2330.34, 2431.20]
EBLUP-ML 2320.64" -7.17 1130.36 [2271.72, 2369.56]
Laplace-ML 2365.50" -5.38 1145.93 [2315.61, 2415.39]
ZERO-REML 2536.82 1.47 1250.57 [2482.03, 2591.62]
EBLUP-REML 2474.28 -1.03 1214.53 [2421.05, 2527.51]
FELA-EM-REML 2513.06 0.52 1236.47 [2458.86, 2567.26]

DY = 1875
ZERO-ML -1584.84" 15.48 2168.42 [-1679.04, -1490.64]
EBLUP-ML -1759.221 6.17 2100.43 [-1851.16, -1667.28]
Laplace-ML -1848.94 1.39 2194.75 [-1945.14, -1752.73]
ZERO-REML -1655.99° 11.68 2354.78 [-1758.77,-1553.21]
EBLUP-REML -1849.64 1.35 2293.72 [-1950.19, -1749.10]
FELA-EM-REML -1942.56 -3.60 2395.32 [-2047.52, -1837.60]

DY) =15625
ZERO-ML 14995.951 -4.03 9626.84 [14574.83, 15417.06]
EBLUP-ML 13496.89" -13.62 7797.83 [13168.03, 13825.75]
Laplace-ML 14535.80" -6.97 8125.87 [14182.80, 14888.80]
ZERO-REML 16223.19° 3.83  10506.15 [15763.38, 16683.01]
EBLUP-REML 14611.80" -6.48 8261.24 [14252.39, 14971.22]
FELA-EM-REML 15565.90 -0.38 8794.90 [15180.37, 15951.44]

" The 95% CI does not cover the

significantly biased at 5% level.

true value of the parameter and the estimate is
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Table 4.2 (continued): Simulation results for the variance-covariance components in the

logistic model

Approximation Mean %Bias RMSE 95% CI

DY =2600
ZERO-ML 2457.131 =549 1179.50 [2405.81, 2508.46]
EBLUP-ML 2394.28" -7.91 1153.53 [2344.52, 2444.03]
Laplace-ML 2441.36" -6.10  1169.81 [2390.55, 2492.17]
ZERO-REML 2621.89 0.84  1274.79 [2566.01, 2677.76]
EBLUP-REML 2556.44 -1.68  1237.81 [2502.22, 2610.67]
FELA-EM-REML 2597.47 -0.10  1261.94 [2542.15, 2652.79]

DY =-1950
ZERO-ML -1562.23" 19.80  2185.52 [-1656.52, -1467.95]
EBLUP-ML -1755.07" 10.00  2129.31 [-1848.02, -1662.12]
Laplace-ML -1845.87" 534 2220.77 [-1943.12, -1748.63]
ZERO-REML -1630.01° 1641  2371.62 [-1733.02, -1526.99]
EBLUP-REML -1840.48" 562 231891 [-1942.02, -1738.94]
FELA-EM-REML -1935.95 0.72  2423.62 [-2042.19, -1829.71]

DY =16250
ZERO-ML 15687.81 -3.46  10004.15 [15249.95, 16125.67]
EBLUP-ML 1415324 -12.90  8080.46 [13811.15, 14495.34]
Laplace-ML 15245.90° -6.18  8479.55 [14876.80, 15615.01]
ZERO-REML 16998.83" 4.61  10947.57 [16520.05, 17477.62]
EBLUP-REML 15350.007 -5.54  8604.18 [14974.88, 15725.11]
FELA-EM-REML 16362.10 0.69  9215.58 [15958.15, 16766.06]

o’ =625
ZERO-ML 645.82 3.33 42.14 [644.22, 647.43]
EBLUP-ML 625.19 0.03 34.20 [623.69, 626.69]
Laplace-ML 624.65 -0.06 34.08 [623.16, 626.15]
ZERO-REML 646.66" 3.47 42.60 [645.05, 648.27]
EBLUP-REML 625.93 0.15 34.23 [624.43, 627.43]
FELA-EM-REML 624.95 -0.01 34.09 [623.46, 626.44]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.
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4.5.2 First-order compartment model

A 3-parameter first-order compartment model used by Pinheiro and Bates (1995), but
with two crossed grouping factors and two random effects associated with each of the
grouping factor was used to generate the data. The values of the fixed-effects parameters,
the variance-covariance parameters, the covariate, and the dose were also similar to those

used by Pinheiro and Bates (1995). The nonlinear mixed model is given by

o Dose-exp((f +5 +52) + (, 47 +57)+ )
" exp(f, + bi(zl) + bﬁé)) —exp(f;)

{exp[— exp(f, )‘xijk ]

—exp[—exp(B, + bi(21) + bj('? )xsz ]}+ Sk s

i=1.,M,, j=1...M, k=1l..n

cees flis

(4.5.2)

where b = (b

il »

i(zl))r are i.i.d. N(0,D"), b;z) = (bj(.lz),bj(é))T are i.i.d. N(0,D?) and
independent of the 5", and ¢, are i.i.d. N(0,0°) and independent of b and b\*.

We use Dose = 1, M, =12, M,=12, n, =11 for i=1..,M, and j=1,..M,,

B=(B.P5.B) =(-3,05-25", x,=(0,025,05,1,2,4,5,7,9,12,24)" , o* =0.25,
po |0 DY_[00s 0 . [DP DP]_[0.06 0
“ipo (Tl o 025 TIpe po|T| 0 03]
21 22 . 21 by .

Table 4.3 summarizes the simulation results for the fixed-effects estimates. For f;, the

two zero-expansion approximations significantly underestimate the parameter by 3.34%
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while the other four approximations show very little negative bias with a maximum
absolute value of %Bias 0.32% for Laplace-ML. For f,, the two zero-expansion
approximations highly overestimate the parameter by more than 18% while the two
eblup-expansion approximations significantly underestimate the estimator by 6.82% and
6.79%, respectively. The two approximations that give unbiased estimates for f, are
FELA-EM-REML and Laplace-ML. For the non-random coefficient /3, the results are
similar to those for f;. Both zero-expansion approximations significantly underestimate
the estimator with %Bias by 4.24% while the other four approximations provide a small
but significant bias with a maximum absolute value of %Bias 0.52% for EBLUP-REML..
For the observed 95% confidence interval coverages, the only approximation method
which gives similar coverages to the nominal values for all three fixed effects is FELA-
EM-REML. For f), all six approximations considered attain their nominal coverages.
For /5, both EBLUP-REML and FELA-EM-REML provide values similar to the nominal
coverages while the other four approximations (ZERO-ML, EBLUP-ML, Laplace-ML,
and ZERO-REML) all give significantly lower coverage rates. For f3, the observed
coverages obtained from ZERO-REML and the two ML linearization methods (ZERO-
ML and EBLUP-ML) are significantly lower than the nominal values while the other
three methods (Laplace-ML, EBLUP-REML, and FELA-EM-REML) all give similar
coverages to their nominal ones. We also note that the RMSE of both g, and g, is
relatively similar for all approximations considered and the RMSE of f; for the two zero-
expansion approximations is about twice as large as that for the other four

approximations.
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Table 4.3: Simulation results for the fixed effects in the first-order compartment model

Approximation Mean %Bias RMSE 95% CI %CVR
By =-3
ZERO-ML -3.1003" -3.34  0.1473  [-3.1051,-3.0956]  94.41
EBLUP-ML -3.0048" -0.16  0.1047  [-3.0094, -3.0002]  93.68
Laplace-ML -3.0095" -0.32  0.1048  [-3.0141,-3.0050]  94.60
ZERO-REML -3.1002° -3.34  0.1472  [-3.1049, -3.0954]  95.12
EBLUP-REML -3.0042 -0.14  0.1047  [-3.0088, -2.9996]  94.75
FELA-EM-REML -3.0091° -0.30  0.1048  [-3.0136,-3.0045]  95.10
B, =05
ZERO-ML 0.59021 18.04 0.2304 [0.5808, 0.5995]  92.14*
EBLUP-ML 0.4659" -6.82  0.2277 [0.4560, 0.4759]  92.46*
Laplace-ML 0.4984 -0.31  0.2288 [0.4884,0.5085]  93.30%*
ZERO-REML 0.5903" 18.06  0.2302 [0.5810,0.5996]  93.00*
EBLUP-REML 0.4661% -6.79  0.2280 [0.4561,0.4760]  94.08
FELA-EM-REML 0.5008 0.17  0.2295 [0.4908,0.5109]  94.15
Py =-25
ZERO-ML -2.6059° -4.24 0.1268  [-2.6090, -2.6028]  90.58*
EBLUP-ML -2.4872" 0.51 0.0590  [-2.4897,-2.4847]  86.85%*
Laplace-ML -2.5114 -0.46  0.0588  [-2.5139,-2.5089]  95.95
ZERO-REML -2.6060° -424  0.1269  [-2.6090, -2.6029]  90.64*
EBLUP-REML -2.4871° 0.52  0.0589  [-2.4896,-2.4845]  96.28
FELA-EM-REML -2.5116° -0.46  0.0588  [-2.5141,-2.5090] 96.25

significantly biased at 5% level.

* The %CVR is outside the interval (93.54, 96.46).

The 95% CI does not cover the true value of the parameter and the estimate is
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Table 4.4 shows the simulation results for the variance-covariance components in the

first-order compartment model. For variance components associated with the random

effects b (D)} and D), the three ML approximations (ZERO-ML, EBLUP-ML, and

Laplace-ML) significantly underestimate the estimators with a minimum %Bias 2.93%
for ZERO-ML when estimating D\ while FELA-EM-REML and EBLUP-REML
approximations both give unbiased estimates with a maximum absolute %Bias 1.68% for

EBLUP-REML for estimating D|}’. The results for ZERO-REML are different when
estimating D{}’and D{’. It produces an unbiased estimate for D\’ while significantly
overestimates D\’ by 2.68%. For variance components associated with the random
effects * (DY) and D), the only approximation that gives unbiased estimates is

FELA-EM-REML while the other five approximations all give significantly negative
biased estimates. The two zero-expansion approximations (ZERO-ML and ZERO-
REML) highly underestimate the parameter by more than 20% and the two eblup-

expansion approximations and Laplace-ML all show a mild bias with a minimum

absolute %Bias of 3.13% for EBLUP-REML when estimating D!} . For covariance

components D{,’ and D!}’ , the two zero-expansion approximations (ZERO-ML and
ZERO-REML) significantly underestimate the estimators while the other approximations
all give unbiased estimates. For the subject specific variance (o) estimation, the two
zero-expansion  approximations (ZERO-ML and ZERO-REML) significantly

overestimate the estimator by 3.2% and 3.26%, respectively while the other

approximations again all produce unbiased estimates with a maximum absolute %Bias
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0.1% for Laplace-ML. The RMSE of the variance-covariance components is relatively

similar for all approximations considered.
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Table 4.4: Simulation results for the variance-covariance components in the first-order

compartment model

Approximation Mean %Bias RMSE 95% CI

D) =0.05
ZERO-ML 0.0484" -3.22 0.0235 [0.0474, 0.0494]
EBLUP-ML 0.0467" -6.55 0.0215 [0.0458, 0.0477]
Laplace-ML 0.0475" -4.97 0.0218 [0.0466, 0.0485]
ZERO-REML 0.0509 1.73 0.0251 [0.0498, 0.0520]
EBLUP-REML 0.0492 -1.68 0.0228 [0.0482, 0.0502]
FELA-EM-REML 0.0500 0.00 0.0232 [0.0490, 0.0510]

pY =0
ZERO-ML -0.0061" NA  0.0336 [-0.0076, -0.0046]
EBLUP-ML -0.0002 NA  0.0335 [-0.0017, 0.0013]
Laplace-ML -0.0005 NA  0.0344 [-0.0020, 0.0010]
ZERO-REML -0.0060° NA  0.0359 [-0.0076, -0.0045]
EBLUP-REML 0.0002 NA  0.0360 [-0.0014, 0.0018]
FELA-EM-REML 0.0005 NA  0.0372 [-0.0011, 0.0022]

DY) =0.25
ZERO-ML 0.1832" -26.73 0.1133 [0.1791, 0.1872]
EBLUP-ML 0.2284" -8.64 0.1117 [0.2236, 0.2332]
Laplace-ML 0.2321" -7.17 0.1153 [0.2271, 0.2371]
ZERO-REML 0.1943" -22.30 0.1136 [0.1899, 0.1986]
EBLUP-REML 0.2422" -3.13 0.1177 [0.2370, 0.2473]
FELA-EM-REML 0.2487 -0.50 0.1240 [0.2433, 0.2542]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.
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Table 4.4 (continued): Simulation results for the variance-covariance components in the

first-order compartment model

Approximation Mean %Bias RMSE 95% CI

D =0.06
ZERO-ML 0.0582" -2.93 0.0270 [0.0571, 0.0594]
EBLUP-ML 0.0562" -6.41 0.0243 [0.0551, 0.0572]
Laplace-ML 0.0570" -5.06 0.0246 [0.0559, 0.0580]
ZERO-REML 0.0616" 2.68 0.0290 [0.0603, 0.0629]
EBLUP-REML 0.0594 -1.00 0.0258 [0.0583, 0.0605]
FELA-EM-REML 0.0603 0.57 0.0263 [0.0592, 0.0615]

DR =0
ZERO-ML -0.0063" NA  0.0413 [-0.0081, -0.0045]
EBLUP-ML 0.0000 NA  0.0405 [-0.0018, 0.0017]
Laplace-ML -0.0004 NA  0.0415 [-0.0022, 0.0014]
ZERO-REML -0.0064 NA  0.0444 [-0.0083, -0.0045]
EBLUP-REML 0.0003 NA  0.0437 [-0.0016, 0.0023]
FELA-EM-REML 0.0009 NA  0.0452 [-0.0010, 0.0029]

DY =0.3
ZERO-ML 0.2219" -26.03 0.1353 [0.2170, 0.2268]
EBLUP-ML 0.2723" -9.23 0.1386 [0.2663, 0.2783]
Laplace-ML 0.2785" -7.18 0.1436 [0.2722,0.2847]
ZERO-REML 0.2371" -20.97 0.1351 [0.2318, 0.2423]
EBLUP-REML 0.2902" -3.28 0.1468 [0.2837, 0.2966]
FELA-EM-REML 0.3006 0.21 0.1558 [0.2938, 0.3075]

o’ =025
ZERO-ML 0.2580" 3.20 0.0129 [0.2576, 0.2584]
EBLUP-ML 0.2498 -0.06 0.0089 [0.2494, 0.2502]
Laplace-ML 0.2497 -0.10 0.0089 [0.2493, 0.2501]
ZERO-REML 0.2582" 3.26 0.0130 [0.2577, 0.2586]
EBLUP-REML 0.2500 0.00 0.0089 [0.2496, 0.2504]
FELA-EM-REML 0.2498 -0.07 0.0089 [0.2494, 0.2502]

" The 95% CI does not cover the true value of the parameter and the estimate is

significantly biased at 5% level.
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4.6 Discussion

The results of Section 4.5 indicate that the proposed FELA-EM-REML algorithm gives
accurate and reliable estimation results for both fixed effects and variance-covariance
components when used to approximate the log-likelihood function in the nonlinear mixed
model with complicated random effects such as nonlinear mixed model with two crossed
random effects. It generally produces either unbiased or close-to-unbiased (%Bias < 1)
estimates for both the fixed effects and the variance-covariance components with the 95%
confidence interval coverages similar to the nominal value for all the fixed effects. The
main advantages of this approximation method are its combination of computational
efficiency (computation is slightly more than that of ML Laplace approximation yet less

than that of REML Laplace approximation) and estimation accuracy (having an error of
order O(1/n*) compared with the error of order O(1/n) from Laplace approximation for

estimating variance-covariance components).

For the fixed effects estimation, the estimates obtained from FELA-EM-REML
approximation are similar to those from the Laplace-ML approximation, but are more
accurate than those from the four linearization methods proposed by Wolfinger and Lin
(1997). Both FELA-EM-REML and Laplace-ML approximations produce unbiased or
close-to-unbiased (%Bias < 1%) estimates with the 95% confidence interval coverages
similar to the nominal value for all fixed effects while the four linearization methods
frequently generate significantly biased estimates with uncertain direction (i.e., the bias
can be either negative or positive) and provide considerably lower coverage rates

compared to the nominal one. We also observe that the two eblup-expansion
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approximations generally produce smaller bias than the two zero-expansion
approximations and the two zero-expansion approximations can give estimates
with %Bias more than 18% (both zero-expansion approximations for estimating f in the
first-order compartment model). The RMSE of the fixed effects is generally similar for
all approximations considered except for estimation of 3 where the RMSE obtained from
the two zero-expansion approximations is about twice as large as that from the other four

approximations.

For the variance-covariance estimation, our proposed FELA-EM-REML algorithm is the
only approximation that always gives unbiased estimates for variance and covariance
parameters while the EBLUP-REML approximation ranks a second. The three ML
approximations (ZERO-ML, EBLUP-ML, and Laplace-ML) generally underestimate the
variance parameters while their performance for covariance parameters is uncertain.
They can generate either unbiased or significantly biased estimates. The two zero-

expansion approximations (ZERO-ML and ZERO-REML) can generate very poor
estimates with %Bias more than 20% (i.e., estimating DY) and D$’ in the first-order

compartment model). The RMSE of the variance-covariance components is relatively

similar for all approximations considered.
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4.7 Conclusions

The proposed FELA-EM algorithm gives accurate and reliable estimation results, either
unbiased or close-to-unbiased (%Bias < 1), with the 95% confidence interval coverages
similar to the nominal value for both fixed effects and variance-covariance components
when used to approximate the log-likelihood function in the nonlinear mixed model with
complicated random effects such as nonlinear mixed model with two crossed random
effects. For the fixed effects estimation, the Laplace approximation also produces
unbiased or close-to-unbiased estimates with the observed coverages similar to the
nominal 95% level while the four linearization methods frequently generate significantly
biased estimates with uncertain direction and give significantly lower 95% confidence
interval coverages than the nominal one. The two zero-expansion approximations can
give estimates with %Bias more than 18% when estimating £, in the first-order
compartment model. For the variance-covariance estimation, our proposed FELA-EM-
REML algorithm is the only approximation that always gives unbiased estimates while
the EBLUP-REML approximation ranks a second. The three ML approximations
generally underestimate the variance parameters and can give either unbiased or
significantly biased estimates for covariance. The two zero-expansion approximations

can generate very poor estimates with %Bias more than 20%.
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4.8 Summary

In this paper we have extended the FELA-EM algorithm for single level nonlinear mixed
models to that for multilevel nonlinear mixed models with two crossed random effects.
The extended FELA-EM algorithm is computationally efficient (similar to the REML
version of the Laplace approximation) and shows great accuracy of the parameter
estimation for multilevel level nonlinear mixed models with two crossed random effects.
Two simulation studies were conducted to evaluate the accuracy of the extended the
FELA-EM algorithm for estimating multilevel nonlinear mixed models with two crossed
random effects and compare it with the ML version of the Laplace approximation and the
four linearization methods proposed by Wolfinger and Lin (1997). Of all the
approximation methods considered in this paper, the extended FELA-EM algorithm is the
only one that gives unbiased or close-to-unbiased (%Bias < 1%) estimates for both the
fixed effects and variance-covariance components and 95% confidence interval
coverages similar to the nominal value for all the fixed effects. While the extended
FELA-EM algorithm is computationally more intensive than the linearization methods,
the sample code written in R and provided in the appendix of this dissertation is highly

efficient and generally converges reliably and rapidly.
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CHAPTER 5

MULTILEVEL NONLINEAR MIXED EFFECTS MODELS WITH BOTH
CROSSED AND NESTED RANDOM EFFECTS APPLIED IN A REPLICATED
LATIN SQUARE DESIGN FOR MODELING TEMPERATURE OF FEEDING

PIGS

5.0 Abstract

A multilevel nonlinear mixed-effects model with both crossed and nested random effects
applied in a replicated Latin square design is used to model feeding pigs’ body
temperature in conjunction with three different thermal environmental treatments, the
amount of feed intake and the duration of the meal. Three-level random effects are
introduced into a modified first order compartment model and the within-event
correlation is described by an AR(1) model. We found that the thermal environmental
treatments (28°C + High air speed) and (18°C + Low air speed) are significantly different
from the reference treatment (28°C + Low air speed) at the 5% level. The significant
effects of feed intake and meal duration on feeding pigs’ dynamic overall heat transfer
coefficients such as the heat accumulation rate constant and the heat elimination rate
constant were also detected. The nonlinear mixed-effects model was fit by the fully
exponential Laplace approximation EM (FELA-EM-REML) algorithm, a newly

developed method that can produce highly accurate estimates for variance-covariance

components (giving an error of order O(1/n”)).
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Key Words: Nonlinear mixed models; EM algorithm; Fully exponential Laplace
approximation; Crossed and nested random effects; Compartment model; Replicated

Latin squares.

5.1 Introduction

An animal’s ability to convert feed to weight gain is influenced by the thermal
environment. A better understanding of an animal’s response to the thermal environment
can be achieved through investigating its body temperature data. By estimating an
animal’s dynamic overall heat transfer coefficients, such as the heat accumulation rate
constant and the heat elimination rate constant using its body temperature data, we can
help producers define an optimum range for the thermal environment so that they can
adjust their production facilities to the environment best suited to enhance an animal’s
well being and feed efficiency. There are two objectives for this study. First, we fit a
modified first-order compartment model to characterize the thermoregulatory responses
of pigs during a feeding event. Parameters include the initial tympanic temperature, the
heat accumulation rate constant and the heat elimination rate constant. Second, we
compare those responses for three thermal environments (28°C air temperature and low
air speed, 28°C air temperature and high air speed, and 18°C air temperature and low air
speed) applied in a replicated Latin Square design and test the effect of the amount of

feed intake as well as the effect of the meal duration.
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Nonlinear mixed models discussed in this paper can contain both crossed and nested
random effects. Currently, fitting nonlinear mixed-effects models with both crossed and
nested random effects is a challenging topic in statistics. Although a number of software
packages have been developed to fit nonlinear mixed models and generalized linear
mixed models, most of them such as the SAS NLMIXED procedure (SAS Institute,
2004), NONMEM (Beal and Sheiner, 1992) and the MIXOR family of programs
(Hedeker and Gibbons, 1996) only apply to single-level nonlinear mixed models and/or
generalized linear mixed models without nested and crossed random effects. The NLME
package developed by Pinheiro and Bates (2000), available in both R (R development
core team 2009) and S-PLUS (Insightful Corporation 2007), is powerful for fitting
nonlinear mixed models with nested random effects, but it does not fit nonlinear mixed
models with crossed random effects. Rasbash and Goldstein (1994) show how to fit a
linear mixed model with crossed random effects as a purely hierarchical formulation of
nested random effects. Zhou et al. (2006) developed a method to enable NLME in R to
fit a nonlinear mixed-effects model with crossed random effects based on Rasbash and
Goldstein’s idea for linear mixed-effects models. This method can be used to fit a
nonlinear mixed effects model with arbitrary levels of crossed and nested random effects.
The evaluation of the log-likelihood function in nonlinear mixed models is a rather
complex numerical issue even for single-level nonlinear mixed models because it
involves the evaluation of a multiple integral that, in most cases, does not have a closed-
form expression. The only popular software package offering the capacity to fit
nonlinear mixed models with both crossed and nested random effects is the SAS macro

NLINMIX (Wolfinger and Lin, 1997). The NLINMIX macro is based on the
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linearization methods. It uses a first-order Taylor series expansion to approximate the
nonlinear model function around the current estimates of the fixed effects and a choice of
expansion locus for the random effects — either around zero that is the expected value of
the random effects (Wolfinger and Lin, 1997, ZERO-expansion method), or around the
current estimates of the random effects (Wolfinger and Lin, 1997, EBLUP-expansion
method), and then maximizes the likelihood corresponding to the resulting approximate
linear mixed effects model. Linearization methods are computationally simple because
they avoid complicated numerical integrations; however, they may produce substantial
bias in parameter estimation with limited number of observations per subject and large

variability of random effects (Ge, Bickel and Rice, 2004).

All nonlinear mixed models presented in this paper are fitted by the FELA-EM-REML
algorithm, a newly developed method that can produce highly accurate estimates for
variance-covariance components. A brief introduction to FELA-EM-REML for single-
level nonlinear mixed models is given in Section 5.2.5. For theory and computation
details of the FELA-EM-REML algorithm, see Chapters 3 and 4 for single- and multi-
level nonlinear mixed models, respectively. The rest of this paper is organized as follows.
In Section 5.2, we describe the experimental design of the data and address in detail the
approach to nonlinear crossed random effects model building. In Section 5.3, we identify
the significant random effects and examine the treatment effects as well as the effects of
the amount of feed consumed and the duration of the meal. In Section 5.4, we describe
the dynamic patterns of tympanic temperature. Finally, in Section 5.5, we summarize the

study.
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5.2 Materials and methods

5.2.1 Data

Eigenberg (1994) conducted an experiment to study the tympanic temperature of feeding
pigs in response to three predefined thermal conditions. The experiment was designed as
a Latin Square with three treatments, three pigs, and three treatment periods that are
about three days in length. The treatments consisted of three combinations of ambient
temperature and air speed. For the reference environment, treatment 1, the ambient
temperature was set to 28 C and air speed was set to low (20 cm/s). Pigs housed in this
environment are expected to be at rest for much of the time, and thus, generate a
relatively stable body temperature record. For treatment 2, the air temperature was set to
28 C and air speed was set to high (90 cm/s). Treatment 3 completes the treatment group
with air temperature set to 18 C and air speed set to low (20 cm/s). Both treatments 2 and
3 would be expected to produce higher thermal loss on the pig than treatment 1.
Treatment 2 has higher thermal loss due to higher air speed and treatment 3 has higher
thermal loss due to lower air temperature. Six pigs were randomly selected from eleven
litters and they were split into two weight groups: three heavy animals (29.5+1.8 kg) and
three light animals (22.5+1.0 kg). The heavier animals were exposed to the treatments
first, then the lighter animals. Each weight group was used twice producing a total of
four Latin Squares (two with heavy animals and two with light animals). During the
experiment, each pig had the opportunity to eat approximately three meals every day for
three days and each of the meals had the potential to produce one set of thermal index

values such as the initial tympanic temperature, the heat accumulation rate constant, and
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the heat elimination rate constant. The access to feed was controlled by solenoid latches
on the feeding system. The pigs had access to feed only three times per day for a one-
hour period. The meal times were: 2:00 AM, 8:30 AM and 3:00 PM. The tympanic
temperature and feed intake of each pig were recorded every 48 seconds. An example
showing changes in tympanic temperature and feed intake is presented in Figure 5.1. In
this example, pig 27 (a member of the heavy group) was observed during the first
experimental period where the second treatment (28°C + High air speed) was applied.
During this period, there were six feeding events and each feeding event produced a
tympanic temperature spike. The whole study is a replicated Latin square design with
three treatments, three pigs, and three treatment periods in each of the four squares. We
limit our discussion to modeling body temperature for the heavy group but believe ideas
can be extended to models for light group, and leave consideration of both groups for
future research efforts. Only feeding events of the first largest meal on the third day of
each period were included in the study. For each feeding event, the temperature record is
analyzed for a record length of 80 minutes. In total, there are 18 feeding events

considered in this study corresponding to the treatment structure presented in Table 5.1.
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Figure 5.1: Example of changes in tympanic temperature (°C) and feed intake (kg) of pigs

over Julian calendar time for pig 27 (a member of the heavy group) during first

experimental period in the second run under treatment 2 (28°C and high air speed)

39.5 10
39.4 - 19
39.3 - -8
39.2 1 14
39.1 lg
39 4 15 temperature
38.9 —u— feed intake
38.8 - T4
38.7 - T3
38.6 - T2
38.5 | I I | I +1
38.4 -0
130.5 131 1315 132 1325 133 134 1345
O indicates that the feeding event was used in the study.
Table 5.1: Treatment structure for the replicated Latin square design
Heavy Group
Pig No.
85 27 59
P —————
Period 1 T2 T3 T1
First Run (Square 1) Period 2 Tl T2 T3
Period 3 T3 T1 T2
Period 1 Tl T2 T3
Second Run (Square 2) Period 2 T3 T1 T2
Period 3 T2 T3 T1
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5.2.2 Statistical model

Compartment models are nonlinear models in which the response is described by a linear
system of ordinary differential equations. Compartment models have been widely used
in the literature for characterizing patterns of growth and decline. For examples see
Bates and Watts (1988), Davidian and Giltinan (1995), Lindsey (1999), and Pinheiro and
Bates (2000). If we assume that the change of body heat H in a feeding pig follows a one
compartment model with first-order heat accumulation Ka and first-order heat

elimination Ke during feed intake, the following differential equation can be created:

@:—Ka-Ha,

oX
a—HzKa-Ha—Ke-H,
oX

where Ha is heat produced by different activities such as standing up, moving, chewing,
and digesting food. Integrating the pair of differential equations with initial conditions

gives a modified three-parameter first-order compartment model:

Y=Yo+_ 2 (e™*X —e ™) 1 ¢, (5.1)
Ka -Ke

where the response variable Y is the tympanic (inner ear) temperature (C), the
independent variable X is the time in hours, and the within-group errors € are assumed to
be normally distributed with mean 0 and variance-covariance matrix . There are three
parameters in the model: Yo is the initial tympanic temperature (C), Ka is the heat
accumulation rate constant (hour™), and Ke is the heat elimination rate constant (hour™).

The heat accumulation rate constant Ka is a measure of the rate of increase in the body
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temperature caused by the feeding event; while the heat elimination rate constant Ke is
the rate of decrease in the body temperature. The larger Ka, the faster the body
temperature approaches its maximum; the larger Ke, the faster the body temperature goes
back to its initial value. For the nonlinear mixed-effects model applied in the replicated
Latin squares with both crossed and nested random effects, two factors (three treatment
levels and two squares), two covariates (feed intake and meal duration), and three levels
of random effects were incorporated in the modified three-parameter first-order

compartment model (5.1) for each of the three parameters:

Yo =[1]C,[C,|0]0|Cs]B,+Zb,,
Ka=[1|C, |C,|C,|C, |C;] B, +2Zb,,
Ke=[1/C, |C,|C,|C, |C,] B, +Zb,,
_B/,I_
B[Z
B, = B , (=123, Z =matrixof 1's,
BM
B/S
Prs
bpigi (bPIGil’bPIGiZ’bPIGB)T ~1.LA.N(0,Dyg), 1=1,...,6,
b, =| by b Bppysbopsbens)’ ~11.d.N(0,Dpp), j=1,....6,
_bEVTk(,’ (bEVTkI’bEVTkaEVTkS)T Ni'i'd'N(OﬁDEVT)ﬂk =1,..,18,
{1 , Environmait = Treatment#2,

C =
0,else,

1, Environmait = Treatment#3,

C, =
0, else,

C, = Amountof feedintake,

C, = Durationof themeal,

{0, Square= First Run,

1,Square=SecondRun,

(5.2)
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where the P;’s represent the means of the first treatment for Yo, Ka, and Ke
corresponding to A = 1, 2, 3, respectively; the By.’s represent the differences of the means
between the second treatment and first treatment; the B,3’s represent the differences of the
means between the third and first treatments; the By4’s are the coefficients associated with
the amount of feed intake; the B,5’s are the coefficients related to the meal duration; and
the Bys’s are the coefficients related to the square. The random effects bpigi represent the
deviation from the population mean associated with the i pig fori=1, ..., 6, similarly,
random effects bppj, represent the deviations associated with the j™ period forj=1, ..., 6,
and random effects bgyr, represent the deviations associated with the k™ feeding event
fork=1, ..., 18 foreach A = 1, 2, 3. We further assume that bpig;, bppj, bevrk and € are
independent of each other. Since our preliminary analysis did not detect a significant
treatment-by-square interaction effect on any of the three parameters, the treatment-by-

square interaction was not included in the nonlinear mixed model (5.2).

5.2.3 Crossed and nested random effects

In our study, within a square, pig and period are crossed with each other and event is
nested within the combination of pig and period. The random effects associated with pig
and period are called crossed random effects and those associated with feeding event are

nested random effects.

5.2.4 Model building

5.2.4.a) Random effects specification
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We start with the multilevel nonlinear mixed effects model with all factors and covariates
to investigate random-effects variation, which is a common model-building strategy used
in statistical literatures for fitting mixed effects models (Littell, Milliken, Stroup,
Wolfinger, and Schabenberger, 2006). In equation (5.1), the within-event errors, €, are
initially assumed to be independent N(0,6°I), where I represents the identity matrix. In
equation (5.2), all three parameters are initially considered to be mixed, including all
factors, covariates, and pig-, period-, and event-level random effects. To avoid
convergence problems, a diagonal structure of the variance-covariance matrices Dpig,
Dpp, and Dgyr is assumed. Under these assumptions, equations (5.1) and (5.2) are fit
including all treatments, covariates, and random effects (all pig-, period-, and event-level
random effects in all three parameters). Then, the random-effect terms with small
variances are removed if the likelihood ratio test (LRT) is non-significant. In this way, a
model is obtained including all significant random-effect terms under the assumptions of
diagonal variance-covariance matrices of random effects and independence of within-
event error with all treatments and covariates. Next, the variance-covariance matrices of
random effects are changed from diagonal to unconstrained structure, and the model is
refit. Again, the likelihood ratio test (LRT) is used to determine if the unconstrained
covariance structure significantly improves the fit of the multilevel nonlinear mixed

effects model.

5.2.4.b) Within-event error correlation structure specification
Since the tympanic temperature was collected over time for each eating event, we

investigate the need for within-event correlation structures in the nonlinear mixed effects
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model by looking at the plot of the empirical autocorrelation function (ACF) and assess
the adequacy of a particular correlation structure by examining the ACF plot from the

corresponding model.

5.2.4.c) Model diagnostics

After the random-effect and within-event error correlation structure specifications, the
intrinsic relative curvature (IN) and the root mean square parameter effects curvature (PE)
proposed by Bates and Watts (1980) are used to assess the nonlinear behavior of the final
model by setting all random effects at zero (Noh and Lee 2008). When both IN and PE
curvatures are less than or equal to 0.3, the nonlinearity of the final model is considered
close-to-linear.  The wvalidity of the parameter estimates is examined by Box’s
approximate measure of bias (1972), percent excess variance based on Lowry and
Morton’s asymmetry measure (1983), and Hougaard’s approximate measure of skewness
(1985), which is suggested by Ratkowsky (1990). When %Bias and %excess variation
are under 1%, and the absolute skewness is less than 0.25, we conclude that the behavior
of the associated parameter is reasonably close-to-linear (Ratkowsky). The plot of
standardized residuals versus fitted values is used to examine departure from model
assumptions. The normal Q-Q plots of the random effects and the within-event errors are
used to investigate the normality of the random effects and the within-event errors,
respectively. A final assessment of the adequacy of the nonlinear mixed effects model is
provided by a plot of the augmented predictions. If diagnostics show that all the
assumptions are satisfied, the model can then be used to compare treatments over time

and test the effects of the covariates.
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5.2.5 Review of FELA-EM algorithm

The fully exponential Laplace approximation EM algorithm (FELA-EM) is an EM
algorithm (Dempster, Laird, and Rubin 1977) for obtaining restricted maximum
likelihood (REML) estimates in nonlinear mixed effects models. In the E-step of the
FELA-EM algorithm, the fully exponential Laplace method (Tierney and Kadane 1986;
Tierney, Kass, and Kadane 1989) is used to approximate the conditional expectations of
the complete data sufficient statistics. The main advantages of this newly developed
approach are its combination of computational efficiency (preserving the numerically

simplicity of Laplace approximation) and great estimation accuracy (giving an error of
order O(1/n”) for estimating variance-covariance components). The model used here to
introduce the FELA-EM algorithm is a single-level nonlinear mixed effects model given

by:

vy = f(Bb)+e&, i=loM, j=l..n, (5.3)

where y, is the jth observation on the ith subject, f* is a nonlinear function, £ is a p-
dimensional vector of fixed effects, b, is a g-dimensional random effects vector
associated with the ith subject (not varying with j) and assumed i.i.d. N(0,D), ¢, is
the error and assumed i.i.d. N(0,57), M is the number of subjects, and n, is the number
observations on the ith subject. It is further assumed that b, and &, are independent.

For the nonlinear mixed effects model (5.3), assume a flat prior for the fixed effects #

(Wolfinger 1993) and consider c(y,f#,b) and c(f,b) as the complete data and the
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missing data, respectively. Let @ = c(c”, D) represent the parameters for which REML

estimates are required. The FELA-EM algorithm alternates between an expectation step

(E-step) and a maximization step (M-step) that can be described as follows.

5.2.5.a) E-step

The E-step computes the conditional expectation of the complete data log-likelihood

((y,B.b,0),

0(00™) = [ 1(y. B.b:0)p(B. bly: 0" )dpab, (5.4)

where p(f,bly;0")) is the density of the missing data c(f,b) conditional on the

(k)

observed data y at "’ and

N Ly -l M Y b’ Db,
(0050~ K=Y togto) - S LB Mooy DD 5
i=1 o 2 = 2

for some constant K and N = ZZ n, is the total number of observations. Since the

density of the complete data c(y, f,b) is from the exponential family, the E-step can be

simplified to compute the expectations of the sufficient statistics of the complete data for

o’ and D on y at 8%, which are given by R =ZZI||yi —f(ﬂ,b,.)”2 =||y—f(ﬂ,b)||2

and S, , = ZM b, b =b'b for m,n=1,..,q, respectively.

=] Gmin m-n
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5.2.5.b) M-step

The M-step is to find 8™ by solving the equation

.0 dpdb = 0. (5.6)

0 k 0 .
%Q(a‘a( )) :%If(yaﬂabaa)p(ﬂ7b

By allowing differentiation under the integral sign, the unique solution to (5.6) is given

by

»,0), (5.7)

1
(k+1)y 2
o =—F(R
{ } N (
and

D =$E(Sw .0,  mn=1,.,q. (5.8)

m,n
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5.2.5.c) Fully Exponential Laplace Approximation
Equations (5.7) and (5.8) generally cannot be computed analytically because both
E(R

y:0") and E(S, |y;0"™) can be nonlinear in the fixed and random effects. We

m,n

approximate equations (5.7) and (5.8) by the fully exponential Laplace approximation
introduced by Tierney and Kadane (1986). The fully exponential Laplace approximation

to the ratio of two related integrals is given by

[so)explnt(p)idp _ [expint’ (p)idy
[expint(p)idp  [expint(p)}dyp

det{-0>0(¢)/ Opdp"
det{-0°("(¢p")/ Opip"}

(5.9)

~
~

] exp{nl (§") —nl(§)},

where g(@) is a positive scalar function, (" () =log{g(p)}/n+¢(¢), and ¢ and ¢

maximize ¢ and /°, respectively. Although the errors in the Laplace approximations to
the two integrals (numerator and denominator) in (5.9) are of order O(1/n), the error in
the ratio (5.9) is of order O(1/n°) due to the cancellation of the similar error terms in the
approximation to the two integrals. Tierney, Kass and Kadane (1989) generalize the
Laplace approximation in (5.9) so that g(¢) can take on negative values. Their approach
is to first approximate the moment generating function of g(¢) that is strictly positive,
and then approximate the ratio in (5.9) by evaluating the first derivative of the

approximation to the moment generating function at 0. The moment generating function

of E(R|y;0") is given by
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[exptt]y— £ BB +1(y,.b;0")}dpb

M (t) = - (5.10)
[expin(y. p.b:0")1dpdb
where
n(y, B, b;0") = - 2o (k)} ley, 8.5 ——Zb’ (D"} b,
Applying the fully exponential Laplace approximation (5.9) to (5.10) yields
1/2
~ det[—-0h(y, B,b;0") / 6pdg’
M (1) = 2 [ A (jg )A* (f (p<]k> /
detl~0>{l|y— f(B".67) +h(y. B ,6":0")}/ 0pop]
(5.11)

xexp{zuy_f(ﬁ*’l;*)HZ +h(y,/}*,13*;0(“)—h(y,/?,ﬁ;é’(“)},

where ¢ =c(f",b") maximizes oy~ f(B.B)| +h(y,5,5;0%) and ¢ =c(B,b)

maximizes A(y, £,b;0")) . Then E(R

y;0) can be approximated by oM R()/ 0t

evaluated at 0. Similarly, one can show that the fully exponential Laplace approximation

to the moment generating function of E(S

;0" for m,n =1,...,q is given by

m,n

0~ [ det[-0h(y, $,5;0™) / dpdy ]“2
det[-0° {th. b, + (y, B ,b";0")} / 0plp']
(5.12)
xexpith,b, + h(y, B .6":0") — h(p, B.b;:01)},
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where ¢~ =c¢(f7,b”) maximizes b'b, +h(y,B,b;0*) and ¢ =c(B,b) maximizes

A(y, B,b;0"). As pointed by Tierney and Kadane (1986), once ¢, the maximum of

A Kk

h(y, B,b;0), has been determined, it can be used as starting values to find ¢ and ¢,

the maximum of 7]y - f(/;,b)||2 +7(py, B,b;0%) and tb' b+ h(y, B,b;0") in (5.11) and

m-n

(5.12), respectively. Generally, the number of iterations needed to find ¢ and ¢~ from

¢ is quite small and replacing ¢ and ¢ by two Newton steps from ¢ are usually

sufficient. Thus, the computational requirements of the fully exponential Laplace

approximation are rather minimal. Once the estimates of variance and covariance
parameters @ = c(c”, D) are obtained, the fixed and random effects f and b can be
estimated via the standard Laplace approximation (Pinherio and Bates 1995) to the
observed data log-likelihood of Model (5.3) by holding @ = c(c*, D) at 6, the estimates

at convergence from the FELA-EM algorithm.
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5.3 Results and discussion

5.3.1 Specification of random effects

We start with the multilevel nonlinear mixed effects model with all treatments and
covariates to investigate random-effects variation. Diagonal structures of the variance-
covariance matrices are initially assumed for Dpig, Dpp, and Dgyr and we also assume the
within-event errors, €, to be independent. We remove one random effect term from the
parameters at a time. This results in several models with different random-effects
components (Table 5.2). Since the reduced models are nested within the full model and
the same fixed-effects structures are used, LRTs can be used to check if the reduction in
random effects causes any significant changes in model performance. Comparisons of
the seven models are shown in Table 5.3. The similar Log-Likelihoods and the large p-
values for the likelihood ratio test suggest that the seven models give essentially
equivalent fits so the simpler model (i.e., the model with fewer random effects), Model 7,
is preferred. The smallest AIC and BIC values further confirm that Model 7 has the best
performance. That is to say, the pig- and period-level random effects associated with all
three parameters (Yo, Ka, and Ke) can be safely dropped from the full model (Model 1).
Starting with Model 7 (i.e., nonlinear mixed model with the diagonal Dgyt), we assume
that the event-level random effects are correlated, which results in Model 8 (i.e.,
nonlinear mixed model with the unconstrained Dgyt). The fitting comparison of Model 7
with Model 8 indicates that the LRT is not significant at 5% level (p-value=.975).
Therefore, Model 7 with diagonal variance-covariance matrices of the event-level
random effects is preferable over Model 8 with unconstrained variance-covariance

structures of random-effects.
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Table 5.2: Variances for nonlinear mixed models with different random-effects

components

Pig Period Event
Yo Ka Ke Yo Ka Ke Yo Ka Ke

Model

7.6e-6 | 0.0010 | 0.0008 | 1.9¢-6 | 0.0770 | 0.1092 | 0.0256 | 0.4814 | 0.4837
1.7e-5 | 0.0006 | 6.7¢-5 0.0665 | 0.1098 | 0.0256 | 0.4907 | 0.4848
0.0006 | 0.0007 0.0536 | 0.1091 | 0.0257 | 0.5010 | 0.4830

0.0010 0.0427 | 0.1010 | 0.0256 | 0.5085 | 0.4842

0.0326 | 0.1019 | 0.0256 | 0.5195 | 0.4874
0.1036 | 0.0258 | 0.5616 | 0.4863
0.0257 | 0.5580 | 0.5816

N | N | R |WIN |-

Table 5.3: Comparisons of model fit with different random-effects components

Model” AIC BIC Log-Likelihood LRT' p-value
1 -2339.68 -2291.45 1179.838
2 -2341.68 -2298.28 1179.838 <0.001 >0.9999
3 -2343.67 -2305.09 1179.836 0.004 0.9980
4 -2345.66 -2311.91 1179.830 0.016 0.9995
5 -2347.64 -2318.71 1179.819 0.038 0.9998
6 -2349.54 -2325.43 1179.771 0.134 0.9997
7 -2351.21 -2331.92 1179.605 0.466 0.9982

* Model as described in Table 2.

" Log-Likelihood Ratio Test is calculated with respect to Model 1.
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5.3.2 Specification of within-event error correlation structure

We use the function acf in R package MASS (Venables and Ripley 2002) to investigate
the within-event error correlation at different lags. The plot of the autocorrelation
function of Model 7 shows high correlations among the within-event error (Figure 5.2).
After the inclusion of the first-order autocorrelation structure AR(1) to Model 7 for
modeling the within-event error correlation structure, which produces Model 9, we use
the autocorrelation function again to investigate the correlation at different lags. The plot
of the autocorrelation function is displayed in Figure 5.3 and does not show any high
correlations among the within-event error. Hence, Model 9 is the preferred model for the

comparison of the treatments and the test of the covariate effects.

Figure 5.2: Autocorrelation function corresponding to the within-event errors of Model 7
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Figure 5.3: Autocorrelation function corresponding to the within-event errors of Model 9
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5.3.3 Model diagnostics

The intrinsic relative curvature (IN) and the root mean square parameter effects curvature
(PE) of Model 9 are 0.051 and 0.132, respectively. Since both IN and PE curvatures are
less than 0.3 we may say that the nonlinearity of the final model (Model 9) is close-to-
linear when all random effects equal zero. The asymptotic properties of fixed effects
estimates in Model 9 are given in Table 5.4. The small %Bias (< 1%), %excess variation
(< 1%), and the absolute skewness (< 0.25) indicate that the behavior of all fixed effects
parameters are also reasonably close-to-linear. Figure 5.4, the plot of the standardized
residuals versus the fitted values corresponding to Model 9 shows that the residuals are
distributed symmetrically around zero, with an approximately constant variance. It does
not indicate any departure from the model assumptions for the within-event errors, except
for three possible outlying observations which are located outside +4 standard deviations
(Kutner, Nachtsheim, and Neter 2004). Similarly, the normal Q-Q plots of the
standardized residuals (Figure 5.5) and the random effects (Figure 5.6) do not show any
violations of the normality assumption for the within-event errors and the random effects,
respectively. A final assessment of the adequacy of the nonlinear mixed-effects model is
given by the plot of the augmented predictions in Figure 5.7. From the plot, we can see
that the predicted temperatures are close to the observed values. Therefore, we conclude
that the final nonlinear mixed-effects model (Model 9) provides a reasonable

representation of the tympanic temperatures during feeding events.



Table 5.4: Asymptotic properties of fixed effects estimates in Model 9
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Fixed Effects Estimate | %Bias % Excess Variance Skewness
Bii: T1 39.0318 | -0.0008 0.0961 -0.0409
Yo B2 T2 - Tl 0.0857 | 0.1894 0.1407 0.0629
Bi3: T3 - Tl -0.0519 | -0.1999 0.1369 0.0654
B14: Square -0.1877 | -0.0272 0.1985 -0.0087
Boi: T1 47008 | 0.1211 0.1641 0.0767
B T2 - Tl -1.5280 | 0.1709 0.2797 -0.1176
K Bas: T3 - TI -0.8912 | 0.2163 0.3286 -0.1158
B.4: Feed Intake 1.1827 | 0.1448 0.1349 0.0678
B2s: Meal Duration -4.6128 | 0.0860 0.1264 -0.0494
Bas: Square 0.4558 | -0.0075 0.1463 -0.0130
Bs1: T1 1.1596 | 0.0646 0.2365 0.1479
B3 T2~ Tl 1.4578 | 0.0551 0.5887 0.2275
Ke B33 T3 —T1 1.3631 | 0.1031 0.4311 0.2140
B34: Feed Intake 1.0154 | 0.1531 0.2876 0.1677
B1s: Meal Duration -1.7973 | 0.1880 0.2791 -0.1616
B3s: Square -0.1211 | -0.1485 0.5338 -0.0127




Figure 5.4: Scatter plot of standardized residuals versus fitted values for Model 9
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Figure 5.7: Observed (o) and predicted (—) tympanic temperatures (C) over time (min)

for eighteen feeding events
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5.3.4 Comparison of the Three Thermal Environmental Treatments and Test of
the Feed Intake and Meal Duration Effects

We compared the three thermal environmental treatments and tested the effects of feed
intake, meal duration, and square defined in Table 5.1 based on the results from Model 9
(Table 5.5). We found that treatment 2 (28°C + High air speed) and treatment 3 (18°C +
Low air speed) were significantly different from treatment 1 (28°C + Low air speed) for
both accumulation and elimination rate constant parameters: Ka and Ke. The treatment
effect on the initial tympanic temperature (Yo) was not detected. When testing the
effects of feed intake and meal duration, we found that the amount of feed intake had no
significant effect on Ka or Ke, while the meal duration had a significant effect on Ka, but
not on Ke. The initial body temperature Yo in the two runs was significantly different,
but not for Ka and Ke. From the parameter estimates, we found that both increasing the
air speed and decreasing the environmental temperature could help pigs eliminate heat
effectively. In comparison with the reference treatment 1, increasing the air speed
(treatment 2) decreased the heat accumulation rate constant by 1.5280 hour" and
increased the heat elimination rate constant by 1.4578 hour; while decreasing
environmental temperature (treatment 3) decreased the heat accumulation rate constant
by 0.8912 hour™ and also increased the heat elimination rate constant by 1.3631 hour™.
Examination of the estimates of meal duration and square showed that increasing the
meal duration was able to decrease the heat accumulation rate constant by 4.6126 hour™
while the average initial body temperature (Yo) in the second run was 0.1877 C lower
than that in the first run. These results agree with the partial results obtained by

Eigenberg (1994) and Zhou et al. (2006). Eigenberg’s work (1994) focused on modeling
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the index of heat dissipation and showed similar treatment differences, that is, both
increasing the air speed and decreasing the environmental temperature can help pigs
eliminate heat effectively. Zhou et al. (2006) investigated the feeding pigs’ dynamics
specifying two heat transfer rate coefficients using the data from the first run of the heavy
group (Eigenberg, 1994). They found similar treatment effects but they did not include
the effects of feed intake and meal duration in their model. The proposed model in this
paper includes two rate coefficients (i.e., heat accumulation and heat elimination rate
constants), three treatments levels and the two covariates (i.e., feed intake and meal
duration). We detected the significant effects of treatments on both heat accumulation
and heat elimination rate constants. We, also, found that the meal duration was significant.
This indicates the quicker a pig eats the faster its body temperature approaches a

maximum.



Table 5.5: Estimates of fixed effects coefficients for Model 9
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Fixed Effects Estimate Standard P-value
Error

Bri: T1 39.0318 0.0780 <0.0001

Yo Bi2: T2 -TI 0.0857 0.0951 0.3602
Bi3: T3 - T1 -0.0519 0.0950 0.5732

B14: Square -0.1877 0.0773 0.0149
B21: T1 4.7008 1.0120 <0.0001

Bao: T2 -TI -1.5280 0.4919 0.0019

Bas: T3 - TI -0.8912 0.4845 0.0645

Ka B24: Feed Intake 1.1827 0.8440 0.1579
B2s: Meal Duration -4.6128 1.4234 0.0012

B26: Square 0.4558 0.6091 0.4452

B31: Tl 1.1596 0.9623 0.2236

B3 T2 - TI 1.4578 0.4823 0.0025

Baz: T3 -T1 1.3631 0.4741 0.0040

ke B34: Feed Intake 1.0154 0.8621 0.2341
B3s: Meal Duration -1.7973 1.4195 0.2014

Bse: Square -0.1211 0.6291 0.8304
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5.4 Conclusions

The proposed compartment model does a good job of fitting the tympanic temperatures
of pigs during a feeding event. All three parameters, initial tympanic temperature (Yo),
heat accumulation rate constant (Ka) and heat elimination rate constant (Ke), in the
proposed model were considered as mixed effects. The event-level random effects
influenced all three parameters Yo, Ka and Ke independently while the pig- and period-
level random effects did not have influence on any of the parameters and hence can be
safely dropped from the nonlinear mixed model. Both treatment 2 (28°C + High air
speed) and treatment 3 (18°C + Low air speed) were significantly different from the
reference treatment 1 (28°C + Low air speed) for both Ka and Ke. The heat accumulation
rate constant was lower in treatment 2 and treatment 3 than in treatment 1 while the heat
elimination rate constant was greater in both treatment 2 and treatment 3 when compared
with the reference treatment 1. The amount of feed intake had no significant influence on
any of the three parameters (Yo, Ka, and Ke) while the length of meal duration
significantly decreased Ka. There was no significant effect of meal duration on either the
initial body temperature or the heat elimination rate constant. The initial body
temperature Yo in the second run was significantly lower than that in the first run while

the effect of square on either Ka or Ke was not detected.
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5.5 Summary

This study provides a three-parameter modified first-order compartment model to
describe the thermoregulatory responses of pigs during a feeding event. These
thermoregulatory responses can best be described in terms of the initial tympanic
temperature, the heat accumulation rated constant, the heat elimination rate constant and
factors that affect them. The crossed and nested random effects have been introduced
into the model to simultaneously model the pig, period, and event variations.
Comparisons of three environment treatment effects over time and testing of the feed
intake, meal duration, and square effects are incorporated in the proposed model. We
present a general approach to building a multilevel nonlinear mixed model with both
crossed and random effects and advocate in detail a way to simplify the random effect
terms. We fit the nonlinear mixed effects model by the fully exponential Laplace

approximation EM algorithm, a newly developed method that can give an error as small

as of order O(1/n”) for variance-covariance parameters.
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APPENDIX: R program for fitting the logistic model formulated by the equation

(4.4.1) using FELA-EM algorithm

HHAHHHH AR
# GENERATE A DATA SET #
HHAHHHHAH AR

library(MASS) # load MASS library

nl <- 10 # levels of CF1

n2 <- 10 # levels of CF2

n <- 7 # number of obs for each individual
nP <- 3 # number of parameters

CF1 <- gl(nl, n2*n) # create CF1
CF2 <- gl(n2, n, n2*n*nl) # create CF2

a <- c(200, 700, 350) # fixed effects

a.ini <- a

s2 <- 625 # variance of error

s2.ini <- s2

D1 <- matrix(c(2500,-1875, -1875,15625), ncol
Dl1.ini <- D1

D2 <- matrix(c(2600,-1950, -1950,16250), ncol = 2) # D matrix of CF2
D2.ini <- D2

2) # D matrix of CF1

bl <- mvrnorm(nl, integer(2), D1) # random effects of CFl
bl.1 <- rep(bl[,1], each = n2*n) # bl in parameter 1
bl1.2 <- rep(bl[,2], each n2*n) # bl in parameter 2

b2 <- mvrnorm(n2, integer(2), D2) # random effects of CF2
b2.1 <- rep(b2[,1], each = n, times nl) # b2 in parameter 1
b2.2 <- rep(b2[,2], each n, times nl) # b2 in parameter 2

error <- rnorm(nl*n2*n, mean = 0, sd = sqrt(s2)) # error

phil <- a[1]
phi2 <- a[2]
phi3 <- a[3]

X <- rep(c(118,484,664,1004,1231,1372,1582), len=n*nl1l*n2) # predictor
y <- phil/(1 + exp(-(x - phi2)/phi3)) + error # response
DATA <- data.frame(CF1l, CF2, x, y) # create data

# remove all variables

rm(nl, n2, n, nP, CF1, CF2, a, s2, D1, D2)
rm(bl, bl.1, bl.2, b2, b2.1, b2.2)
rm(error, phil, phi2, phi3, x, y)
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HHAHHHH AR
# EXTRACT USEFUL INFORMATION FROM DATA #
HH AR R R A R

CF1 <- DATA$CF1

CF2 <- DATAS$CF2

X <- DATA$X

y <- DATA$Y

nl <- length(levels(CFl))

n2 <- length(levels(CF2))

N <- length(y) # number of total obs

nP <- 3 # number of parameters in the model
nb <- 2*nl + 2*n2 # number of random effects

HHAHHHHHHH AR
# DEFINE EXPRESSIONS #
HHHHH AR

model .exp <- expression(phil/(1 + exp(-(x - phi2)/phi3))) # model
der.exp <- deriv3(model.exp, c('phil™, "phi2", "phi3'")) # derivative

HHHHHHH AR
# START OF nllike.obj #
B

nllike.obj <- function(ab) {
a <- ab[1:nP]
b <- ab[(nP+1):length(ab)]
bl <- matrix(b[1:(2*n1)], ncol = 2)
b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + bl[CF1,1] + b2[CF2,1]
phi2 <- a[2] + bl[CF1,2] + b2[CF2,2]
phi3 <- a[3]
der <- eval(der.exp) #f value
grad <- attr(der, 'gradient'™) #1lst derivative
hess <- attr(der, "hessian') #2nd derivative

calculate g
<- crossprod(y-der)/(2*s2)
<- g + sum(bl %*% invDl * bl)/2 + sum(b2 %*% invD2 * b2)/2

compute part G related to bl

.b1.11 <- G.bl1l.12 <- G.bl.22 <- diag(integer(nl))
diag(G.-b1.11) <- rowsum(grad[,1]*grad[,1],CF1)/s2 + invD1[1,1]
diag(G.b1.12) <- rowsum(grad[,l1l]*grad[,2],CF1)/s2 + invD1[1,2]
diag(G.b1.22) <- rowsum(grad[,2]*grad[,2],CF1)/s2 + invD1[2,2]
G.bl <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))

OfF Q@ #H#

# compute part G related to b2

G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))
diag(G.b2.11) <- rowsum(grad[,1]*grad[,1],CF2)/s2 + invD2[1,1]
diag(G.-b2.12) <- rowsum(grad[,1]*grad[,2],CF2)/s2 + invD2[1,2]
diag(G.-b2.22) <- rowsum(grad[,2]*grad[,2],CF2)/s2 + invD2[2,2]
G.b2 <- rbind(cbind(G.b2.11,6.b2.12), cbind(G.-b2.12,G6.b2.22))
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# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum(grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T,
ncol = n2)

G.b12.12 <- matrix(rowsum(grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T,
ncol = n2)

G.b12.22 <- matrix(rowsum(grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T,
ncol = n2)

G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

G.b <- rbind(cbind(G.bl, G.bl1l2), cbind(t(G.-bl1l2),G.b2))

G <- G.b # Finalize G
log.detG <- determinant(G, logarithm = TRUE)$modulus

value <- 0.5*N*log(2*pi*s2) + 0.5*nl1*log(det(D1)) +
0.5*n2*1og(det(D2)) + 0.5*log.detG + g

# calculate 1st derivative w.r_t. fixed & random effects
invG <- solve(G)
invG.bl <- invG[1:(2*nl),1:(2*nl)]
invG.b2 <- invG[(2*nl1+1):(2*nl+2*n2),(2*nl1+1):(2*nl+2*n2)]
invG.b12 <- invG[1l:(2*nl),(2*nl+1l):(2*nl+2*n2)]
a.gr <- colSums((y-der)*(-grad))/s2
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2
bl.gr <- bl.gr + bl %*% invDl
b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2
for(Jj in 1:nP){
#i##t 1st derivative w.r.t. a ####
# compute dG.bl related to a[jj]
dG.b1.11 <- dG.b1.12 <- dG.b1.22 <- diag(integer(nl))
diag(dG.b1.11) <-
rowsum(hess[,jj.,1]1*grad[,1]+hess[,jj,1]*grad[,1],CF1)/s2
diag(dG.bl1.12) <-
rowsum(hess[,jj,l]*grad[,2]+hess[,}jj,2]*grad[,1],CF1)/s2
diag(dG.bl.22) <-
rowsum(hess|[,jj,2]*grad[,2]+hess[,j]j,2]*grad[,2],CF1)/s2
dG.bl <- 0.5*rbind(cbind(dG.b1.11,dG.b1.12),
cbind(dG.b1.12,dG.b1.22))
invG.dG.bl <- invG.b1l*dG.bl

# compute dG.b2 related to a[jj]
dG.b2.11 <- dG.b2.12 <- dG.b2.22 <- diag(integer(n2))
diag(dG.b2.11) <-
rowsum(hess[,jj,1l]*grad[,1]+hess[,jj,1]*grad[,1],CF2)/s2
diag(dG.b2.12) <-
rowsum(hess[,jj,1]1*grad[,2]+hess[,j]j,2]*grad[,1],CF2)/s2
diag(dG.b2.22) <-
rowsum(hess[, jj,2]*grad[,2]+hess[,}jj,2]*grad[,2],CF2)/s2
dG.b2 <- 0.5*rbind(cbind(dG.b2.11,dG.b2.12),
cbind(dG.b2.12,dG.b2.22))
invG.dG.b2 <- InvG.b2*dG.b2

# compute dG.b12 related to a[jj]
dG.b12.11 <-
matrix(rowsum(hess|[,jj,1l]*grad[,1]+hess[,jj,1]*grad[,1],
CF1:CF2)/s2, byrow=T, ncol = n2)
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dG.b12.12 <-
matrix(rowsum(hess|[,jj,1l]*grad[,2]+hess[,jj.2]*grad[,1],
CF1:CF2)/s2, byrow=T, ncol = n2)
dG.b12.22 <-
matrix(rowsum(hess|[,jj,2]*grad[,2]+hess[,jj,2]*grad[,2],
CF1:CF2)/s2, byrow=T, ncol = n2)
dG.b12 <- 0.5*rbind(cbind(dG.b12.11,dG.b12.12),
cbind(dG.bl12.12,dG.b12.22))
invG.dG.bl1l2 <- invG.b12*dG.b12
a.grigjl] <- a.gr[jj] + sum(invG.dG.bl, invG.dG.b2, 2*invG.dG.bl2)

if(gj <= 2){
#i##H 1st derivative w.r.t. bl ####
# prepare dG.b2 related to a[jj]
M.b2.11 <-
rowsum(hess[,jj,l]*grad[,1]+hess[,jj,1]1*grad[,1],CF1:CF2)/s2
M.b2.12 <-
rowsum(hess[,jj,11*grad[,2]+hess[,jj,2]*grad[,1],CF1:CF2)/s2
M.b2.22 <-
rowsum(hess[,jj,2]*grad[,2]+hess[,jj,2]*grad[,2],CF1:CF2)/s2
bl.gr[.jjl <- (bl.grl.3il +
rowSums(matrix(rowSums(invG.dG.bl),ncol=2)) +
2*rowSums(matrix(rowSums(invG.dG.b12),ncol=2)))
bl.gr[,jjl <- (bl.gr[.3i] +
0.5*rowSums(matrix(diag(invG.b2[1:n2,1:n2])*M.b2.11,
byrow=T, ncol=n2)) +
2*0.5*rowSums(matrix(diag(invG.b2[1:n2,
(n2+1) :(2*n2)])*M.b2.12,byrow=T,ncol=n2)) +
0.5*rowSums(matrix(diag(invG.b2[(n2+1):(2*n2),
(n2+1): (2*n2)PD*M.b2.22 ,byrow=T,ncol=n2)))

#i##H 1st derivative w.r.t. b2 ####
# prepare dG.bl related to a[jjl
M.b1.11 <- rowsum(hess[,jj,l]*grad[,1] +
hess[,jj,1]*grad[,1],CF2:CF1)/s2
M.b1.12 <- rowsum(hess[,jj.1l]*grad[,2] +
hess[,jj,2]*grad[,1],CF2:CF1)/s2
M.b1.22 <- rowsum(hess[,jj,2]*grad[,2] +
hess[,jj,2]*grad[,2],CF2:CF1)/s2
b2.gr[,ij1 <- (b2.gr[.3i1 +
rowSums(matrix(rowSums(invG.dG.b2),ncol=2)) +
2*rowSums(matrix(colSums(invG.dG.b12),ncol=2)))
b2.gr[,jj1 <- (b2.gr[.3i] +
0.5*rowSums(matrix(diag(invG.b1[1:n1,1:n1])*M.b1.11,
byrow=T,ncol=nl)) +
2*0.5*rowSums(matrix(diag(invG.b1[1:n1,
(n1+1):(2*n1)])*M.b1.12,byrow=T,ncol=nl)) +
0.5*rowSums(matrix(diag(invG.bl[(n1+1):(2*nl),
(n1+1):(2*n1)PD*M.bl.22,byrow=T,ncol=nl)))
}
}
attr(value, "gradient™) <- c(a.gr, bl.gr, b2.gr)
return(value)

}
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HHAHHHHAH R
# START OF D.obj #
HHHHHH R

D.obj <- function(D1,D2,s2,ab) {
invDl <- solve(Dl)
invD2 <- solve(D2)

g-obj <- function(ab) {
a <- ab[1:nP]
b <- ab[(nP+1):length(ab)]
bl <- matrix(b[1:(2*n1)], ncol = 2)
b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + bl[CF1,1] + b2[CF2,1]
phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]
phi3 <- a[3]
der <- eval(der.exp) # T value
grad <- attr(der, 'gradient') # 1st derivative

# calculate ¢

g <- crossprod(y-der)/(2*s2)

g <- g + sum(bl %*% invDl * b1)/2 + sum(b2 %*% invD2 * b2)/2
#

a

calculate 1st derivative of g w.r.t. a
.gr <- colSums((y - der)*(-grad))/s2

# calculate 1st derivative of g w.r_.t. b

bl.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2
bl.gr <- bl.gr + bl %*% invDl

b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2

b.gr <- c(bl.gr, b2.gr)

attr(g, ''gradient™) <- c(a.gr, b.gr)

g

# Update fixed & random effects

g-optim <- nIm(g.obj, ab, iterlim = 500, print.level=0)
g-optim

ab <- g.optim$estimate

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*n1+1):length(b)], ncol = 2)

phil <- a[1] + b1[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # f value

grad <- attr(der, "gradient') # 1st derivative
hess <- attr(der, "hessian') # 2nd derivative

# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2
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# compute part G related to bl

G.b1.11 <- G.bl1l.12 <- G.bl.22 <- diag(integer(nl))

diag(G.-b1.11) <- rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1)/s2 + invD1[1,1]

diag(G.b1.12) <- rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1)/s2 + invD1[1,2]

diag(G.b1.22) <- rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1)/s2 + invD1[2,2]

G.bl <- rbind(cbind(G.-b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))

# compute part G related to b2

G-b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))

diag(G.-b2.11) <- rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF2)/s2 + invD2[1,1]

diag(G.b2.12) <- rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF2)/s2 + invD2[1,2]

diag(G.-b2.22) <- rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF2)/s2 + invD2[2,2]

G.b2 <- rbind(cbind(G.b2.11,G6.b2.12), cbind(G.b2.12,G.b2.22))

# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b1l2 <- rbind(cbind(G.b12.11,6.b12.12), cbind(G.-b12.12,6.b12.22))

G.b <- rbind(cbind(G.bl, G.b1l2), cbind(t(G.b12),G.b2))

# compute part G related to a & bl

G.abl.1l <- rowsum((y-der)*(-hess[,1:3,1])+grad[,1:3]*grad[,1],CF1)/s2
G.abl.2 <- rowsum((y-der)*(-hess[,1:3,2])+grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2

G.ab2.1 <- rowsum((y-der)*(-hess[,1:3,1])+grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <- rowsum((y-der)*(-hess[,1:3,2])+grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G

G <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

monitor <- (0.5*N*log(2*pi*s2) - 0.5*nP*log(2*pi) +
0.5*n1*log(det(D1)) + 0.5*n2*log(det(D2)) +
0.5*determinant(G, logarithm = TRUE)$modullus +
g-optim$minimum)

list(val=g.optim$minimum, monitor=monitor, G=G, invG=solve(G),
detG=determinant(G, logarithm = TRUE)$modulus, ab=ab)
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HHAHHHHA
# START OF N1.obj #
HHHHHH A

N1.obj <- function(D1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + bl[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, 'gradient') # 1st derivative
d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b
hess <- attr(der, "hessian') # 2nd derivative

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invD1l * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sum(bl[,1]"2)/nl

calculate 1st derivative of g w.r_.t. a
-gr <- colSums((y - der)*(-grad))/s2

O QQ #*

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2
bl.gr <- bl.gr + bl %*% invDl
bl.gr[,1] <- bl.gr[,1] - 2*s*bl[,1]/nl
b2_.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2
b.gr <- c(bl.gr, b2.gr)
-gradient <- c(a-gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2

# compute part G related to bl
G.b1l.11 <- G.b1.12 <- G.b1.22 <- diag(integer(nl))
diag(G.b1.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1]
diag(G.b1.11) <- diag(G.b1.11) - 2*s/nl
diag(G.b1.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[ ,1]*grad[,2],CF1)/s2+invD1[1,2]
diag(G.b1.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CFl1)/s2+invD1[2,2]
G.bl <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1.12,G.b1.22))
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# compute part G related to b2
G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))
diag(G.b2.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]1*grad[,1],CF2)/s2+invD2[1,1]
diag(G.b2.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2]
diag(G.b2.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[ ,2]*grad[,2],CF2)/s2+invD2[2,2]
G.b2 <- rbind(cbind(G.b2.11,G6.b2.12), cbind(G.b2.12,G.b2.22))

# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.bl12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

G.b <- rbind(cbind(G.bl, G.b12), cbind(t(G.-b1l2),G.b2))

# compute part G related to a & bl
G.abl.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/s2
G.ab1.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2
G.ab2.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G
g-hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab.new <- ab - solve(g-hessian) %*% g.gradient

err <- max(abs(ab.new - ab) - 1l.e-8*(abs(ab) + 1.e-6))
ab <- ab._new

err

if(err < 0) break

}

list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus)
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HHAHHHHA
# START OF N2.obj #
HHHHHH A

N2.obj <- function(D1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + bl[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, 'gradient') # 1st derivative
d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b
hess <- attr(der, "hessian') # 2nd derivative

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invD1l * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sum(bl[,2]"2)/nl

calculate 1st derivative of g w.r_.t. a
-gr <- colSums((y - der)*(-grad))/s2

O F Q@ #

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2
bl.gr <- bl.gr + bl %*% invDl
bl.gr[,2] <- bl.gr[,2] - 2*s*bl[,2]/nl
b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2
b.gr <- c(bl.gr, b2.gr)
.gradient <- c(a.gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2

# compute part G related to bl
G.bl.11 <- G.bl.12 <- G.b1l.22 <- diag(integer(nl))
diag(G.b1.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1]
diag(G.b1.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2]
diag(G.b1.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[ ,2]*grad[,2],CF1)/s2+invD1[2,2]
diag(G.b1.22) <- diag(G.b1.22) - 2*s/nl
G.bl <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))
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# compute part G related to b2
G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))
diag(G.b2.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]1*grad[,1],CF2)/s2+invD2[1,1]
diag(G.b2.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2]
diag(G.b2.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[ ,2]*grad[,2],CF2)/s2+invD2[2,2]
G.b2 <- rbind(cbind(G.b2.11,G6.b2.12), cbind(G.b2.12,G.b2.22))

# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

G.b <- rbind(cbind(G.bl, G.b12), cbind(t(G-b1l2),G.b2))

# compute part G related to a & bl
G.abl.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/s2
G.ab1.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2
G.ab2.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G
g-hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab.new <- ab - solve(g-hessian) %*% g.gradient

err <- max(abs(ab.new - ab) - 1l.e-8*(abs(ab) + 1.e-6))
ab <- ab.new

err

if(err < 0) break

}

list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus)
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HHAHH AR
# START OF N12.obj #
HHHHHH AR

N12.obj <- function(Dl1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + b1l[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, 'gradient') # 1st derivative
d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b
hess <- attr(der, "hessian') # 2nd derivative

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invDl * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sum(bl[,1]*bl[,2])/n1

calculate 1st derivative of g w.r.t. a
-gr <- colSums((y - der)*(-grad))/s2

O F Q@ #

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2
bl.gr <- bl.gr + bl %*% invDl
bl.gr[,1] <- bl.gr[,1] - s*bl[,2]/n1
bl.gr[,2] <- bl.gr[,2] - s*bl[,1]/nl
b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2
b.gr <- c(bl.gr, b2.gr)
-gradient <- c(a-gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2

# compute part G related to bl
G.b1l.11 <- G.b1.12 <- G.b1.22 <- diag(integer(nl))
diag(G.b1.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1]
diag(G.b1.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2]
diag(G.b1.12) <- diag(G.b1l.12) - s/nl
diag(G.b1.22) <-
rowsum((y-der)*(-hess|[,2,2])+grad[ ,2]*grad[,2],CF1)/s2+invD1[2,2]
G.bl <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))
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# compute part G related to b2
G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))
diag(G.b2.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]1*grad[,1],CF2)/s2+invD2[1,1]
diag(G.b2.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2]
diag(G.b2.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[ ,2]*grad[,2],CF2)/s2+invD2[2,2]
G.b2 <- rbind(cbind(G.b2.11,G6.b2.12), cbind(G.b2.12,G.b2.22))

# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

G.b <- rbind(cbind(G.bl, G.b12), cbind(t(G-bl1l2),G.b2))

# compute part G related to a & bl
G.abl.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/s2
G.ab1.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2
G.ab2.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G
g-hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab.new <- ab - solve(g-hessian) %*% g.gradient

err <- max(abs(ab.new - ab) - 1.e-8*(abs(ab) + 1.e-6))
ab <- ab._new

if(err < 0) break

}

list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus)
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HHAHHHHA
# START OF Ml1.obj #
HHHHHH A

M1.obj <- function(Dl1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl1l+1):1ength(b)], ncol = 2)
phil <- a[1] + bl[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, '"gradient') # 1st derivative
d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b
hess <- attr(der, "hessian') # 2nd derivative

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invD1l * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sum(b2[,1]"2)/n2

calculate 1st derivative of g w.r_.t. a
-gr <- colSums((y - der)*(-grad))/s2

O F Q@ #

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CF1)/s2
bl.gr <- bl.gr + bl %*% invD1l
b2_gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2
b2.gr[,1] <- b2.gr[,1] - 2*s*b2[,1]/n2
b.gr <- c(bl.gr, b2.gr)
.gradient <- c(a.gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2

# compute part G related to bl
G.bl.11 <- G.bl.12 <- G.b1l.22 <- diag(integer(nl))
diag(G.b1.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[ ,1]*grad[,1],CF1)/s2+invD1[1,1]

diag(G.b1.12) <-

rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CFl1)/s2+invD1[1,2]
diag(G.b1.22) <-

rowsum((y-der)*(-hess[,2,2])+grad[ ,2]*grad[,2],CF1)/s2+invD1[2,2]
G.bl <- rbind(cbind(G.-b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))
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# compute part G related to b2

G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))

diag(G.b2.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]1*grad[,1],CF2)/s2+invD2[1,1]

diag(G.b2.11) <- diag(G.-b2.11) - 2*s/n2

diag(G.b2.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2]

diag(G.-b2.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2]

G.b2 <- rbind(cbind(G.-b2.11,6.b2.12), cbind(G.b2.12,G.b2.22))

# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

G.b <- rbind(cbind(G.bl, G.bl2), cbind(t(G.bl2),G.b2))

# compute part G related to a & bl
G.abl.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/s2
G.abl.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2
G.ab2.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G
g.hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab_.new <- ab - solve(g-hessian) %*% g.gradient

err <- max(abs(ab.new - ab) - 1l.e-8*(abs(ab) + 1.e-6))
ab <- ab._new

if(err < 0) break

}

list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus)
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HHAHHHHA
# START OF M2.obj #
HHHHHH A

M2_.obj <- function(Dl1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + b1l[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, 'gradient') # 1st derivative
d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b
hess <- attr(der, "hessian') # 2nd derivative

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invDl * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sum(b2[,2]"2)/n2

calculate 1st derivative of g w.r_.t. a
-gr <- colSums((y - der)*(-grad))/s2

O Qa@Q H#*

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CFl)/s2
bl.gr <- bl.gr + bl %*% invDl
b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2.gr + b2 %*% invD2
b2.gr[,2] <- b2.gr[,2] - 2*s*b2[,2]/n2
b.gr <- c(bl.gr, b2.gr)
-gradient <- c(a-gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2

# compute part G related to bl
G.b1.11 <- G.bl.12 <- G.bl.22 <- diag(integer(nl))
diag(G.b1.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1]
diag(G.b1.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2]
diag(G.b1.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[ ,2]*grad[,2],CF1)/s2+invD1[2,2]
G.bl <- rbind(cbind(G.b1.11,6.b1.12), cbind(G.b1.12,G.b1.22))
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# compute part G related to b2

G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))

diag(G.b2.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]1*grad[,1],CF2)/s2+invD2[1,1]

diag(G.b2.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2]

diag(G.b2.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2]

dlag(G b2.22) <- diag(G.b2.22) - 2*s/n2

G.b2 <- rbind(cbind(G.-b2.11,6.b2.12), cbind(G.b2.12,G.b2.22))

compute part G related to both bl & b2

-b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

-b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +

grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)
G.bl12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

® H#*

(@]

G.b <- rbind(cbind(G.bl, G.bl2), cbind(t(G.bl2),G.b2))

# compute part G related to a & bl
G.abl.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF1)/s2
G.abl.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2
G.ab2.1 <-

rowsum( (y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G
g.hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab.new <- ab - solve(g-hessian) %*% g.-gradient

err <- max(abs(ab.new - ab) - 1l.e-8*(abs(ab) + 1.e-6))
ab <- ab._new

if(err < 0) break

}

list(val=g, detG=determinant(g-hessian, logarithm = TRUE)$modulus)
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HHAHH AR
# START OF M12.obj #
HHHHHH AR

M12.obj <- function(D1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + b1l[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, 'gradient') # 1st derivative
d.sse.b <- (y - der)*(-grad[,1:2]) # 1st derivative of sse w.r.t. b
hess <- attr(der, "hessian') # 2nd derivative

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invD1l * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sum(b2[,1]*b2[,2])/n2

calculate 1st derivative of g w.r.t. a
.gr <- colSums((y - der)*(-grad))/s2

O H Q@ #

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum((y - der)*(-grad[,1:2]),CFl)/s2
bl.gr <- bl.gr + bl %*% invDl
b2.gr <- rowsum((y - der)*(-grad[,1:2]),CF2)/s2
b2.gr <- b2_.gr + b2 %*% invD2
b2.gr[,1] <- b2.gr[,1] - s*b2[,2]/n2
b2.gr[,2] <- b2.gr[,2] - s*b2[,1]/n2
b.gr <- c(bl.gr, b2.gr)
.gradient <- c(a.gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad))/s2

# compute part G related to bl
G.b1.11 <- G.bl.12 <- G.bl.22 <- diag(integer(nl))
diag(G.b1.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]*grad[,1],CF1)/s2+invD1[1,1]
diag(G.b1.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF1)/s2+invD1[1,2]
diag(G.b1.22) <-
rowsum((y-der)*(-hess|[,2,2])+grad[ ,2]*grad[,2],CF1)/s2+invD1[2,2]
G.bl <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))
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# compute part G related to b2

G.b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))

diag(G.b2.11) <-
rowsum((y-der)*(-hess[,1,1])+grad[,1]1*grad[,1],CF2)/s2+invD2[1,1]

diag(G.b2.12) <-
rowsum((y-der)*(-hess[,1,2])+grad[,1]*grad[,2],CF2)/s2+invD2[1,2]

diag(G.b2.12) <- diag(G.b2.12) - s/n2

diag(G.b2.22) <-
rowsum((y-der)*(-hess[,2,2])+grad[,2]*grad[,2],CF2)/s2+invD2[2,2]

G.b2 <- rbind(cbind(G.-b2.11,6.b2.12), cbind(G.b2.12,G.b2.22))

# compute part G related to both bl & b2

G.b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2],CF1:CF2)/s2, byrow=T, ncol = n2)

G.bl12 <- rbind(cbind(G.b12.11,G.b12.12), cbind(G.b12.12,G.b12.22))

G.b <- rbind(cbind(G.bl, G.bl2), cbind(t(G.bl2),G.b2))

# compute part G related to a & bl
G.abl.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CFl1)/s2
G.abl.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF1)/s2
G.abl <- rbind(G.abl.1, G.abl.2)

# compute part G related to a & b2
G.ab2.1 <-

rowsum((y-der)*(-hess[,1:3,1]) + grad[,1:3]*grad[,1],CF2)/s2
G.ab2.2 <-

rowsum((y-der)*(-hess[,1:3,2]) + grad[,1:3]*grad[,2],CF2)/s2
G.ab2 <- rbind(G.ab2.1, G.ab2.2)

G.ab <- rbind(G.abl, G.ab2)

# finalize G
g-hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab.new <- ab - solve(g-hessian) %*% g.gradient

err <- max(abs(ab.new - ab) - 1l.e-8*(abs(ab) + 1.e-6))
ab <- ab._new

if(err < 0) break

}

list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus)
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HHAHHHHA
# START OF s2.obj #
HHHHHH A

s2.obj <- function(Dl1,D2,s2,ab,s) {
invDl <- solve(Dl)
invD2 <- solve(D2)

for (JJ in 1:20){

a <- ab[1:nP]

b <- ab[(nP+1):length(ab)]

bl <- matrix(b[1:(2*n1)], ncol = 2)

b2 <- matrix(b[(2*nl+1):length(b)], ncol = 2)
phil <- a[1] + b1l[CF1,1] + b2[CF2,1]

phi2 <- a[2] + b1l[CF1,2] + b2[CF2,2]

phi3 <- a[3]

der <- eval(der.exp) # T value

grad <- attr(der, 'gradient') # 1st derivative
hess <- attr(der, "hessian') # 2nd derivative
sse <- as.numeric(crossprod(y - der))

d.sse <- (y - der)*(-grad)

calculate g

<- crossprod(y-der)/(2*s2)

<- g + sum(bl %*% invDl * bl)/2 + sum(b2 %*% invD2 * b2)/2
<- g - s*sse/N

calculate 1st derivative of g w.r.t. a
.gr <- colSums(d.sse) * (1/s2 - 2*s/N)

O H Q@ H#

# calculate 1st derivative of g w.r.t. b
bl.gr <- rowsum(d.sse[,1:2], CF1) * (1/s2 - 2*s/N)
bl.gr <- bl.gr + crossprod(t(bl), invDl)
b2.gr <- rowsum(d.sse[,1:2], CF2) * (1/s2 - 2*s/N)
b2.gr <- b2.gr + crossprod(t(b2), invD2)
b.gr <- c(bl.gr, b2.gr)

-gradient <- c(a-gr, b.gr)

g
# compute part G related to a
G.a <- (colSums((y-der)*(-hess)) + crossprod(grad)) * (1/s2 - 2*s/N)

# compute part G related to bl

G.b1.11 <- G.bl.12 <- G.bl.22 <- diag(integer(nl))

diag(G.b1.11) <- rowsum((y-der)*(-hess[,1,1]) +
grad[,1]*grad[,1], CF1) * (1/s2 - 2*s/N) + invD1[1,1]

diag(G.b1.12) <- rowsum((y-der)*(-hess[,1,2]) +
grad[,1]*grad[,2], CF1) * (1/s2 - 2*s/N) + invD1[1,2]

diag(G.b1.22) <- rowsum((y-der)*(-hess[,2,2]) +
grad[,2]*grad[,2], CF1) * (1/s2 - 2*s/N) + invD1[2,2]

G.bl <- rbind(cbind(G.b1.11,G.b1.12), cbind(G.b1l.12,G.b1.22))



#

G.

compute part G related to b2
b2.11 <- G.b2.12 <- G.b2.22 <- diag(integer(n2))

diag(G.-b2.11) <- rowsum((y-der)*(-hess[,1,1]) +

grad[,1]*grad[,1],CF2) * (1/s2 - 2*s/N) + invD2[1,1]

diag(G.b2.12) <- rowsum((y-der)*(-hess[,1,2]) +

grad[,1]*grad[,2],CF2) * (1/s2 - 2*s/N) + invD2[1,2]

diag(G.b2.22) <- rowsum((y-der)*(-hess[,2,2]) +

G.

#

g-

grad[,2]*grad[,2],CF2) * (1/s2 - 2*s/N) + invD2[2,2]
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b2 <- rbind(cbind(G.b2.11,6.b2.12), cbind(G.b2.12,6.b2.22))

compute part G related to both bl & b2

-b12.11 <- matrix(rowsum((y-der)*(-hess[,1,1]) +

grad[,1]*grad[,1],CF1:CF2) * (1/s2 - 2*s/N), byrow=T,

-b12.12 <- matrix(rowsum((y-der)*(-hess[,1,2]) +

grad[,1]*grad[,2],CF1:CF2) * (1/s2 - 2*s/N), byrow=T,

-b12.22 <- matrix(rowsum((y-der)*(-hess[,2,2]) +

grad[,2]*grad[,2],CF1:CF2) * (1/s2 - 2*s/N), byrow=T,

.b12 <- rbind(cbind(G.b12.11,6.b12.12), cbind(G.b12.12,G.

.b <- rbind(cbind(G.bl, G.b12), cbind(t(G.b12),G.b2))

compute part G related to a & bl

.abl.1 <- rowsum((y-der)*(-hess[,1:3,1]) +

grad[,1:3]*grad[,1],CF1) * (1/s2 - 2*s/N)

.abl.2 <- rowsum((y-der)*(-hess[,1:3,2]) +

grad[,1:3]*grad[,2],CF1) * (1/s2 - 2*s/N)

.abl <- rbind(G.abl.1, G.abl.2)

compute part G related to a & b2

.ab2.1 <- rowsum((y-der)*(-hess[,1:3,1]) +

grad[,1:3]*grad[,1],CF2) * (1/s2 - 2*s/N)

.ab2.2 <- rowsum((y-der)*(-hess[,1:3,2]) +

grad[,1:3]*grad[,2],CF2) * (1/s2 - 2*s/N)

.ab2 <- rbind(G.ab2.1, G.ab2.2)

.ab <- rbind(G.abl, G.ab2)

finalize G
hessian <- rbind(cbind(G.a,t(G.ab)), cbind(G.ab,G.b))

ab.new <- ab - solve(g-hessian) %*% g.gradient

err <- max(abs(ab.new - ab) - 1.e-8*(abs(ab) + 1.e-6))
ab <- ab.new

if(err < 0) break

}

ncol = n2)

ncol n2)

ncol = n2)
b12.22))

list(val=g, detG=determinant(g.hessian, logarithm = TRUE)$modulus)
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# Mai

n Program #

HHHHHHHH R

emup
D1
D2
s2
res
ab
a <
b <
bl
b2
s <

N1.
N1
N1.

N1.
N2.
N2.
N2
N2
N12

N12
N12

N12.

M1.
M1.
M1.

M1.
M2 .
M2.
M2.

M2.

-ml <- exp(.-5*(result.D$detG - N2.ps$detG)

.m2 <- exp(.5*(result.D$detG - N2.ms$detG)

<- function(theta,ab) {

<- matrix(c(theta[1l:2],theta[2:3]), ncol=2)
<- matrix(c(theta[4:5],theta[5:6]), ncol=2)
<- theta[7]

ult.D <- D.obj(DP1,D2,s2,ab)

<- result.D$ab

- ab[1:nP]

- ab[(nP+1):length(ab)] # random effects of CF 1

<- matrix(b[1:(2*n1l)], ncol = 2)
<- matrix(b[(2*n1+1):length(b)], ncol = 2)
- sqrt(-Machine$double.eps)

ps <- N1.obj(D1,D2,s2,ab,s)

.ms <- N1.obj(D1,D2,s2,ab,-s)

+

ml <- exp(.5*(result.D$detG - N1.ps$detG)
result.D$val - N1.ps$val)

m2 <- exp(-5*(result.D$detG - N1.ms$detG)
result.D$val - N1l.ms$val)

+

ps <- N2.obj(D1,D2,s2,ab,s)
ms <- N2.obj(D1,D2,s2,ab,-s)

+

result.D$val - N2_ps$val)

+

result.D$val - N2.ms$val)

-ps <- N12.obj(D1,D2,s2,ab,s)

.ms <- N12.obj(D1,D2,s2,ab,-s)

-ml <- exp(.5*(result.D$detG - N12.ps$detG)
result.D$val - N12.ps$val)

m2 <- exp(.5*(result.D$detGC - N12_ms$detC)
result.D$val - N12_ms$val)

ps <- M1.obj(D1,D2,s2,ab,s)

ms <- M1.obj(D1,D2,s2,ab,-s)

ml <- exp(-5*(result.D$detG - M1.ps$detC)
result.D$val - M1.ps$val)

m2 <- exp(.5*(result.D$detG - M1.ms$detG)
result.D$val - M1.ms$val)

+

+

ps <- M2.obj(D1,D2,s2,ab,s)

ms <- M2.obj(D1,D2,s2,ab,-s)

ml <- exp(.5*(result.D$detGC - M2.ps$detC)
result.D$val - M2.ps$val)

m2 <- exp(.5*(result.D$detG - M2.ms$detG)
result.D$val - M2.ms$val)

+

+
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M12.ps <- M12.obj(D1,D2,s2,ab,s)

M12.ms <- M12.o0bj(D1,D2,s2,ab,-s)

M12.ml1 <- exp(-5*(result.D$detGC - M12_ps$detG) +
result.D$val - M12_ps$val)

M12.m2 <- exp(.-5*(result.D$detGC - M12_.ms$detG) +
result.D$val - M12.ms$val)

s2.ps <- s2.obj(bP1,D2,s2,ab,s)

s2.ms <- s2.obj(D1,D2,s2,ab,-s)

s2.ml <- exp(-5*(result.D$detG - s2.ps$detG) +
result.D$val - s2.ps$val)

s2.m2 <- exp(-5*(result.D$detGC - s2.ms$detG) +
result.D$val - s2.ms$val)

D1[1,1] <- (N1.m1 - N1.m2)/(2*s)
D1[2,2] <- (N2.ml - N2.m2)/(2*s)
D1[1,2] <- (N12.m1 - N12.m2)/(2*s)
D2[1,1] <- (M1.ml1 - M1.m2)/(2*s)
D2[2,2] <- (M2.m1l - M2.m2)/(2*s)
D2[1,2] <- (M12.m1 - M12.m2)/(2*s)
S2 <- (s2.ml - s2.m2)/(2*s)

list(theta = c(D1[1,1],D1[1,2],D1[2,2],D2[1,1],D2[1,2],D2[2,2],S2),
ab=ab, monitor = result.D$monitor)

# initial values

a <- a.ini

b <- integer(2*n1+2*n2)
ab <- c(a,b)

D1 <- D1.ini

D2 <- D2.ini

s2 <- s2.ini

i<-0
theta <- c(D1[21,1],D1[1,2],D1[2,2], D2[1,1],D2[1,2],D2[2,2], s2)
cat(''\n"")
while(i < 300){
temp <- emup(theta,ab)
thet2 <- temp$theta
ab <- temp$ab
i <-i+1
err <- max(abs(thet2 - theta) - l1l.e-3*(abs(theta) + 1.e-1))
Dl.temp <- matrix(c(thet2[1:2],thet2[2:3]), ncol=2)
D2_.temp <- matrix(c(thet2[4:5],thet2[5:6]), ncol=2)
if(min(eigen(D1.temp)$values) <= 0 | min(eigen(D2.temp)$values) <= 0
| thet2[7] <= 0) {
thet2[1] <- abs(thet2[1])
thet2[2] <- 0
thet2[3] <- abs(thet2[3])
thet2[4] <- abs(thet2[4])
thet2[5] <- O
thet2[6] <- abs(thet2[6])
thet2[7] <- abs(thet2[7])

N

N
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theta <- thet2
cat(i,temp$monitor,err,theta,'\n")
if(err <O | i >= 100) break

<- -diag(length(theta))

temp <- emup(theta,ab)
gg <- temp$theta - theta
monitor <- temp$monitor
ab <- temp$ab

while(i < 300){

}

i<-1+1

deltheta <- -A %*% gg

thet2 <- theta + deltheta

Dl.temp <- matrix(c(thet2[1:2],thet2[2:3]), ncol=2)

D2.temp <- matrix(c(thet2[4:5],thet2[5:6]), ncol=2)

if(min(eigen(D1l.temp)$values) <= 0 | min(eigen(D2.temp)$values) <= 0
| thet2[7] <= 0) {
A <- -diag(length(theta))
gg <- thetaem - theta
deltheta <- -A %*% gg
thet2 <- theta + deltheta

}

Dl.temp <- matrix(c(thet2[1:2],thet2[2:3]), ncol=2)

D2.temp <- matrix(c(thet2[4:5],thet2[5:6]), ncol=2)

if(nin(eigen(D1.temp)$values) <= 0 | min(eigen(D2.temp)$values) <= 0
| thet2[7] <= 0) break

err <- max(abs(thet2 - theta) - 1l.e-6*(abs(theta) + 1.e-4))

err2 <- max(abs(thet2 - theta))

temp <- emup(thet2,ab)

monitor <- temp$monitor

thetaem <- temp$theta

delgg <- thetaem - thet2 - gg

adgg <- A %*% delgg

A <- A + outer(c(deltheta - adgg)/sum(deltheta*adgg), c(t(A) %*%
deltheta))

theta <- thet2

gg <- gg + delgg

ab <- temp$ab

cat(i,temp$monitor,err,theta,'"\n")

if(err < 0 | err2 < 1.e-6) break

if(i >= 300 | err <0 | err2 < 1.e-6) {

D1 <- matrix(c(theta[l:2],theta[2:3]), ncol=2)
D2 <- matrix(c(theta[4:5],theta[5:6]), ncol=2)
s2 <- theta[7]

invDl <- solve(D1l)

invD2 <- solve(D2)

nllike.optim <- nIm(nllike.obj, ab, iterlim = 500, print.level=0)
ab <- nllike.optim$estimate
dat.out <- data.frame(i,err,ab[1l],ab[2],ab[3],t(theta))
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