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Office buildings consume about fifty-five percent of their total energy use to heat 

and cool the spaces.  As much as thirty percent of the energy consumed in office 

buildings was found to be wasted.  Although the efficiency of heating/cooling energy use 

in office buildings has increased considerably in general, the total amount of thermal and 

mechanical energy demand has not decreased.  The trend of increasing in building energy 

consumption will continue due to the expansion of office built area and the associated 

energy needs. 

This study investigates the thermal load features in office buildings and proposes 

an innovative Integrated Air Handling Unit (IAHU) concept in order to achieve energy 

savings with conventional office building air handling systems.  The corresponding 

deduction of IAHU for an acceptable Indoor Air Quality (IAQ) and better energy 

performance is conducted.  The system variables and constraints are analyzed in detail to 

understand the feasibility and operability of IAHU.  The control logics and 

implementation methods are elaborated for typical system layouts.  With an IAHU 

operation, the internal heat gain can be transferred from an interior region into an exterior 

region in winter.  The sensible load and latent coil load can also be decoupled in mild 

weather. 

To evaluate the performance of IAHU for buildings, especially insufficiently sub-

metered buildings, a simplified simulation method is proposed.  The theoretical modeling 



 
 

process is provided.  Through a case building simulation, it is found that, by converting a 

Two Air Handling Unit (TAHU) system into an IAHU system, about 14% of thermal 

energy can be saved for the case building, which is equivalent to a 3.5 MBTU/ft2 yr 

saving in the given climate.  By transferring the internal heat gain from the interior region 

to the exterior region, 58% of the total savings, by applying IAHU, can be achieved in 

winter time and 17% in swing seasons.  Another 25% savings comes from the sensible 

and latent coil load decoupling of using IAHU in summer mild weather. 

The study concludes that IAHU can be generalized as an operational method and 

adopted into new and existing office buildings for high performance.
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Chapter 1 INTRODUCTION 

1.1 Background 

1.1.1 General 

In commercial buildings the energy needs for building services systems often 

account for a substantial portion of total energy consumption.  Within the commercial 

sector, office buildings are those with the largest consumption of energy and CO2 

emissions.  In the United States, offices account for 17% of the total non-domestic 

building area and about 18% of the energy use in buildings (Luis et al. 2008). 

Across the US, the average annual energy intensity for office buildings is 79.8 

kBtu per square foot and the average cost is $1.65 per square foot.  Of the total energy 

consumption, 66% is from electricity and 34% is from natural gas and other fuels.  This 

consumption translates to 15.5 kWh per square foot of electricity and 0.27 therms (32 

cubic feet) per square foot of natural gas (CBECS, 2003). 

 

 

 

 

 

 

  

Adopted from E Source, 2006 

Figure 1-1: Energy Consumption (Left: by Fuel Type, Right: by End Use) 
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As shown in Fig 1-1, the energy consumption on space heating, ventilation, and 

air-conditioning (HVAC) represents about fifty five percent of the total use in a typical 

office building.  In another study, it is stated that energy represents about nineteen 

percent of total expenditures for a typical office building (“Managing Energy Costs in 

Office Buildings”, 2006).  As much as 30% of the energy consumed in office buildings 

was estimated to be wasted in daily operation (“Office Building Energy Use Profile”, 

2006). 

Although the efficiency of heating/cooling energy use in office buildings has 

increased considerably in general because of better building insulation, component 

efficiency and automated control, etc, the amount of total thermal and mechanical energy 

demand for commercial buildings has not decreased.  This increasing trend in building 

energy consumption will continue due to the expansion of office built areas and the 

associated energy needs. 

The above facts clearly mark the HVAC of office buildings an important sector 

which deserves both management attention and systematic research. 

1.1.2 Office building thermal features 

The office building is one of the great icons of our modern world.  It differs from 

other commercial buildings due to its diversified building layout and corresponding 

occupancy and operation.  An office building’s layout can be a mixture of space divisions, 

private offices, open plans and auxiliary space, etc.  The characteristics of an office 

building lead to the configuration complexity of HVAC systems.  Furthermore, the 

control and operation of air conditioning systems are also difficult if a high energy 

performance is desired. 
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Compared to those of earlier times, modern office buildings have higher internal 

heat gains since more electricity-powered equipment is employed.  The higher heat gains 

reflect from both the quantity and the density.  Computers, copy machines, printers, even 

data servers are commonplace in office buildings.  Although the efficiency and the 

convenience have been highly improved, a significant amount of heat exhausted by these 

equipment enters into the air conditioned spaces.  If not properly handled, the heat can 

turn into a thermal load that requires mechanical cooling year around. 

In line with the prevailing architectural style, office buildings are built with large 

glass surfaces and becoming more air-tight with wall curtains and non-operable windows.  

The area along the perimeter of a typical office building and the area in the core possess 

very different load characteristics.  Normally, perimeter zones are mainly influenced by 

the outside air (OA) temperature and solar variation, while interior zones are dominated 

by the internal heat load density and occupancy schedules.  The unique thermal feature of 

office buildings leads to a common practice that heating and cooling exist simultaneously 

under some circumstances in winter or swing seasons. In the context of this thesis, the 

definition of “zone” is extended to be the same as “region”, which includes multiple 

zones that possess the identical thermal characteristics. 

Unless specially designed, natural ventilation is almost impossible for most 

existing and newly built office buildings.  Because of the improved closeness, increasing 

occupancy density and longer residence time, the indoor air quality (IAQ) of modern 

office buildings is now a major concern.  To acquire ventilation air for the occupants, 

either an individual system, or a system with a proper amount of OA should be installed.  

ASHRAE standard 62.1-2004 (ASHRAE 62.1, 2004), the code of Ventilation for 
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Acceptable Indoor Air Quality, specifies the calculation of minimum ventilation rates for 

an acceptable IAQ in residential and commercial buildings. 

Office building spaces are normally open with continuous areas above the ceiling 

and no floor-to-floor partition walls or locked doors.  To achieve the maximum use of 

area, work stations are created near windows and outer walls.  In the center of the 

building, stair wells, elevators and hallways are located for passage convenience.  

Therefore, the exterior zones and interior zones do not have obvious and rigid boundaries.  

The two zones influence each other in a way in which it is difficult to be clearly isolated.  

The terminals of the systems serving different zones also might be put in the same office 

room, which causes the ventilation air from different systems in the occupant space mix 

and network spontaneously. 

1.1.3 Office building HVAC systems 

The comfort of occupants in office spaces is fundamentally influenced by the 

thermal and air quality.  HVAC systems are designed to provide workers in office 

buildings with a suitable air temperature, humidity and quality.  HVAC systems can vary 

greatly in complexity, from stand-alone units that serve individual rooms to large, 

centralized systems serving multiple zones in a building.  In project EPA 402-C-06-002 

for building assessment survey and evaluation study, the EPA randomly selected 100 

public and commercial office buildings, which were built from before 1900 to 2000, in 37 

cities and 25 states (“BASE Study”).  The majority of existing office buildings have 

centralized cooling and heating systems, as shown in Fig 1-2. 
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Figure 1-2: Office building cooling/ heating system type 

Among them, 98% use mechanical ventilation; 50 out of 141 air handlers are 

constant air volume (CAV), while the others are variable air volume (VAV).  Air based 

centralized HVAC systems with different terminals and layouts still dominate office 

buildings for air conditioning because of the associated advantages.  A DOE report about 

energy consumption characteristics of commercial buildings shows that central systems 

with VAV air handling units (AHUs) are more efficient than packaged systems (Roth et 

al, 2002).  The other reason of the dominance is that a central HVAC system is more 

flexible in providing air distribution with duct work throughout the entire building. 

 
Figure 1-3: Design load and energy use comparison cross systems 
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There are many different types of air based HVAC systems, which have evolved 

gradually for better control, energy savings or thermal comfort considerations.  A CAV 

system has the features of simplicity, low cost and reliability.  It does not change air 

delivery rates when building load changes.  To accommodate the varying building load 

for thermal comfort, it either mixes cold air with warm air or use terminal reheats to 

offset the excessive cooling.  The air distribution in the conditioned space can be easily 

ensured with this type of system. 

In many applications, pure CAVs are not energy conservative and are becoming 

rare in newer construction.  Some changes in the system operation and configuration have 

been adopted to preserve the original simplicity while achieving better energy 

conservation.  Resetting the supply air temperature, supply water temperature or water 

flow rate can be utilized in a CAV and induction terminal system for building perimeter 

air conditioning. 

The airflow to a conditioned space could be adjusted to the needed rate with a 

VAV system.  The system supplies cold air to the space via terminal damper boxes.  

Depending on the system layout, the terminal boxes may or may not be equipped with a 

reheat coil.  Additional heat is provided by a reheat coil if the space needs less cooling 

than that delivered by the supply air at the box’s minimum airflow rate setting.  Since the 

air can be adjusted at the terminal side with both rate and temperature, VAV is 

considered more energy conservative under most circumstances.  It has been used in 

many applications where the space cooling/heating loads have a wide range variation 

with occupancy activities and external air conditions. 
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In a large or multi-story office building, more than one AHU is needed to 

accommodate the load variances across zones.  As stated in the previous section, the 

office building load can be characterized as interior and exterior.  Since the central 

interior area is less influenced by outside conditions, the space is mainly cooling 

dominant.  The variance of load within the interior zone seldom changes the cooling 

dominancy throughout the seasons.  A constant supply air temperature at 55oF is 

commonly used so that the building humidity and temperature can be maintained with 

relatively low fan power consumption.  The system’s minimum airflow rate varies from 

30% to 50%, or higher, which depends on factors including minimum OA intake, 

mechanical fan features and air circulation requirements. 

Circumferential perimeter zones in an office building can also be conditioned by 

one or more AHUs.  Since perimeter zones have strong correlations between building 

envelopes, outside conditions and orientations, the load across the zones could have 

significantly different features.  The extreme situation is that cooling and heating coexists 

in the zones.  A CAV with induction units and a VAV with terminal reheats are two 

common types of air-based systems that are applied in perimeter zones for flexibility.  

The AHUs are controlled to adjust the supply air temperature, or along with the flow rate 

in VAV, so that cooling/heating penalties can be avoided mostly from the system level. 

Deployed along with the mechanical HVAC system is the building automation 

system (BAS) or energy management control system (EMCS).  The first generation of 

pneumatic controls and then electric controls have been widely replaced by direct digital 

control (DDC), which emerged in the 1970’s.  With the communication and 

implementation advantages of DDC, computer aided EMCS can achieve a high level of 
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automation and optimization with HVAC equipment and systems.  It is estimated that 

energy savings resulting from the installation of an EMCS in a typical commercial 

building is about 5% (Massachusetts Market Transformation Scoping Study, 1997).  

Sensors, controllers, actuators and variable frequency drives (VFD) are networked to 

fulfill the control algorithm in supervisory level controllers. 

EMCS with DDC technology provides the basic infrastructure where a building 

level operational optimization could be implemented in office building HVAC systems 

instead of local optimization, as studied in this research. 

1.1.4 Ventilation control 

OA is needed in occupied buildings to first ensure the building space ventilation 

for an acceptable IAQ, and to also maintain a proper building positive pressure.  

Depending on outdoor conditions, the air may need to be heated/cooled or 

humidified/dehumidified before it is distributed into the space.  As OA is drawn into a 

building, the indoor air is re-circulated, exhausted or relieved.  OA can be introduced into 

the spaces by mechanical fans, passive vents or operable windows.  Ventilation rates for 

commercial buildings are codified as part of the requirements in state and federal energy 

standards in the USA, often based on the recommendations in ASHRAE Standard 62.1. 

Natural ventilation, mechanical ventilation and hybrid ventilation are the means to 

introduce OA.  Natural ventilation was the most common ventilation method, which let 

fresh air come in without thermal processing through operable windows or special 

designed vents.  In this mode, wind pressure and thermal pressure are the main drives to 

move the air in and out of the building.  A special building layout is needed so that OA 

can travel through the building and maintain the average indoor air temperature and other 
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parameters in an acceptable range.  Naturally ventilated buildings usually have a wider 

air temperature band which might lead to discomfort.  Nowadays natural ventilation is no 

longer the best strategy for office buildings that are air sealed. 

  Modern office buildings generally use mechanical ventilation systems to 

introduce OA.  The quantity of OA introduced into an AHU is typically controlled by 

coordinated action of the relief, mixed and outside air dampers.  During most times of the 

year, OA is not suitable for direct air conditioning purposes.  A thermal process is needed 

so that the supply air can accommodate the building’s thermal and moisture load.  OA is 

subjected to a minimum limit in order to control the associated thermal energy 

consumption and provide basic ventilation. 

In addition to maintaining an IAQ, OA might also be used as a cooling medium in 

a swing season or during winter to offset the surplus heat gain from lighting, equipment 

and occupants.  When the enthalpy or temperature of OA is lower than that of the return 

air, it could be economical to use up to 100% OA.  The temperature or enthalpy based 

economizer control is recommended by ASHRAE as an energy conservation technology 

for operating air-conditioning systems (ASHRAE, 90.1, 2004). 

The minimum OA intake is usually controlled by fixed position OA dampers.  In 

a study conducted by EPA, about 90% percent of the sampled office buildings used this 

measure while less than 1% had intake airflow monitoring (“BASE Buildings Test Space 

HVAC Characteristics”).  However, a fixed position damper can hardly guarantee the 

amount of OA intake, especially in a VAV system where the total airflow rate is 

modulated according to the changing load (Mumma and Wong, 1990).  Traditional intake 

airflow stations seem like a logical solution, but the reality shows that they either result in 
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a large pressure drop or the measurement is far from accurate (Kettler, 1998).  Persily et 

al (2005)  reported that in a survey from 1994-1999, of 100 randomly selected large 

office buildings in the US , the average of measured OA supply rates was 120cfm/person 

using duct traverse measurements, while the required OA is about 12cfm/person. 

Over-ventilated buildings waste energy with little or no benefit to the occupants, 

while under-ventilated buildings may have significant adverse effects on occupants.  An 

unbalanced OA control will also lead to bad building pressure and moisture control 

during cooling seasons.  ASHRAE 62.1 allows the designer to take credit for “unused” 

ventilation air returning from the over-ventilated spaces in the system since variable 

occupant density is usually lower than the designed condition.  Indoor air CO2 levels can 

be used as the IAQ index to control the building’s overall OA intake. 

1.2 Objective and scope 

The aim of this research is to: 

• Develop an innovative approach for the high performance of office building 

HVAC systems by virtually integrating AHUs (IAHU); 

• Introduce fan-law based airflow measurement methods and instrumentations 

for better air distribution and building pressure control; 

• Analyze parameters and their influences on IAHU performance and develop 

practical control algorithms for IAHU operation; 

• Develop a practical evaluation process for the performance of an IAHU 

system and demonstrate it with a given building system layout. 
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IAHU is developed for implementation in existing and new buildings with few or 

no retrofitting on conventional air-based HVAC systems.  VFDs are recommended on all 

AHU supply and return fans so that a flexible modulation and coordination across AHUs 

can be accomplished.  A DDC based EMCS should be available to enable building level 

communication and control. 

This paper theoretically deduces and investigates the basic theory of IAHU for 

office buildings to improve energy performance while maintaining the IAQ.  Based on 

IAQ constraints, the optimal year round operation schema are defined.  The involved 

parameters are evaluated in terms of their influences on IAHU.  The key implementation 

elements are introduced followed by a discussion of control for four typical office 

building system layouts.  The evaluation process is then detailed in a simple steady state 

simulation and demonstrated in a building case. 

1.3 Methodology 

A special feature of this study is to enhance the operation of existing and new 

office buildings by integrating the AHUs for better OA intake control with little or no 

retrofitting.  The internal heat gain can be transferred to the external heating area in 

winter by using IAHU.  Meanwhile, the latent load and sensible coil load can possibly be 

decoupled in summer for further energy savings. 

The OA intake and distribution are critical to ensure the success of IAHU in 

office buildings.  The method of controlling fans and dampers based on fan laws is 

analyzed and the control algorithms for typical office system layouts are described in this 

study. 



 
27 

The methodology comprises four different ways of studies: 

• Literature review; 

• Theoretical modeling and deduction; 

• Engineering analysis and control algorithm development; 

• Mathematical simulation. 

A study of office air handling units (OAHU) has been conducted by Dr. Li Song 

in a PhD dissertation to improve energy savings of HVAC system in office buildings 

(Song, 2005).  However, a piece of duct work is needed to enable the operation of such 

an improved AHU system.   This could potentially be a big obstacle in a real application 

since such a retrofitting would interrupt the daily operation of an office building.  

Moreover, the parameters involved in the control are complicated and theoretical.  The 

measurements and calculations deduced in theory for OAHU might not be practical for 

real implementation. 

IAHU is proposed in this study based on OAHU to eliminate the necessity of duct 

work retrofit in upgrading a two dedicated air handling unit (TAHU).  The operation and 

control algorithm are reasonably simplified to crop major benefits of the system with 

improved viability.  The IAHU theory with the innovative OA intake methods for both an 

acceptable IAQ and additional energy savings are deduced.  The variables in upgrading a 

TAHU into an IAHU system have been analyzed before the description of a control 

algorithm and implementation methodology.  A simulation process to evaluate an IAHU 

system is given later and demonstrated with an existing office building. 
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1.4 Outline of the thesis 

The introductory portion, chapter 1, provides the background and the aims of the 

current study.  The description of the chosen methodology is included.  A concise 

literature review with technology related to the study is also provided. 

In chapter 2, the conventional office building HVAC system operation is first 

summarized.  The concept and theoretical deduction of IAHU are presented for an 

acceptable IAQ.  The analysis of energy consumption features of an IAHU system is 

included here as well.  The IAHU control is defined with clear operation criteria after the 

two step analysis. 

The parameters involved in the conversion from a TAHU to an IAHU system are 

studied in chapter 3.  Fan law based airflow measurements and the control are introduced 

to support the implementation of IAHU.  Control algorithms for real application are 

developed based on the theoretical analysis given in chapter 2.  The involved 

instrumentations for an IAHU operation are then concisely discussed. 

Chapter 4 provides a simulation process for an IAHU performance evaluation.  

An existing office building is evaluated with this method as a demonstration. 

The discussion and conclusion of IAHU are reviewed in chapter 5. 

1.5 Literature review 

Due to their closeness and occupant density, most modern office buildings must 

rely on mechanical HVAC systems to provide OA ventilation and air conditioning for 

acceptable indoor environments.  Centralized air based HVAC systems, such as CAV and 

VAV, still dominate in existing and new office buildings as conventions for mechanical 
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ventilation and air conditioning.  Due to the prior fan energy savings potential, VAV 

systems are gaining more popularity than CAV.  This dominance is not likely to change 

in the near future. 

With the office building load features stated above, in winter time, the core zones 

require cooling due to large internal heat gain, while the perimeter zones require a large 

amount of heating to offset the heat loss through building envelopes.  The quantitative 

contradiction can be significant when the cooling and the heating are close to equal.  For 

energy saving purposes, more than one AHU is normally deployed for large area or 

multistory office buildings, so that the efficiency compromising simultaneous heating and 

cooling can be attenuated. 

It is more energy efficient to transfer the internal heat gain to the perimeter zones 

in winter and swing seasons.  Heat recovery chillers (HRC) have been studied to recycle 

heat gains (Nichols and Laframboise, 1984).  They provide chilled water to cool the air 

supplied to the interior zone and use condenser water to warm up the air supplied to the 

exterior zone.  However, a heat recovery chiller system needs to operate even during a 

free cooling season.  For most office buildings, such a system is not the best solution to 

transfer the interior zones heat to the exterior zones. 

For the same purposes, a water loop heat pump system (WLHP) was developed 

(ASHRAE, 2008).  The water-to-air heat pump units in each individual zone are 

distributed hydraulically with a two-pipe water loop.  The units in the cooling cycle reject 

heat into the pipe system, while the units in the heating cycle retrieve heat from the pipe 

system.  Through the transfer, the exterior zone can be heated by the interior zone waste 

heat with little or no external heat.  However, as in most decentralized systems, it has 

http://en.wikipedia.org/wiki/Variable_air_volume�
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potential IAQ and noise problems.  Furthermore, it requires an additional boiler and 

cooling tower to balance the loads. 

An OAHU concept has been proposed and studied by Dr. Li Song to utilize air 

based systems for transferring internal heat gain (Song, 2005).  Two AHUs, which serve 

the interior and the exterior zone respectively, are duct-linked together on the AHU side.  

The OA intake and return air of the two AHUs can be manipulated to transfer internal 

heat gain while maintaining an acceptable IAQ for both zones.  The latent cooling and 

sensible cooling can also be decoupled with this system design to prevent unnecessary 

reheat in mild weather.  Ventilation by taking credits of unused fresh air is well 

considered for office buildings under the concept of OAHU.  With DDC based EMCS, 

OAHU breaks the conventional operation frame of individual AHU in office buildings. 

However, since an OAHU requires duct work retrofitting between two individual 

AHUs, the application is limited in existing office buildings.  Four airflow meters are 

needed to enable the control, which might also increase the difficulty and resistance of 

generalization.  In addition, the operation scenarios are complicated and suitable mainly 

for theoretical analysis. 
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Chapter 2 VIRTUAL AIR HANDLING UNIT 

INTEGRATION 

2.1 Conventional system and operation 

A core zone plus perimeter zone layout has been widely accepted for air based 

HVAC systems in office buildings.  To accommodate the different load features of the 

zones for higher effectiveness, two or more AHUs are needed.  From the design to the 

construction and the operation, an individual AHU in a building is conventionally 

confined only to itself and the corresponding zones.  Supervisory level and local level 

controllers, actuators, and thermal components involved in the zones of an AHU work 

accordingly under a defined control algorithm and sequence. 

HC/CC
SAF

RAF

exterior zone

SAHU

interior zone

 

Figure 2-1: Illustration of an SAHU 

A single air handling system (SAHU) is a typical air-based centralized system for 

commercial buildings.  One conditioned air stream is distributed into the space for 

heating, cooling, humidification and dehumidification.  Heating and cooling coils are 
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installed in series in the AHU.  For an office building, where the interior zone and 

exterior zone are served by the single system, the AHU working mode is mainly 

determined by the interior zone.  Fig 2-1 illustrates the layout of an SAHU system. 

Depending on the zone load features, the terminals in an SAHU system can be as 

simple as a reheating coil, throttling damper, or combined box.  To satisfy the interior and 

exterior zone, typically only cooled air at a low temperature is supplied from the AHU.  

The cold air is throttled or reheated if heating is needed by minority zones.  The cooling 

coil, heating coil and air dampers are coordinated to achieve the desired supply air 

temperature.  The OA intake for the building ventilation is mixed with/without the return 

air before being supplied into the space.  As one of its benefits, during an economizer 

period, free cool OA can be utilized to save mechanical cooling energy. 

Since the supply air is used to condition different zones, there exists a 

compromise when the zones are in opposite modes.  The supply air temperature reset for 

an SAHU system can only be conducted in a manner where the interior cooling demand 

is not impaired and the fan does not need to blow too hard.  Significant reheat energy 

could be consumed since the terminal reheat applies to permit zone or space control for 

areas of unequal loading, or to provide heating or cooling for perimeter areas with 

different exposures (Mcquiston et al, 2000).  Therefore, although it is typical and simple, 

SAHU is not energy efficient for modern office buildings. 

To overcome the drawback of an SAHU system for space conditioning, a two 

dedicated AHU system (TAHU) was later used.  An interior zone and an exterior zone 

have their own dedicated SAHUs; the individual SAHU of TAHU has a similar operation 

as a single SAHU but with better adjustability.  As an air-based HVAC system, a TAHU 
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system inherits the advantages of an SAHU system such as economizer control.  Two 

separate units supply dedicated conditioned air to the interior zone and exterior zone, 

respectively. 

In a TAHU system, the two zones’ air conditioning is separated from each other.  

The supply air temperature of the exterior zone in winter can be reset to a higher value 

without the restriction from the interior zone which requires cooling year round.  

Meanwhile, for the interior zone, since the supply air temperature can be maintained at a 

low set point, the fan power can be saved with VFDs when the load is low.  With the 

separation, one of the main benefits is that a significant amount of unnecessary reheat 

consumption can be avoided. 

Fig 2-2 plots the diagram of a typical TAHU.   

exterior zone

interior zone

 

Figure 2-2: Illustration of a TAHU 

Not only is the thermal processing of the two zones separated, but so are the OA 

intake and ventilation.  Both AHUs need to ensure the minimum OA intake for the 

corresponding zones which could be a shortcoming of the system.  For humidity control 
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purposes during a humid mild season, the exterior AHU has to use a cooling coil to 

remove the moisture from the OA regardless of the space sensible load.  Reheating will 

be activated if the conditioned air is cooled, in order to remove the moisture, more than 

needed to offset the sensible load.  In addition, in winter, when the interior zone AHU 

disposes a substantial amount of heat through exhaust or relief air due to the internal heat 

gains, external heating is required by the exterior zone. 

TAHU’s two-zone deployment is better than SAHU in terms of energy 

conservation, since the adverse interaction of the thermal load between the interior zone 

and the exterior zone can be largely decoupled.  However, there is still potential for 

energy efficiency improvements on the two points mentioned above: 

a. Decouple the moisture load from thermal load for less cooling and heating 

conflict in humid and mild weather; 

b. Recover/transfer the internal heat gain from the interior zone to the exterior 

zone in winter. 
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Figure 2-3: Illustration of an upgraded TAHU system 
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One possible solution is to install another cooling coil for OA intake only, and 

then use a heat recovery wheel to recycle the heat/cool capacity from the exhaust and 

relief air.  The illustration of such a system is shown in Fig 2-3. 

Using a separate cooling coil for OA, as depicted in the figure, can be referred to 

as a dual path system (Khattar and Brandemuehl, 2002).  The original intention was to 

facilitate AHU’s dual function of maintaining a thermal environment and providing 

necessary ventilation.  The ventilation air passes through its dedicated cooling coil to 

remove the moisture.  Since OA is also the main source of the latent load for most office 

buildings, this modification can ensure effective humidity control. 

If the ventilation air is dehumidified to be dry, it can further carry internal latent 

load.  In such a system, the circulation air is provided with another cooling coil to 

facilitate the control of supply air temperature for the sensible load of the space.  

Therefore, the latent and sensible load can be decoupled correspondingly.   

In addition to this, an air side heat recovery wheel can be mounted on the AHU to 

recycle otherwise wasted heat from the exhaust air and transfer it to the exterior zone for 

energy efficiency in winter time.  If the latent heat of moisture in the exhaust air is also 

transferred, it is referred to as an energy recovery wheel.  The flexibility of the modified 

AHU is highly enhanced for better air conditioning control. 

For a hypothetical multistory office building, if the total heat from the interior 

zone can be transferred by using the aforementioned imaginary system, it was illustrated 

that, no outside heat source or supplemental heat is needed during the occupied periods 

when the OA temperature is at or above 23°F (ASHRAE Handbook, ch8, 2008).  Fig 2-4 

illustrates the simplified trend of the available heat.  The heat might also be recovered for 
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storage if both zones are in need of cooling.  The actual profile varies from building to 

building. 

 

Figure 2-4: Hypothetical building self heating ability 

Unlike HRC and WLHP, the imaginary system with two upgrades inherits all the 

traits of air based systems, and possesses high flexibility and heat recovery capability.  

However, there are also disadvantages that keep them from wide application in office 

buildings.  The initial cost or cost of system upgrading might be prohibitive.  The 

operation could also be complicated beyond operators’ capability to truly achieve the 

desired energy savings. 

Meanwhile, the operating energy cost for the system could be higher than a 

normal TAHU system since the flexibility is obtained by increasing the system 

configuration complexity.  The economizer operation, additional pressure drop, heat 

exchanger maintenance and heat recovery efficiency degradation all count in the overall 

evaluation of this system’s performance. 
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Besides thermal conditioning, the building pressure and IAQ control is also of 

high importance and can be influenced by the operation of HVAC systems.  The OA 

intake through AHUs is utilized to fulfill both purposes. 

For an SAHU, the whole building is treated as one zone.  The OA intake from the 

AHU is provided into the space to dilute the building air contaminants.  The indoor air is 

considered to have a uniform freshness and contaminant concentration.  Unless the 

system is running in an economizer mode, the OA intake is mainly intended to achieve an 

acceptable IAQ.  The flow rate difference between the OA and the relief and exhaust air 

pressurizes the entire building and prevents unwanted moisture infiltration.  In an SAHU 

system, since there is only one OA inlet, the airflow balance is relatively easy and simple. 

With the separation of interior zone and exterior zone, two or more AHUs might 

be deployed in an office building.  The OA intake from an individual AHU is utilized to 

dilute the air contaminants in the dedicated zone.  The building pressure is controlled by 

maintaining the difference of the total OA intake and the overall air relieved and 

exhausted from all the AHUs.  Since OA intake varies in different modes, building 

pressure control could be a tough job which requires extra care.  The ins and outs need to 

be accurately measured and balanced to ensure a desired airflow rate difference for 

proper building pressure. 

A conventional operation rarely coordinates the different AHUs in the building.  

Therefore building pressure control can hardly be satisfied, especially when VAV 

technology is applied and the airflow rate varies along with the changing zone load.  The 

OA intake of AHUs maintained by coordinating dampers could be far away from the 

desired value. 
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2.2  IAHU as a system approach 

As reviewed in the previous sections, a TAHU system has its advantages over 

HRC and WLHP as a popular air-based HVAC system for office buildings.  Separating 

the interior zone and exterior zone reduces the possible compromise between 

heating/cooling due to the otherwise adverse interaction of thermal load between the two 

zones.  To further improve the system performance, dual path cooling coils for 

circulation air and OA are needed to decouple the latent cooling and sensible cooling.  

Heat recovery wheels could be mounted to squeeze the energy savings, provided that the 

interior zone heat gain are to be recovered for the exterior zone heating load. 

OAHU is a new HVAC system proposed by Dr. Song that consists of two 

conventional AHUs, illustrated in Fig 2-5. 

exterior zone

interior zone

OA

OA

EA

 

Figure 2-5: Schematic of an OAHU system 

The purpose was to accomplish optimal energy performance through integrating 

all above features into one air-based system: 

1. Separate the interior zone and exterior zone supply air; 
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2. Decouple the latent cooling and the sensible cooling; 

3. Recover internal heat gain from the interior zone for the exterior zone heating. 

To fulfill all of the three aforementioned features, a piece of duct work connection 

between the two AHUs is needed in an OAHU system; however, in some buildings, it is 

not easy to make such a duct connection, especially when the mechanical rooms are apart 

in the building.  The link also brings in more complicated control since two systems are 

physically tied up with additional inlets and outlets.  Meanwhile, the zone air temperature 

set point was not discussed in the OAHU operation. 

2.2.1  IAHU description 

IAHU, which surpasses OAHU in several aspects, is developed in this study.  

Firstly, there is no retrofit or physical duct work required, while all of the benefits of 

OAHU remain.  The control algorithm is tailored so that the conversion is practical.  In 

addition, differentiating the zone air temperature set points in IAHU is proposed as part 

of its future features for transferring heat gains. 

Compared to OAHU, IAHU has four advantages: 

1. Without the need of remodeling the duct work, the system configuration of 

IAHU is much simpler with almost zero retrofitting cost.  This aids in 

customer acceptance of the IAHU upgrading concept. 

2. The implementation of IAHU is more feasible with the fan airflow station 

(FAS) technique developed by the Energy Systems Lab at the University of 

Nebraska-Lincoln (Liu et al, 2005, Wang, et al, 2007).  In OAHU, it is 

difficult to determine the amount of re-circulated air from the interior zone to 

the exterior zone since two fans have more than two inlets/outlets.  Additional 
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airflow rate measurements are required.  With IAHU, the airflow rate 

information can be deduced using FAS since the fans have no more than two 

inlets/outlets. 

3. The control algorithm is much simplified in IAHU with less system variables, 

so that it is more practical in real project applications. 

4. In some cases, the heat transfer capacity in IAHU is higher with differentiated 

zone air temperature set points.  The achieved energy savings in winter is not 

limited to the heat transfer for warming up the OA intake. 

In humid weather, a dual path is emulated in an IAHU system to decouple the 

sensible and latent cooling.  OA is introduced in one AHU and the cooling coil is cooled 

to a temperature lower than both the OA and room air (RA) dew point so that the 

moisture can be effectively removed to control the indoor humidity.  More latent cooling 

capacity can be provided by the conditioned dry air. 

The building sensible load is covered by controlling the discharge air temperature 

of the circulating air in the other AHU.  Depending on the actual condition of the existing 

HVAC system, the AHU for either the interior zone or the exterior zone can be chosen as 

latent cooling AHU.  Under most circumstances, the interior zone AHU will be selected 

since the interior zone is always cooling dominant and the load is relatively constant.  A 

low supply air temperature is desired so that the fan energy consumption can be low with 

less air flow. 

In winter and swing season, it is likely that the exterior zone requires heating due 

to the heat loss through the building envelope.  At the same time, cooling is needed in the 
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interior zone because of the internal heat gain from lightings, equipment and occupants’ 

activities. 

The OA is warmed up by passing through the interior zone and then pushed into 

the exterior zone for ventilation.  In this scenario, the OA intake required to remove the 

internal heat load in the interior zone could be more than the OA required for ventilation.  

The credit of the interior zone ventilation air is used for the exterior zone.  By doing this, 

smaller external heating source is needed by the exterior zone and a significant amount of 

heat can be saved.  Fig 2-6 provides the illustration of the IAHU concept.  When the zone 

temperature set point is properly set, the internal heat gain can also be partially 

transferred to benefit the exterior zone. 

In other conditions, if the constraints listed in the following deduction for IAHU 

could not be satisfied, an IAHU system is operated as a conventional TAHU system. 

exterior zone

interior zone

 

Figure 2-6: Schematic of IAHU 
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In IAHU mode, the OA required by the entire building is mainly introduced 

through one AHU only.  The zone ventilation is ensured by either getting direct OA 

intake via its AHU or receiving high quality circulation air from another zone.  

At the same time, three conditions regarding the redistributed air should be 

satisfied to ensure the prior performance of an IAHU system: 

1. The IAQ in each zone should be maintained with adequate air ventilation; 

2. The amount of total OA intake and released RA should be balanced; 

3. The total energy consumption should be optimized. 

A theoretical analysis is given in the following to obtain the constraints and 

expression for the optimized IAHU operation.  To facilitate the description and 

deduction, Fig 2-7 provides the two zone model for IAHU with notations included.  

AHUs are solidified into two AHUs: one for the interior zone and the other for the 

exterior zone. 
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Figure 2-7: Denoted IAHU for two zones simplification 
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The interior zone supply air flow rate is mi and the one of the exterior zone is me.  

The Greek symbols in the chart are normalized air flow rate ratios.  The OA air intake 

ratio β for a zone is defined by the ratio of the OA flow rate of that zone to the associated 

AHU supply air flow rate.  The relived air ratio is denoted as ξ and the circulation air 

between the two zones is γ.  The exhausted air ratios for the interior zone and the exterior 

zone are given as δ and λ, respectively. 

2.2.2  IAQ considerations for IAHU 

The total airflow rate from the two AHUs is defined as m and the emission rate of 

indoor air contaminants as Cg.  For a control volume, the net in and out mass difference, 

and the mass generated within the volume is equal to the change of contaminants within 

the control volume. 

Taking the interior zone (dashed in Fig 2-7) as an example, the contaminants’ 

mass coming from OA is: 

 𝑄𝑖𝑛 = 𝛽𝑖𝑚𝑖𝐶𝑜 (2-1)  

The mass leaving the zone is: 

 𝑄𝑜𝑢𝑡 = −𝛽𝑖𝑚𝑖𝐶𝑖 (2-2)  

The source of the contaminants in the interior zone is 𝐶𝑔,𝑖.  The change rate of the 

contaminants within the zone is: 

 
𝑄𝑐𝑛 =

𝜕𝐶𝑖
𝜕𝑡

 (2-3)  

Under the mass conservation law, we can calculate the balance equation as: 
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 −𝛽𝑖𝑚𝑖𝐶𝑖 + 𝛽𝑖𝑚𝑖𝐶𝑜 + 𝐶𝑔,𝑖

𝑉𝑖
=
𝜕𝐶𝑖
𝜕𝑡

 (2-4)  

where 𝑉𝑖 is the control volume of the interior zone. 

A similar mass balance deduction holds for the exterior zone: 

 −𝛽𝑒𝑚𝑒𝐶𝑒 + 𝛽𝑒𝑚𝑒𝐶𝑜 + 𝐶𝑔,𝑒

𝑉𝑒
=
𝜕𝐶𝑒
𝜕𝑡

 (2-5)  

In the previous equations, the interior zone and the exterior zone are treated as 

one which takes in OA from and releases RA into, the outside individually.  There is no 

interaction of air or contaminants between the two zones. 

Suppose the OA intake is only used to remove the contaminants and maintain the 

IAQ requirement, the following OA ratio for the corresponding zone should be ensured: 

 
𝛽𝑖,𝐼𝐴𝑄 =

𝜕𝐶𝑖
𝜕𝑡 𝑉𝑖 + 𝐶𝑔,𝑖

𝑚𝑖(𝐶𝑖,𝐼𝐴𝑄 − 𝐶𝑜)
 (2-6)  

 
𝛽𝑒,𝐼𝐴𝑄,𝑑 =

𝜕𝐶𝑒
𝜕𝑡 𝑉𝑒 + 𝐶𝑔,𝑒

𝑚𝑒(𝐶𝑒,𝐼𝐴𝑄,𝑑 − 𝐶𝑜)
 (2-7)  

In the analysis below, the interior zone is chosen as the primary OA intake zone 

for an integrated operation.  To clarify the scenarios, we adopt i,IAQ as the subscript to 

denote the directly relevant variables when the interior zone is operated on its own.  In 

addition, e,IAQ,d is used to describe a similar circumstance for the exterior zone when an 

individual OA intake is considered.  The difference holds for the rest of this section. 
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In a steady state, there is no concentration change for either zone.  This means 

that 𝜕𝐶𝑖
𝜕𝑡

= 0 and 𝜕𝐶𝑒
𝜕𝑡

= 0.  Therefore, the individual OA intake to the interior zone and 

exterior zone are simplified respectively as: 

 
𝛽𝑖,𝐼𝐴𝑄 =

𝐶𝑔,𝑖

𝑚𝑖(𝐶𝑖,𝐼𝐴𝑄 − 𝐶𝑜)
 (2-8)  

 
𝛽𝑒,𝐼𝐴𝑄,𝑑 =

𝐶𝑔,𝑒

𝑚𝑒(𝐶𝑒,𝐼𝐴𝑄,𝑑 − 𝐶𝑜)
 (2-9)  

For any arbitrary OA intake ratio, the steady state mass balance should be true in 

order to maintain an acceptable contaminant concentration.  For the interior zone, this 

means: 

 𝛽𝑖𝑚𝑖𝐶𝑜 + 𝐶𝑔,𝑖 − 𝛽𝑖𝑚𝑖𝐶𝑖 = 0 (2-10)  

The mass balance also holds for the total amount of transferred, relieved and 

exhausted air from the interior zone, so that the zone pressure can be balanced: 

 𝛽𝑖 = 𝛾 + 𝛿 + 𝜉 (2-11)  

Submit equation (2-11) into (2-10): 

 𝛽𝑖𝑚𝑖𝐶𝑜 + 𝐶𝑔,𝑖 − (𝛾 + 𝛿 + 𝜉)𝑚𝑖𝐶𝑖 = 0 (2-12)  

Now, to fulfill an IAHU operation for the benefits, one zone will be designated as 

the primary OA intake zone.  Here we take the interior zone with 𝐶𝑖 ≤ 𝐶𝑒.  The still-fresh 

RA transferred from the interior zone to the interior zone is defined as 𝛾𝑚𝑖. 

The supplementary OA intake from the exterior zone AHU itself is 𝛽𝑒,𝐼𝐴𝑄𝑚𝑒.  

The OA is to ensure that the IAQ requirement is met if additional direct OA is needed. 
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Based on the mass balance of contaminants, the following equation can be 

established for the exterior zone: 

 𝛽𝑒,𝐼𝐴𝑄𝑚𝑒𝐶𝑜 + 𝐶𝑔,𝑒 + 𝛾𝑚𝑖𝐶𝑖 − (𝛽𝑒,𝐼𝐴𝑄𝑚𝑒 + 𝛾𝑚𝑖)𝐶𝑒 = 0 (2-13)  

To further simplify the analysis, we normalize several variables.  The total 

conditioned airflow rate supplied into the building is: 

 𝑚 = 𝑚𝑖 + 𝑚𝑒 (2-14)  

The interior zone total airflow rate ratio is: 

 𝜑 =
𝑚𝑖

𝑚
 (2-15)  

For CAV applications, φ is considered as a constant.  However, in many real 

office buildings, VAV is widely used.  In this study, this ratio is generalized as a 

changing variable. 

Substituting (2-15) into (2-13), we have: 

 𝛽𝑒,𝐼𝐴𝑄𝑚𝑒𝐶𝑜 − 𝛽𝑒,𝐼𝐴𝑄𝑚𝑒𝐶𝑒 + 𝛾𝜑𝑚𝐶𝑖 − 𝛾𝜑𝑚𝐶𝑒 + 𝐶𝑔,𝑒 = 0 (2-16)  

From equation (2-10), it is known that: 

 
𝐶𝑖 = 𝐶𝑜 +

𝐶𝑔,𝑖

𝛽𝑖𝑚𝑖
 (2-17)  

Replacing Ci in (2-16) with (2-17), we obtain: 

 𝛽𝑒,𝐼𝐴𝑄𝑚𝑒𝐶𝑒 − 𝛽𝑒,𝐼𝐴𝑄𝑚𝑒𝐶𝑜 + 𝛾𝜑𝑚𝐶𝑒 − 𝛾𝜑𝑚𝐶𝑜 − 𝛾𝑚𝑖
𝐶𝑔,𝑖

𝛽𝑖𝑚𝑖

= 𝐶𝑔,𝑒 

(2-18)  

Rearranging the equation to find the expression for 𝛽𝑒,𝐼𝐴𝑄: 
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 𝛽𝑒,𝐼𝐴𝑄 =
1

𝑚𝑒(𝐶𝑒 − 𝐶𝑜) �
𝐶𝑔,𝑒 + 𝛾𝜑𝑚(𝐶𝑜 − 𝐶𝑒) + 𝛾

𝐶𝑔,𝑖

𝛽𝑖
� (2-19)  

Equations (2-8) and (2-9) can be further rearranged as: 

 𝐶𝑔,𝑖 = (𝐶𝑖 − 𝐶𝑜)𝛽𝑖𝑚𝑖 = (𝐶𝑖,𝐼𝐴𝑄 − 𝐶𝑜)𝛽𝑖,𝐼𝐴𝑄𝑚𝑖 (2-20)  

 𝐶𝑔,𝑒 = �𝐶𝑒,𝐼𝐴𝑄,𝑑 − 𝐶𝑜�𝛽𝑒,𝐼𝐴𝑄,𝑑𝑚𝑒 (2-21)  

Substituting them into equation (2-19), and solving for the exterior zone direct 

OA intake: 

 
𝛽𝑒,𝐼𝐴𝑄 =

�𝐶𝑒,𝐼𝐴𝑄,𝑑 − 𝐶𝑜�𝛽𝑒,𝐼𝐴𝑄,𝑑𝑚𝑒 + 𝛾
𝛽𝑖

(𝐶𝑖,𝐼𝐴𝑄 − 𝐶𝑜)𝛽𝑖,𝐼𝐴𝑄𝑚𝑖

(𝐶𝑒 − 𝐶𝑜)(1 − 𝜑)𝑚

−
𝛾𝜑

1 − 𝜑
 

(2-22)  

The supplementary OA intake 𝛽𝑒,𝐼𝐴𝑄 from the exterior zone AHU is used to 

maintain the same level of IAQ as that in the interior zone.  In the previous equation, the 

exterior zone contaminant concentration 𝐶𝑒 should be a value that can ensure an 

acceptable IAQ: 

 𝐶𝑒 = 𝐶𝑒,𝐼𝐴𝑄,𝑑 = 𝐶𝑖,𝐼𝐴𝑄 (2-23)  

With it, equation (2-22) is further simplified: 

 
𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 −

𝛾𝜑
1 − 𝜑

+
𝜑

(1 − 𝜑)
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

𝛾 (2-24)  

 
𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 −

𝛾𝜑
1 − 𝜑

(1 −
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

) (2-25)  

To this point, the general expression is acquired, which governs the additional OA 

intake from the exterior zone AHU in IAHU to maintain the IAQ in the exterior zone. 
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In the following, we will deduce the threshold of the direct OA intake 

𝛽𝑒(𝛽𝑒,𝐼𝐴𝑄,𝑑,𝛽𝑖,𝐼𝐴𝑄,𝜑,𝛽𝑖, 𝛾) from the exterior zone AHU which is needed to maintain the 

exterior zone IAQ. 

Among the five independent variables, the first two are determined by equations 

(2-8) and (2-9).  φ is a variable determined mainly by the space load and supply air 

temperature.  The contaminants generated within zones are assumed to be invariant; 

therefore the minimum OA flow rate is considered as a constant.  𝛽𝑒,𝐼𝐴𝑄,𝑑 and 𝛽𝑖,𝐼𝐴𝑄 

could be constant in CAV and variables in VAV. 

In a CAV/VAV system operation, the first three variables can be calculated out as 

knowns, if the airflow rates are known or properly measured.  The most free variables are 

βi and, γ which is (𝛽𝑖 − 𝛿 − 𝜉). 

The ratio of transferred air γ could be modulated, with the interior zone OA intake 

βi  adjusted, in an IAHU operation to crop the desired benefits.  Next, the general 

relationship between γ and βi will be briefly deduced for several different conditions. 

1: 𝛾 = 0, no transfer air between the two zones 

This is similar to the normal operation for conventional office AHUs.  There is no 

interaction between the two AHUs. 

 𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 (2-26)  
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Figure 2-8: OA intake for normal operation 

2: 𝛾 = 𝛽𝑖 − 𝛿, no direct exhaust from the interior zone 

 
𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 −

𝜑
1 − 𝜑

�1 −
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

� (𝛽𝑖 − 𝛿) (2-27)  

 𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 −
𝜑

1 − 𝜑 �
𝛽𝑖 − 𝛽𝑖,𝐼𝐴𝑄� +

𝛿𝜑
1 − 𝜑

(1 −
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

) (2-28)  

To lower down the direct OA intake from the exterior zone AHU, the absolute 

value of the second item in equation (2-28) is expected to larger and that of the third 

smaller. 

The partial derivative of equation (2-28) on βi is: 

 𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝛽𝑖
= −

𝜑
1 −𝜑

+
𝛿𝜑

1 − 𝜑
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖
2 =

𝜑
1 − 𝜑

(𝛿
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖
2 − 1) (2-29)  

It can be seen that the result is negative, as is the second derivative.   βi and  βe,IAQ 

have an inverse correlation as a concave curve.  This means when βi increases, βe,IAQ 

monotonically decreases.  This can be illustrated as: 
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Figure 2-9: OA intake with no direct exhaust from the interior zone 

3: 𝛾 = 𝛽𝑖 ( 𝛿 = 0, 𝜉 = 0), no air relived or exhausted from the interior zone 

Under this circumstance, equation (2-25) becomes: 

 𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 +
𝜑

1 − 𝜑
(𝛽𝑖,𝐼𝐴𝑄 − 𝛽𝑖) (2-30)  

Meanwhile, it follows that 𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝛽𝑖
= − 𝜑

1−𝜑
.  This is a monotonically decreasing 

function with a constant slope.  The drawing can be illustrated as below: 
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Figure 2-10: OA intake with no direct exhaust or relief from interior zone 
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4: 𝛾𝑚𝑖 + 𝛽𝑒𝑚𝑒 = 𝑚𝑒, IAHU is converted into OAHU 

Submitting the condition into equation (2-25), the following can be obtained: 

 
𝛽𝑒,𝐼𝐴𝑄 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 −

𝜑
1 −𝜑

�1 −
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

� (
�1 − 𝛽𝑒,𝐼𝐴𝑄�(1− 𝜑)

𝜑
) (2-31)  

Further rearrange the above equation, we obtain: 

 
𝛽𝑒,𝐼𝐴𝑄 = 1 − 𝛽𝑖 �

1 − 𝛽𝑒,𝐼𝐴𝑄,𝑑

𝛽𝑖,𝐼𝐴𝑄
� (2-32)  

The relationship between βi and βe,IAQ is a line with a smaller slope compared to 

the previous one, which means, with the same βi, βe,IAQ of the exterior zone is higher. 
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Figure 2-11: OA intake for OAHU 

By combining the analysis and comparing the four charts (Fig 2-8 to Fig 2-11), it 

is easy to see that, with the same interior zone OA intake ratio, βi, the required OA intake 

for the exterior zone βe,IAQ decreases with an increasing air recirculation from the interior 

zone γ.  This point is important in determining the control algorithm for an IAHU system. 
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It is possible that, in a real application where even the interior zone OA intake βi 

is 100% without any direct relief, the exterior zone still requires individual OA intake 

through its AHU when the interior zone airflow rate ratio φ is too low. 

Under this extreme circumstance, equation (2-28) will be the following with 

𝛽𝑖 = 1 and 𝛽𝑒,𝐼𝐴𝑄 = 0 as the boundaries: 

 
𝛽𝑒,𝐼𝐴𝑄,𝑑 −

𝜑
1 − 𝜑

�1 − 𝛽𝑖,𝐼𝐴𝑄� +
𝛿𝜑

1 − 𝜑
�1 − 𝛽𝑖,𝐼𝐴𝑄� = 0 (2-33)  

Reorganize the equation, 

 
𝛽𝑒,𝐼𝐴𝑄,𝑑 −

(1 − 𝛿)𝜑
1 − 𝜑

�1 − 𝛽𝑖,𝐼𝐴𝑄� = 0 (2-34)  

Solving for φ, and we find: 

 
𝜑𝑐𝑟 =

𝛽𝑒,𝐼𝐴𝑄,𝑑

𝛽𝑒,𝐼𝐴𝑄,𝑑 + (1 − 𝛿)(1 − 𝛽𝑖,𝐼𝐴𝑄)
 (2-35)  

2.2.3  Energy considerations for IAHU 

The objective of IAHU is to lower the thermal energy consumption and ensure an 

acceptable or even improved IAQ by optimizing the building OA intake and allocation. 

The cost function of thermal energy consumption for cooling and heating the 

building with two AHUs can be expressed as: 

 𝐸𝑡ℎ𝑚 = 𝐸𝑖,ℎ𝑐 + 𝐸𝑖,𝑐𝑐 + 𝐸𝑖,𝑟ℎ + 𝐸𝑒,ℎ𝑐 + 𝐸𝑒,𝑐𝑐 + 𝐸𝑒,𝑟ℎ (2-36)  

where, the individual components for both zones are: 

 𝐸ℎ𝑐 = max (0,𝑚(ℎ𝑐 − ℎ𝑚𝑖𝑥)) (2-37)  
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 𝐸𝑐𝑐 = max (0,𝑚(ℎ𝑚𝑖𝑥 − ℎ𝑐)) (2-38)  

 𝐸𝑟ℎ = max (0,𝑚(ℎ𝑠 − ℎ𝑐)) (2-39)  

To facilitate the interpretation, Fig 2-12 gives the system configuration with 

thermal components included: 

T

OO hT , mixmix hT ,

rr hT ,

HC CC

CC hT ,

RH

SS hT ,

 

Figure 2-12: Thermal components of a typical AHU 

For a real building operation, this is a varying constrained optimization problem. 

First of all, the OA ratio should always be no less than the minimum in non-

economizer seasons as deduced in the previous section.  

 𝛽𝑖 ∈ [𝛽𝑖,𝐼𝐴𝑄 , 1] (2-40)  

 𝛽𝑒 ∈ [max (𝛽𝑒,𝐼𝐴𝑄, 0),1] (2-41)  

In swing seasons, if a zone is operating in cooling mode, it is likely that more than 

IAQ required OA should be introduced into the space.  The economizer OA intake can be 

simply deduced from: 

 (1 − 𝛽𝑒𝑐𝑜)𝑇𝑟 + 𝛽𝑒𝑐𝑜𝑇𝑜𝑎 = 𝑇𝑐 (2-42)  

That is: 
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𝛽𝑒𝑐𝑜 =

𝑇𝑟 − 𝑇𝑐
𝑇𝑟 − 𝑇𝑜𝑎

 (2-43)  

The economizer OA intake constraints for the zones are: 

 𝛽𝑖 ∈ [𝛽𝑖,𝑒𝑐𝑜 , 1] (2-44)  

 𝛽𝑒 ∈ [𝛽𝑒,𝑒𝑐𝑜, 1] (2-45)  

The economizer constraints can only be applied when the corresponding supply 

air temperature satisfies the system’s minimum airflow rate without trigging on reheating.  

For a large system, due to the zones’ diversity, an economizer is an idealized cooling 

dominant operation.  For example, in a perimeter zone CAV, it is obvious that there is no 

clear cut βeco unless the supply air temperature is continuously adjusted according to the 

real load. 

In addition, there is another constraint on the supply air temperature.  In order to 

maintain the RA humidity, the supply air humidity ratio in cooling mode should not be 

higher than that of the RA.  In other words, the air temperature should not be higher than 

the RA design dew point in cooling mode. 

 𝑇𝑐 < 𝑇𝑟,𝑑𝑒𝑤 (2-46)  

The system thermal energy control strategy for an optimal consumption is highly 

related to the OA condition and OA intake. 

The following different scenarios are analyzed to obtain the operation strategy for 

IAHU: 
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A: 𝑇𝑜𝑎 ≤ 𝑇𝑖,𝑐 

B: 𝑇𝑖,𝑐 ≤ 𝑇𝑜𝑎 ≤ 𝑇𝑒,𝑐 

C: 𝑇𝑒.𝑐 ≤ 𝑇𝑜𝑎 ≤ 𝑇𝑟, dry 

D: 𝑇𝑒,𝑐 ≤ 𝑇𝑜𝑎 ≤ 𝑇𝑟, humid 

E: 𝑇𝑟 ≤ 𝑇𝑜,𝑎 

  

 

Winter or swing season 

 

           Summer 

A brief deduction for each scenario is provided below. 

The cost/objective functions, which are always non-negative, are defined in the 

sub domain of 0 ≤ 𝛾 ≤ 𝛽𝑖 ≤ 1 on (βi, γ) plane. 

A:

It is winter and OA is colder than the interior zone cold deck air temperature.  

Free cooling is available.  The possible components of thermal energy consumption 

include a heating and reheat.  The cost function can be rewritten as: 

 𝑇𝑜𝑎 ≤ 𝑇𝑖,𝑐 

 𝐸𝑡ℎ𝑚 = 𝐸𝑖,ℎ𝑐 + 𝐸𝑖,𝑟ℎ + 𝐸𝑒,ℎ𝑐 + 𝐸𝑒,𝑟ℎ (2-47)  

Referring to the above system drawing and notes, the heating energy for the 

interior zone is: 

 𝐸𝑖,ℎ𝑐 = 𝑚𝑖𝐶𝑝(𝑇𝑖,𝑐 − 𝑇𝑖,𝑚𝑖𝑥) (2-48)  

The reheat, if there is any, is: 

 𝐸𝑖,𝑟ℎ = 𝑚𝑖𝐶𝑝�𝑇𝑠 − 𝑇𝑖,𝑐� (2-49)  

The mixed air temperature is a function of OA intake and, OA and RA 

temperature: 

 𝑇𝑚𝑖𝑥 = 𝑇𝑜𝑎𝛽 + (1 − 𝛽)𝑇𝑟 (2-50)  

Combining equation (2-50), (2-49) and (2-48), we obtain: 
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𝐸𝑖,𝑟ℎ = 𝑚𝑖𝐶𝑝�𝑇𝑖,𝑐 − 𝑇𝑟� +𝑚𝑖𝐶𝑝𝛽𝑖(𝑇𝑟 − 𝑇𝑜𝑎) + 𝑚𝑖𝐶𝑝(𝑇𝑠 − 𝑇𝑟)

+ 𝑚𝑖𝐶𝑝�𝑇𝑟 − 𝑇𝑖,𝑐� 
(2-51)  

It is known that the third term in equation (2-51) is the zone load, and the first 

term cancels out the last term.  Therefore, the final expression of reheat is: 

 𝐸𝑖,𝑟ℎ = 𝑚𝑖𝐶𝑝𝛽𝑖(𝑇𝑟 − 𝑇𝑜𝑎) − 𝐿𝑜𝑎𝑑𝑖 (2-52)  

where Loadi is an absolute value. 

The same deduction holds for the perimeter zone but the load is a heating load.  

Thus, the final thermal energy consumption of the entire system is: 

𝐸𝑡ℎ𝑚 = 𝑚𝑖𝐶𝑝𝛽𝑖(𝑇𝑟 − 𝑇𝑜𝑎) − 𝐿𝑜𝑎𝑑𝑖 + 𝑚𝑒𝐶𝑝𝛽𝑒(𝑇𝑟 − 𝑇𝑜𝑎) + 𝐿𝑜𝑎𝑑𝑒 (2-53)  

To minimize the thermal consumption, we want the two terms with the OA ratio β 

to be minimized.  Since OA is the cooling source for the interior zone, βi is constrained 

and defined by the maximum of (2-40) and (2-44).  Therefore, the OA intake for the 

exterior zone is a dependent variable. 

The total amount of OA intake for the building is given as equation (2-54): 

 
𝑓 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑) − 𝛾𝜑 �1 −

𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

� + 𝜑 ∙ 𝛽𝑖 (2-54)  

It is easy to find that this function does not have extremum on the definition 

domain, since the discriminant is always zero for all points (B.Demidovich, 1989): 

 ∆= 𝐴𝐶 − 𝐵2 (2-55)  

where 𝐴 = 𝑓𝛾𝛾" , 𝐵 = 𝑓𝛾𝛽𝑖
"  and 𝐵 = 𝑓𝛽𝑖𝛽𝑖

" . 

Therefore, the extremum exists only at the boundary.  Meanwhile, the partial 

derivative on βi has a form as: 
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 𝜕𝑓
𝜕𝛽𝑖

= 𝜑�1 −
𝛾𝜑𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖
2 � (2-56)  

Since 𝛽𝑖 ≥ 𝛽𝑖,𝐼𝐴𝑄 and 𝛾 ≤ 𝛽𝑖, it is constantly positive and the extremum of the 

function is the lower boundary.  The partial derivative on γ is negative and has a form as: 

 𝜕𝑓
𝜕𝛾

= −𝜑 �1 −
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

� (2-57)  

The minimum is the point where βi takes the low boundary and γ takes the upper 

boundary. 

 𝛽𝑖 = max (𝛽𝑖,𝐼𝐴𝑄,𝛽𝑖,𝑒𝑐𝑜) (2-58)  

 𝛽𝑒 = max (𝛽𝑒,𝐼𝐴𝑄 , 0) (2-59)  

B:

In this scenario, the interior zone is in a cooling mode while the exterior zone in 

either a cooling or a heating mode.  The cost function is different: 

 𝑇𝑖,𝑐 ≤ 𝑇𝑜𝑎 ≤ 𝑇𝑒,𝑐 

 𝐸𝑡ℎ𝑚 = 𝐸𝑖,𝑐𝑐 + 𝐸𝑖,𝑟ℎ + 𝐸𝑒,ℎ𝑐 + 𝐸𝑒,𝑟ℎ (2-60)  

 𝐸𝑖,𝑐𝑐 + 𝐸𝑖,𝑟ℎ = 𝑚𝑖𝐶𝑝�𝑇𝑖,𝑚𝑖𝑥 − 𝑇𝑖,𝑐� + 𝑚𝑖𝐶𝑝�𝑇𝑖,𝑠 − 𝑇𝑖,𝑐� (2-61)  

 𝐸𝑒,ℎ𝑐 + 𝐸𝑒,𝑟ℎ = 𝑚𝑒𝐶𝑝�𝑇𝑒,𝑐 − 𝑇𝑒,𝑚𝑖𝑥� + 𝑚𝑒𝐶𝑝�𝑇𝑒,𝑠 − 𝑇𝑒,𝑐� (2-62)  

𝑇𝑚𝑖𝑥 is given by equation (2-50).  After the substitution and rearrangement, the 

cost function can be put as: 

𝐸𝑡ℎ𝑚 = (𝑇𝑟 − 𝑇𝑜𝑎)�𝑚𝑒𝐶𝑝𝛽𝑒 − 𝑚𝑖𝐶𝑝𝛽𝑖� + 2𝑚𝑖𝐶𝑝�𝑇𝑟 − 𝑇𝑖,𝑐� + 𝐿𝑜𝑎𝑑𝑒

− 𝐿𝑜𝑎𝑑𝑖 
(2-63)  

To minimize the thermal energy consumption, we should decrease the value of 

the first term, which means 𝛽𝑖 ↑,𝑎𝑛𝑑 𝛽𝑒 ↓.  This is beneficial to the entire system, 
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since the corresponding OA ratios for IAQ also have an inverse correlation in IAHU.  

Thus, we have the equivalent objective function: 

 
𝑓 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑) − 𝛾𝜑 �1 −

𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

� − 𝜑 ∙ 𝛽𝑖 (2-64)  

Similar to condition A, the extremum lies at the boundary instead of on the 

inside.  The partial derivatives on both variables are negative.  Therefore the upper 

boundary value on both βi and γ minimizes the energy consumption. 

 𝛽𝑖 = 1 (2-65)  

 𝛽𝑒 = max (𝛽𝑒,𝐼𝐴𝑄 , 0, �𝛽𝑒,𝑒𝑐𝑜, 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒�) (2-66)  

C & D:

In this condition, both zones are in a cooling mode.  It is possible that the OA 

enthalpy is higher than that of room air.  A dehumidification might be involved in the air 

conditioning process.  The thermal energy consumption is defined in terms of air 

enthalpy. 

 𝑇𝑒,𝑐 ≤ 𝑇𝑜𝑎 ≤ 𝑇𝑟 

The interior zone thermal energy consumption is: 

 𝐸𝑖,𝑡ℎ𝑚 = 𝑚𝑖�ℎ𝑖,𝑚𝑖𝑥 − ℎ𝑖,𝑐� + 𝑚𝑖�ℎ𝑖,𝑠 − ℎ𝑖,𝑐� (2-67)  

The exterior zone thermal energy consumption is given by a similar expression: 

 𝐸𝑒,𝑡ℎ𝑚 = 𝑚𝑒�ℎ𝑒,𝑚𝑖𝑥 − ℎ𝑒,𝑐� + 𝑚𝑒�ℎ𝑒,𝑠 − ℎ𝑒,𝑐� (2-68)  

The mixed air enthalpy for both AHUs is: 

 ℎ𝑚𝑖𝑥 = 𝛽ℎ𝑜𝑎 + (1 − 𝛽)ℎ𝑟 (2-69)  

Taking the interior zone for a deduction, we have: 
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 𝐸𝑖,𝑡ℎ𝑚 = 𝑚𝑖�𝛽ℎ𝑜𝑎 + (1 − 𝛽)ℎ𝑟 − ℎ𝑖,𝑐� + 𝑚𝑖�ℎ𝑖,𝑠 − ℎ𝑖,𝑐� (2-70)  

Since �ℎ𝑖,𝑠 − ℎ𝑖,𝑐� = �ℎ𝑖,𝑠 − ℎ𝑖,𝑟� + (ℎ𝑖,𝑟 − ℎ𝑖,𝑐), replacing the last term in the 

previous equation: 

𝐸𝑖,𝑡ℎ𝑚 = 𝑚𝑖�𝛽ℎ𝑜𝑎 + (1 − 𝛽)ℎ𝑟 − ℎ𝑖,𝑐� + 𝑚𝑖�ℎ𝑖,𝑠 − ℎ𝑟� + 𝑚𝑖�ℎ𝑟 − ℎ𝑖,𝑐� 

= 2𝑚𝑖�ℎ𝑟 − ℎ𝑖,𝑐� + 𝑚𝑖𝛽𝑖(ℎ𝑜𝑎 − ℎ𝑟) − 𝐿𝑜𝑎𝑑𝑖 
(2-71)  

A similar expression can be obtained for the exterior zone thermal energy 

consumption.  The total building thermal energy consumption under this condition is: 

𝐸𝑡ℎ𝑚 = 2𝑚𝑖�ℎ𝑟 − ℎ𝑖,𝑐� + 2𝑚𝑒�ℎ𝑟 − ℎ𝑒,𝑐� − 𝐿𝑜𝑎𝑑𝑖 − 𝐿𝑜𝑎𝑑𝑒 

+(ℎ𝑜𝑎 − ℎ𝑟)(𝑚𝑖𝛽𝑖 + 𝑚𝑒𝛽𝑒) 
(2-72)  

For C: dry air condition, we have ℎ𝑜,𝑎 ≤ ℎ𝑟, therefore, the last term is negative.  

This means the higher the OA intake, the less the energy consumption.  The equivalent 

objective function is: 

 
𝑓 = −𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑) + 𝛾𝜑 �1 −

𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

� − 𝜑 ∙ 𝛽𝑖 (2-73)  

This is an opposite function to that of condition A.  The upper boundary of βi and 

lower boundary γ gives the minimum. 

 𝛽𝑖 = 𝛽𝑒 = 1 (2-74)  

For D: humid air condition, we have ℎ𝑜,𝑎 ≥ ℎ𝑟.   

With conventional cooling coil dehumidification, to dehumidify mixed air and 

remove air moisture with a chilled water coil, the mixed air should be processed to the 

corresponding dew point of the calculated supply air point before being distributed into 
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the space.  A complication could occur in humid mild weather when the sensible load and 

latent load do not balance as illustrated in the psychrometric chart below.  The 

conditioned air needs to be reheated from point L to O in order to attain an acceptable RA 

status N in the diamond, or the space will be overcooled to N’.  Under this circumstance, 

a decoupled sensible load and latent load processing are desired.  The analysis for an 

optimum system operation is conducted briefly. 

ε
NOL

N'
Nd

Ld

100%

Relative humidity
ratio

Humidity
ratio

Temperature
 

Figure 2-13: Thermal process of partial load condition 

Equation (2-72) holds for the humid condition.  The controllable parts are 

recollected as below: 

𝑓 = 2𝑚𝑒�ℎ𝑟 − ℎ𝑒,𝑐� + (ℎ𝑜𝑎 − ℎ𝑟)(𝑚𝑖𝛽𝑖 + 𝑚𝑒𝛽𝑒) (2-75)  

During a normal operation in a system, the first term is a fixed value with a given 

supply airflow rate since ℎ𝑒,𝑐 is fixed by the RA dew point for the purpose of 
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dehumidification.  The total airflow rate is modulated to meet the building load.  It is easy 

to find that the minimum points exist at the low boundary of the two OA ratios, with  

𝛽𝑖 = 𝛽𝑖,𝐼𝐴𝑄, and correspondingly 𝛽𝑒 = 𝛽𝑒,𝐼𝐴𝑄,𝑑.  There is no controlled air transfer 

between the two zones.  IAHU is equivalent to TAHU. 

But when a partial load happens in humid mild weather, the following inequity 

exists: 

 
�ℎ𝑒,𝑠 = ℎ𝑟 −

𝐿𝑜𝑎𝑑𝑒
𝑚𝑒

� ≥ ℎ𝑒,𝑐 (2-76)  

In this condition, the airflow rate is first decreased to the minimum threshold.  If 

the sensible load keeps dropping after this point, a potential reheat is needed in the 

system which wastes energy to balance the load discrepancy.  The additional cost is 

likely to be eliminated if ℎ𝑒,𝑐 can be readjusted to cover the sensible load only.  This 

happens when βe decreases to zero and there is no latent load added on to the supply air.  

With this operation, the zone sensible load and latent load are decoupled. 

During such a decoupling process in IAHU, the first term in equation (2-75) 

decreases and the second term increases.  The evaluation of the question becomes a 

comparison of the savings and the cost in the two terms. 

The normalized energy saving from the first term is:  

 𝑓1 = 2�ℎ𝑒,𝑠 − ℎ𝑒,𝑐�(1 − 𝜑)  (2-77)  

And the extra energy cost of the second term, (ℎ𝑜𝑎 − ℎ𝑟)((𝑚𝑖𝛽𝑖 + 𝑚𝑒𝛽𝑒) −

(𝑚𝑖𝛽𝑖,𝐼𝐴𝑄 + 𝑚𝑒𝛽𝑒,𝐼𝐴𝑄,𝑑)), can be normalized as: 
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 𝑓2 = (ℎ𝑜𝑎 − ℎ𝑟)(𝜑𝛽𝑖 − 𝜑𝛽𝑖,𝐼𝐴𝑄 − (1 − 𝜑)𝛽𝑒,𝐼𝐴𝑄,𝑑) (2-78)  

In this operation, ℎ𝑒,𝑠 is determined by the real time sensible load in the 

conditioned exterior zone. 

The optimum can be found by comparing 𝑓1 and 𝑓2, but it increases the 

implementation complexity.  A reasonable simplification is needed. 

𝑓1 ≥ 𝑓2 is generally, if not always, true in humid mild weather, because the ratio 

term 2(1 − 𝜑) in 𝑓1,  is much bigger than the ratio term in 𝑓2, (𝜑𝛽𝑖 − 𝜑𝛽𝑖,𝐼𝐴𝑄 − (1 −

𝜑)𝛽𝑒,𝐼𝐴𝑄,𝑑).  In this operation mode, if there is no direct relief and exhaust air from the 

interior zone for simplification, the optimum points can be found by setting 𝛽𝑒,𝐼𝐴𝑄 in 

equation (2-25) to zero. 

 
𝛽𝑖 =

𝛾𝜑𝛽𝑖,𝐼𝐴𝑄
𝛾𝜑 − 𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑)

≅
𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑) + 𝛽𝑖,𝐼𝐴𝑄 ∙ 𝜑

𝜑
 (2-79)  

 𝛽𝑒 = 0 (2-80)  

When the required OA intake ratio is more than 30% (adjustable) of the supply 

airflow rate in the exterior zone, IAHU can be considered unfeasible.  When this 

happens, IAHU becomes TAHU. 

E:

Since the OA temperature is greater than the RA temperature, both zones are in a 

cooling mode.  In most climates and normal circumstances, the OA enthalpy is higher 

than that of RA.  A dehumidification is needed.  The analysis is identical to the one in 

condition D for humid weather. 

 𝑇𝑟 ≤ 𝑇𝑜𝑎 
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During a normal operation, the minimum points are the boundary for the two 

systems: 

𝛽𝑖 = 𝛽𝑖,𝐼𝐴𝑄 and 𝛽𝑒 = 𝛽𝑒,𝐼𝐴𝑄,𝑑. 

When the exterior zone sensible load is low in mild weather, a decoupling 

operation is desired to avoid unnecessary reheat.  Equations (2-79) and (2-80), and their 

analysis are applicable. 

To this point, a theoretic deduction of IAHU and its year round operation is 

presented.  Space ventilation and energy savings are considered to ensure the superior 

performance after the conversion of TAHU.  This brings in benefits beyond the normal 

interior zone and exterior zone TAHU by synergizing the AHUs when proper conditions 

occur.  Excessive heating and reheat in a conventional operation can be reduced largely 

by shifting the internal heat gain or decoupling latent load from sensible load processing. 

The operation of IAHU is collected in the following table: 

Table 2-1: IAHU operation scenarios 

No. 𝑇𝑜𝑎 Condition Interior OA Exterior OA 

A 𝑇𝑜𝑎 ≤ 𝑇𝑖,𝑐 𝛽𝑖 = max (𝛽𝑖,𝐼𝐴𝑄 ,𝛽𝑖,𝑒𝑐𝑜) 
𝛽𝑒 = 

max (𝛽𝑒,𝐼𝐴𝑄, 0) 

B (𝑇𝑖,𝑐 ,𝑇𝑒,𝑐] 𝛽𝑖 = 1 
𝛽𝑒 = 

max (𝛽𝑒,𝐼𝐴𝑄, 0,𝛽∗𝑒,𝑒𝑐𝑜) 

C 
(𝑇𝑒,𝑐 ,𝑇𝑟], 

ℎ𝑜,𝑎 < ℎ𝑟 
𝛽𝑖 = 1 𝛽𝑒 = 1 

D 
(𝑇𝑒,𝑐 ,𝑇𝑟], 

ℎ𝑜,𝑎 ≥ ℎ𝑟 

mild 
weather 

𝛽𝑖 = 

�
𝛾𝜑𝛽𝑖,𝐼𝐴𝑄

𝛾𝜑 − 𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑)
� , �𝛽𝑖,𝐼𝐴𝑄� 

𝛽𝑒 = [0], �𝛽𝑒,𝐼𝐴𝑄,𝑑� 

normal 
operation 

𝛽𝑖,𝐼𝐴𝑄 𝛽𝑒 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 
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E 𝑇𝑟 < 𝑇𝑜𝑎 

mild 
weather 

𝛽𝑖 = 

�
𝛾𝜑𝛽𝑖,𝐼𝐴𝑄

𝛾𝜑 − 𝛽𝑒,𝐼𝐴𝑄,𝑑 ∙ (1 − 𝜑)
� , �𝛽𝑖,𝐼𝐴𝑄� 

𝛽𝑒 = [0], �𝛽𝑒,𝐼𝐴𝑄,𝑑� 

normal 
operation 

𝛽𝑖,𝐼𝐴𝑄 𝛽𝑒 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 

* if applicable 

As shown in the deduction and the table above, knowledge the supply air flow 

rate, outside air intake, airflow distribution, as well as the switching points is critical to 

IAHU systems, especially for a VAV based AHU system.  In a real building, the 

information has rarely been utilized other than as an equipment status indicator. 

In the following chapter, the system variables and control algorithm, as well as 

the implementation methodology, are further analyzed in detail.  The control algorithm is 

later adopted in a simulation for a government office building in Omaha to, 

1. Investigate the implementation details involved in an IAHU operation; 

2. Illustrate the methodologies to attain the airflow rate related parameters;  

3. Verify the new conservative office building HVAC system approach.
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Chapter 3 IAHU Control Algorithm and Implementation 

IAHU is introduced in Chapter 2 to improve conventional TAHU for energy 

conservation.  It evolves from OAHU with considerations on less retrofitting and more 

feasible control algorithms.  No additional physical duct work connection is required in 

an IAHU system.  The conditioned indoor air is manipulated and reallocated within the 

space between the two individual AHUs.  The operation scenarios are also simplified to 

an applicable level. 

To fulfill the benefits of converting a TAHU system into IAHU, there are two 

issues to be solved before we implement the control: 

1. Among the variables, what is the relationship between the independent 

variables? How are they decided and in what sequence? 

2. How do we obtain the variables during a normal operation? 

3.1  Variable analysis 

There are five critical independent variables in the deduction of an IAHU 

operation: βe (βe,IAQ,d, βi,IAQ, φ, βi, γ).  When the system is operated in an economizer 

mode, two more OA ratio variables, βi,eco and βe,eco, should be considered as the 

constraints.  In addition, a feasible OA intake to the interior zone in mild weather should 

be defined to enable thermal decoupling operations.  All of the variables are normalized 

to be airflow rate ratios for IAHU deduction and theory analysis.  In a real application, 

knowledge the absolute airflow rate values is important because the ratios are calculated 

based on these quantities. 

βe,IAQ,d and βi,IAQ: 
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βe,IAQ,d and βi,IAQ are the OA intake ratios in the exterior zone and the interior zone 

respectively.  The two variables are defined for the purpose of removing indoor 

contaminants and ensure an acceptable IAQ when the AHUs operate separately as a 

TAHU system.  They are generally regarded as design constants with a fixed value, for 

example 10% or 15%.  In real applications, the amount of OA intake can be ensured by 

installing an airflow rate station in the OA duct; or, more commonly, a fixed minimum 

OA damper openness is arbitrarily assigned. 

 In a real building, since the building occupancy varies, the flow rate of required 

ventilation air is actually also a changing variable, as is the OA ratio in a CAV operation.  

For a VAV TAHU, although the airflow rate changes along with the occupancy, the OA 

ratio to maintain an acceptable IAQ can be considered as a constant.  The reason for this 

is that the occupants and their activities in buildings create not only thermal load which 

influences the total airflow rate but also create demands for ventilation air.  Building 

occupancy was found to have a linear proportional relationship to the difference between 

the real time energy consumption on the lighting and equipment, and the minimum value 

of the consumption (Abushakra and Knebel, 2008). 

One of IAHU system’s advantages over the conventional TAHU system is that 

the interior zone air can be re-circulated to the exterior zone because of the freshness.  In 

winter, the heat that is required in a TAHU system to warm up the cold OA is saved in an 

IAHU system.  In summer, cooling energy that is needed to remove the moisture in the 

humid OA can also be saved in an IAHU system by decoupling the sensible and latent 

loads. 
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Therefore, for a given occupancy and OA condition, βe,IAQ,d also defines the 

quantity of thermal energy needed to process the OA intake in a TAHU system.  This 

thermal energy consumption might be saved by converting it into an IAHU system.  βi,IAQ 

does not have a direct impact on the system’s energy saving capacity after transforming a 

TAHU into an IAHU system; however, it does lay out the low limit for βi,eco in winter 

free cooling mode. 

In a real time operation of IAHU, when the OA latent load is shifted from the 

exterior zone to the interior zone, the two variables, along with the two zone airflow 

ratios (φ and (1- φ)), jointly determine the feasibility of the conversion.  The overall 

cooling demand might be beyond the cooling capacity of the cooling coil in the interior 

zone AHU.  Under this circumstance, part of the OA for the exterior zone should be 

introduced directly from the AHU serving the exterior zone, or the system must be kept 

as a TAHU system. 

Both variables are included in the expression for the exterior zone’s OA intake in 

IAHU.  The derivatives of the variables are given as below: 

 
𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝛽𝑒,𝐼𝐴𝑄,𝑑
= 1 (3-1)  

 
𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝛽𝑖,𝐼𝐴𝑄
=

𝛾𝜑
(1 − 𝜑)𝛽𝑖

 (3-2)  

It can be seen that the derivatives of both variables are positive; therefore these 

variables have a positive correlation with βe,IAQ.  In other words,  βe,IAQ increases if either 

of the two variables increases.  The value of the two variables sets the low limit for βe,IAQ. 
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In general, the two variables have the highest freedom in an IAHU operation since 

they interact with each other and are not influenced by the other three variables.  They are 

considered to be adjustable parameters in real project implementations.  High βIAQ creates 

a high demand on βi in an IAHU operation, which might make IAHU unsuitable.  

Therefore, if possible, it is recommended to reevaluate real time βIAQ when a building is 

partially occupied. 

βi,eco and βe,eco: 

When a zone is in a cooling mode, and the OA temperature is lower than the zone 

AHU cooling coil set point, OA can be directly mixed with the zone return air for cooling 

purposes.  The amount of OA intake for the economizer control is given by equation (2-

43).  The measurements of the OA temperature and RA temperature are needed to 

determine the value of the two variables. 

When the exterior zone is also in a cooling mode and the OA is cold enough to 

enable free cooling, an IAHU system is identical to a TAHU system.  Since cooling does 

not consume any thermal energy in this condition, it is not necessary to re-circulate air 

from the interior zone to the exterior zone and there is no energy savings by doing so.  

The purpose of OA intake is to satisfy both the thermal and respiratory needs of the 

exterior zone.  βe,eco only influences the OA intake ratio for the exterior zone and has no 

impact on the interior zone OA. 

βi,eco is jointly defined by the indoor thermal load of the interior zone and the OA 

temperature during a free cooling season.  When the OA temperature is low, OA is mixed 

with the return air and then supplied into the space.  For most OA temperatures and the 

same zone cooling load, βi,eco is greater than βi,IAQ.  Fig 3-1 shows that, even when the OA 
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temperature drops to 0°F degree, the OA ratio is above 0.25.  This provides extra credit to 

the freshness of the interior zone air in winter, so that it can be circulated into the exterior 

zone for ventilation. 

 
Figure 3-1: OA ratio for economizer 

With a relatively constant thermal load in the interior zone, it is possible to further 

save the fan power energy in IAHU with VFDs by reducing the supply air temperature 

until the fan airflow drops to a certain value (e.g. 50%).  The airflow rate and fan power 

consumption vs. the supply air temperature is plotted in Fig 3-2.   

 
Figure 3-2: Normalized airflow and power consumption with different SA temp 
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When the supply air temperature decreases from 55°F to 50°F in a free cooling 

mode, the supply airflow rate is about 85% of that in a normal operation, and the power 

consumption could be reduced by about 40%.  At 46°F, the fan power can be saved by 

60%.  If the diffusers do not draft the air, a reasonably low SA temperature in winter is 

beneficial to an IAHU system. 

βi,eco and βe,eco work as constraints in the setting of βe,IAQ.  The real time desired 

value of the two variables is calculated based on the measurements of air temperature 

sensors.  The actual value can be further verified by using an airflow station on the OA 

side and FAS on the fans.  The two variables are independent to other variables in IAHU, 

and they only appear and need concerns in cold winter. 

𝝋 and airflow rate: 

In IAHU, the exterior zone OA intake ratio is defined by equation (2-25) for IAQ 

consideration.  In the expression, the interior zone supply airflow rate ratio, φ, is included 

as one of the most important variables.  The value of φ has a dynamic impact on the real 

time OA ratio βe,IAQ. 

The interior zone airflow influences the feasibility of re-circulating air from the 

interior zone to the exterior zone.  Unlike the other variables in the optimized exterior 

zone OA intake ratio expression, it generally cannot be arbitrarily manipulated.  The 

absolute value is jointly determined by the zone thermal load and the supply air 

temperature.  The supply airflow rate, as well as the ratio, is a dependent variable in the 

thermal process of IAHU. 
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As an airflow rate ratio, φ is influenced by two airflow rates: that of the interior 

zone and that of the exterior zone.  The air conditioning mode of the interior zone is 

determined mainly by the internal load, which might be regarded as a constant cooling 

source.  The exterior zone is highly influenced by the OA temperature.  Therefore, the 

airflow ratio qualitatively has the trend to decrease when the OA temperature increases in 

summer.  In winter, the airflow ratio decreases with a small slop when the OA 

temperature drops. 

The derivative of the equation (2-25) over φ is given in equation (3-3): 

 𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝜑
= (

𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

− 1)
𝛾

(1 − 𝜑)2 (3-3)  

From the expression, it can be seen that the value is usually negative since βi  is 

generally greater than βi,IAQ  in an IAHU system.  Therefore, φ has an inverse correlation 

with βe,IAQ.  In other words, with given value of the other variables, a higher value φ gives 

a lower value βe,IAQ. 

Fig 3-3 illustrates the change pattern of βe,IAQ and φ with arbitrary variables in two 

cases. 

Case 1:  βe,IAQ,d = 0.1, γ = 0.25, βi,IAQ = 0.1, βi = 0.3 

Case 2: βe,IAQ,d = 0.1, γ = 0.4, βi,IAQ = 0.1, βi = 0.5 

With Case 1, when the supply airflow ratio is 0.4 or more, there is no direct OA 

intake requirement on the exterior zone to satisfy the IAQ.  If the OA intake to the 

interior zone is higher than 0.5, the minimum supply airflow ratio is less than 0.25. 
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Figure 3-3: Exterior zone OA ratio for two cases 

With the arbitrarily picked value for the variables, βe,IAQ decreases and becomes 

negative when the interior zone airflow is high (i.e. 0.4 in case 1).  That means more than 

the needed amount of fresh air is circulated into the exterior zone.  In a real operation of 

IAHU, a tradeoff evaluation between the ventilation and energy savings should be 

conducted to decide the allocation ratio γ.  When the air quality constraint is satisfied, 

indoor air should only be re-circulated across the zones if it brings in more energy 

benefits.  This situation happens in winter when more recirculation air can bring both 

freshness and heat from the interior zone to the exterior zone.  This point will become 

clear in the control algorithm analysis. 

In summary, φ is an important independent variable in deciding βe,IAQ.  It cannot 

be arbitrarily selected unless it is necessary and proper to bring in energy savings.   With 

a given thermal load, it also results in a corresponding change of the supply air 
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temperature.  The airflow rate information should be obtained in a timely manner in an 

IAHU operation to ensure the exterior zone is properly ventilated with enough OA. 

βi and γ: 

These two are the most critical variables in the operation of an IAHU system.  

They have the highest freedom of value adjustment and are naturally correlated with the 

relation 0 ≤ 𝛾 ≤ 𝛽𝑖 ≤ 1.  In other words, they constrain mutually for each other.  To 

obtain an acceptable IAQ of the exterior zone, we can either re-circulate more air from 

the interior zone with a given OA intake (βi→, γ ↑), or keep the re-circulation but take 

more OA (γ→, βi ↑). 

The derivative of βi has been studied in the last chapter for several different 

operations.  The common expression is: 

 𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝛽𝑖
= −

𝛾𝜑
(1 − 𝜑)

𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

2  (3-4)  

The negative derivative means that βi is inversely correlated to βe,IAQ.  Since, in 

most mechanical heating/cooling seasons, the OA intake consumes energy, less OA is 

generally desired if the IAQ can be maintained with that amount of OA.  In winter, 

because the interior zone has a constant cooling load in most office buildings, the OA 

intake is determined by the interior zone thermal load instead of an IAQ ventilation 

requirement.  Under this circumstance, βi evolves to βi,eco, which is generally higher than 

βi,IAQ as is illustrated in Fig 3-1 for different OA temperatures based on equation (2-43). 

In IAHU, to ensure the IAQ in both zones, βIAQ for the interior zone is improved 

since the ventilation air must also be re-circulated into the exterior zone.  With 10%, 15% 
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and 20% OA intake ratios for the two zones in a conventional TAHU system, the 

combined OA ratio in an IAHU operation is plotted in Fig 3-4.  The plot shows that, by 

using IAHU and with OA being introduced from the interior zone only, βIAQ could be 

much greater than the design ratio. 

As analyzed in Chapter 2, IAHU saves building thermal energy consumption by 

shifting the OA intake into part of the AHUs under certain circumstances.  The most 

appropriate situation happens in winter when the exterior zone needs heating while the 

interior zone needs cooling, and in summer when there is an unbalanced sensible load 

and latent load in the exterior zone.  For winter applications, OA is beneficial but 

constrained by the interior zone thermal cooling load.  For summer applications, OA is 

not welcome but needed for ventilation. 

 
Figure 3-4: Interior zone OA ratio with different βIAQ 

The OA intake ratio βi has a mutual dependency on the airflow ratio (γ) re-

circulated from the interior zone to the exterior zone as illustrated in the last section for 

different scenarios. 
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The derivative of βe,IAQ on γ has the following expression: 

 𝜕𝛽𝑒,𝐼𝐴𝑄

𝜕𝛾
= (

𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

− 1)
𝜑

(1 − 𝜑)
 (3-5)  

It can be seen that the derivative is always negative since βi is greater than βi,IAQ in 

IAHU.  This means that βe,IAQ decreases when γ increases.  It is easy to understand from 

physics that more re-circulated fresh air from the interior zone naturally reduces the 

direct OA demand through the exterior zone AHU. 

In the previous chapter, most concerns were placed on the IAQ related deduction 

with a symbolic γ.  In an IAHU system, the re-circulated air extracted from the interior 

zone to the exterior zone is of a given value.  The amount of air from the interior zone is 

allocated through the return air fan and the exhaust fan of the exterior zone. 

 
Figure 3-5: Minimum recirculation air ratio with different βi 
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With equation (2-25), if we assume βe,IAQ is zero, we obtain the following 

relationship between γ and βi:  

 
𝛾 =

(1 − 𝜑)𝛽𝑒,𝐼𝐴𝑄,𝑑

(1 −
𝛽𝑖,𝐼𝐴𝑄
𝛽𝑖

)𝜑
 (3-6)  

With βe,IAQ,d = βi,IAQ = 0.15, Fig 3-5 depicts γ and βi based on equation (3-6). 

With a given interior zone airflow rate ratio φ, when the OA intake ratio of the 

interior zone is small (βi ≤ 0.4, for example), the recirculation air ratio γ increases quickly 

in order to attain an acceptable IAQ in the exterior zone if βi decreases.  If γ increases into 

the infeasible area (γ ≥ βi), an IAHU system has to take at least part of the OA directly 

from the exterior zone AHU to satisfy the IAQ. 

In an IAHU winter operation, since the RA temperature is suggested to be six 

Fahrenheit degrees (adjustable) higher than that of the exterior zone, when it is proper, a 

larger γ provides more thermal energy savings recovered from the interior zone to the 

exterior zone.  However, γ has to be constrained in the range γ ≤ βi.  When the OA 

temperature drops, both variables and the heat transfer capability, decrease.  The trend 

roughly follows that of βeco. 

An amount of air with the ratio η·(1-φ) is later exhausted from the exhaust fans in 

the exterior zone to balance the amount of re-circulated air that comes from the interior 

zone.  Part of this air, γ·φ - η·(1-φ), goes through the return fan.  Concern arises only if 

the exhaust fan of the exterior zone cannot remove the additional air, and there is a 

significantly more power consumption added to the RA fan.  The influence of additional 

return fan power consumption is considered in the control algorithm section for a 
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reasonable balance but it is not critical in thermal energy analysis, as generally the power 

consumption of a return air fan is much smaller than that of a supply air fan; the return 

fan power of the interior zone decreases at the same time; and the additional power usage 

is beneficial in winter to the exterior zone. 

Feasible βi for thermal decoupling in mild weather: 

In the deduction of IAHU operation during summer partial load, it has been stated 

that shifting OA intake might not save energy in conditions D and E.  Introducing a 

partial load ratio, 𝜇 = ℎ𝑟−ℎ𝑒,𝑠
ℎ𝑟−ℎ𝑒,𝑐

, the normalized cost function of IAHU, combining equation 

(2-77) and (2-78), is: 

 𝑓 = (ℎ𝑜𝑎 − ℎ𝑟)�𝜑𝛽𝑖 − 𝜑𝛽𝑖,𝐼𝐴𝑄 − (1 − 𝜑)𝛽𝑒,𝐼𝐴𝑄,𝑑�

− 2�ℎ𝑟 − ℎ𝑒,𝑐�(1 − 𝜇)(1− 𝜑) 
(3-7)  

Correspondingly, with all other variables defined, βi should satisfy the following 

equation to avoid a positive additional cost: 

 𝛽𝑖,𝑒𝑛𝑔 ≤ 

 
2�ℎ𝑟 − ℎ𝑒,𝑐�(1 − 𝜇)(1 − 𝜑) + (ℎ𝑜𝑎 − ℎ𝑟)(𝜑𝛽𝑖,𝐼𝐴𝑄 + (1 − 𝜑)𝛽𝑒,𝐼𝐴𝑄,𝑑)

(ℎ𝑜𝑎 − ℎ𝑟)𝜑
 

(3-8)  

It can be seen that with no air relieved or exhausted from the interior zone, 

equation (3-8) holds true unless it violates any other mechanical constraints.  The 

circulated air is preferred to be less than 30% (the ratio x is adjustable) of the exterior 

zone total airflow rate.  Therefore, a realistic OA intake ratio for the interior zone in 

conditions D and E takes the constraint: 
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𝛽𝑖 = 𝛽𝑖,𝑚𝑖𝑛 ≤

𝑥(1 − 𝜑)
𝜑

 (3-9)  

where 𝛽𝑖,𝑚𝑖𝑛 = 𝛽𝑒,𝐼𝐴𝑄,𝑑(1−𝜑)+𝛽𝑖,𝐼𝐴𝑄𝜑
𝜑

. 

The chart is plotted below for x= 0.35: 

 

Figure 3-6: Feasible βi with different φ, x= 0.35 

The feasibility of IAHU thermal decoupling in mild weather depends on the real 

time interior zone supply airflow rate ratio and circulation capability between the two 

zones.  For example, when the interior zone airflow ratio is 0.6 and the minimum OA 

intake for both zones is equal to or above 0.15, IAHU is not suitable to decouple the 

thermal load.  For TAHUs, there are minimum interior zone supply airflow ratios where 

the corresponding βIAQ in IAHU is 1.  If the interior zone air ratio drops to lower than the 

critical points, summer thermal decoupling is not feasible either. 
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The chart also partially provides the information about the difference between 

IAHU and OAHU in terms of feasibility and capability.  Take βIAQ = 0.15, for instance, 

when the interior zone supply airflow ratio is higher than 0.58, an OAHU system 

surpasses an IAHU system for mild weather thermal decoupling.  And in winter, the heat 

transfer ability could be impaired in an IAHU when βi is lower than 0.3, which happens 

when the OA temperature is lower than 10°F.  The lower the interior zone supply airflow 

ratio, the closer an IAHU system is to an OAHU system. 

3.2  Control algorithm and implementation 

In the previous deduction, the variables are normalized into ratios.  The number of 

AHUs in an office building is also simplified into two AHUs: one for the interior zone 

and one for the exterior zone.  In a real project, there could be different AHU-to-zone 

relationships and the utilization of IAHU should consider all possible constraints.  A 

proper control of IAHU requires knowledge of all the related variables.  This section 

deals with the general control algorithm and implementation guidelines for IAHU. 

 The table below summarizes the variables and some main operation points in 

IAHU: 

Table 3-1: Collection of IAHU variables 

Item Ratio Quantity Obtaining Means Info 

1 µi Ni f (time, day) Occupancy of the interior zone 

2 µe Ne f (time, day) Occupancy of the exterior zone 

3 βi,IAQ Qi,IAQ f (µi ,Ni, mi) Originally required OA intake for 
the interior zone 

4 βe,IAQ,d Qe,IAQ,d f (µe, Ne, me) Originally required OA intake for 
the exterior zone 
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5 βi,eco  
 

Qi,eco f (Ti,r, Ti,c, Toa, mi, Loadi) Economizer OA intake for the 
interior zone 

6 
 

βe,eco  
 

Qe,eco f (Te,r, Te,c, Toa, me, Loade) Economizer OA intake for the 
exterior zone 

7 φ mi f (m, Ti,c, Loadi) Interior zone airflow 

8 1- φ me f (m, Te,c, Loade) Exterior zone airflow 

9 βi Qi f (βi,IAQ, βe,IAQ,d, γ, φ, mi) OA intake from the interior zone 

10 γ Qcir f (βi, βi,IAQ, βe,IAQ,d, φ, mi) Recirculation air from the interior 
zone to the exterior zone 

11 ξ Qi,ref f (βi, γ, δ, mi ) Relief air from the interior zone 

12 δ Qi,exh f (βi, γ, mi) Exhaust air from the interior zone 

13 η Qe,exh f (βe, γ, mi, me) Exhaust air from the exterior zone 

14 Toa, Ti,r, Te,r measurement OA and room air temperature 

15 Ti,c, Te,c define and calculate Control cold deck temperature 

16 VFD, VFDe,min, 
VFDi,min, me,d 

measurement and design 
information 

Variable frequency drive and 
exterior zone designed airflow rate 

 
The AHUs in an IAHU system could be either CAV or VAV.  In a CAV system, 

there is no VFD installed.  To accommodate varying loads, the supply air temperature is 

adjusted.  The distribution of the air is accomplished by modulating the dampers and the 

number of exhaust fans.  Because the redistribution of air between the interior zone and 

the exterior zone is mainly between the two return fans, the operation of the supply fans 

will not be modified.  The supply air temperature of the AHUs in an IAHU system is 

subject to the same algorithm used in a CAV based TAHU system.  Airflow meters are 

needed to monitor the corresponding airflow rate info on the outlets of the duct work.  

The details will be covered in Chapter 4 for IAHU evaluation. 

In a VAV system, VFDs are installed on all, or at least most, of the AHU fans.  

The modulation of VFDs on the return fans is mainly utilized to achieve the air 

distribution among the AHUs and across the building.  The dampers are supportive to the 
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VFD modulation.  Fan Airflow Station® (FAS) developed by the Energy Systems Lab 

(ESL) at the University of Nebraska-Lincoln is to be implemented for more accurate and 

reliable monitoring on airflow rates.  Additional airflow meters are recommended on the 

OA inlets of AHUs.  The exhaust fans are controlled to support the IAHU operation. 

3.2.1 Airflow measurements 

The critical variables, especially the ratios, in IAHU require knowledge of the 

airflow rates for the interior zone and the exterior zone.  The building air is guided to 

flow from the interior zone to the exterior zone and then to the outdoor.  The pressure 

gradient is achieved by maintaining the airflow rates and their differences. 

 Airflow rate measurement in HVAC may be obtained by measuring the velocity 

or the air stream dynamic pressure.  The velocity is then configured onsite with the 

coefficients set to account for the duct area and installation influence to obtain the 

volumetric information of airflow.  The preferred method of measuring duct volumetric 

flow is the pitot-tube traverse average (ASHRAE handbook, ch37, 2007).  Other 

supplementary measures can be made based on CO2 concentration or energy balance for 

mixture plenums when the air quantities cannot be determined accurately by volumetric 

measurements.   

An FAS utilizes the fan laws to establish the pre-determined relationship of fan 

head and fan airflow rate under a given fan speed (Liu et al, 2005).  If the fan curve is flat 

in the range of airflow, the fan power consumption and fan speed can be used to access 

the actual fan airflow rate (Wang and Liu, 2007).  The application process of developing 

an FAS is briefly described here. 
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Figure 3-7: Typical fan performance curve 

A fan performance curve shows the relationship between the quantities of air 

delivered by a fan and the pressure generated at various air quantities.  The curve also 

shows the power consumption of a given quantity of airflow.  The total fan head or fan 

power can be regressed as a function of the airflow rate using the design fan performance 

curve.  A typical fan performance curve is illustrated in Fig 3-7 (ASHRAE handbook, 

ch20, 2008). 

The methods to obtain a fan curve at full speed by applying different system 

resistance are illustrated in the diagram below (ASHRAE handbook, ch20, 2008): 
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Figure 3-8: Fan curve measurement process 

The fan laws relate the performance variables of any dynamically similar series of 

fans.  The variables are fan size, rotational speed, gas density, volume airflow rate, 

pressure, power and mechanical efficiency.  The basic set of theoretical fan law for the 

same size fan is given below: 

Table 3-2: Basic set of fan laws 

Law No. Dependent Variables  Independent Variables 

1a 

1b 

1c 

CFM1 = CFM2 

H1 = H2 

W1 = W2 

X 

X 

X 

(N1/N2) 

(N1/N2)2 ρ1/ ρ2 

(N1/N2)3 ρ1/ ρ2 

Both the fan head-based and the fan power-based FAS utilize the fan curves and 

fan laws to regress the airflow rate. 

Assume the fan head-airflow curve can be expressed using a second order 

polynomial equation under the full speed for the total fan head and fan power 

respectively: 
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 𝐻 = 𝑎0 + 𝑎1𝐶𝐹𝑀 + 𝑎2𝐶𝐹𝑀2 (3-10)  

Combining fan law (1b) and the second order polynomial equation (3-7), for a 

partial speed N2, the following equations hold: 

 𝜔 =
𝑁2
𝑁1

 (3-11)  

 𝐻 =
𝐻𝜔

(𝑁𝜔 𝑁1� )2
= 𝐻𝜔

𝜔2�  
(3-12)  

 
𝐶𝐹𝑀 =

𝐶𝐹𝑀𝜔

(𝑁𝜔 𝑁1� )
= 𝐶𝐹𝑀𝜔 𝜔�  

(3-13)  

Placing equation (3-10) and (3-11) into equation (3-7), the fan head in a partial 

speed expresses the following: 

 
𝐻𝜔 = 𝜔2(𝑎0 + 𝑎1𝐶𝐹𝑀/𝜔 + 𝑎2(

𝐶𝐹𝑀
𝜔

)2) (3-14)  

The fan airflow rate at different fan rotation speeds can also be deduced as: 

 

𝐶𝐹𝑀𝜔 =
�−𝑎1 ± �𝑎12 − 4𝑎2(𝑎0 −

𝐻𝜔
𝜔2)�𝜔

2𝑎2
 

(3-15)  

In order to work, a fan curve based FAS requires the signals of the fan head 

across the fan and the fan rotational speed.  The fan head can be obtained by installing a 

probe or pitot-tube across the fan.  The fan speed is either obtained by utilizing a 

tachometer or based on fan VFD commands.  A linear relationship with a constant 

intercept is found in most applications.  Caution should be exercised when a VFD reaches 

the minimum percentage. 
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When the fan curve for the fan head and airflow rate is flat in a partial load, 

equation (3-13) might introduce a large error.  Under this circumstance, a fan power 

based FAS should be referred in order to obtain an accurate fan airflow rate.  Since fan 

power is difficult to measure, some assumptions have to be reasonably made to obtain the 

airflow rate. 

The power in a fan curve is the fan power input to the fan shaft (Wshf).  The fan 

power (W) in the fan law (1c) is the fan power to the air.  The actual curve should be 

adjusted by integrating the fan power curve and the fan efficiency curve (ηfan). 

 𝑊 = 𝑊𝑠ℎ𝑓𝜂𝑓𝑎𝑛 (3-16)  

The relationship of the various powers is illustrated below: 

VFD Motor Fan
fan power W=QH

based on basic fan law

WshfWmpower input

fanηmη  

Figure 3-9: Different powers in fan application 

Motor power is the power delivered into the shaft plus the motor losses. Three-

phase induction motors are widely used in HVAC systems.  For induction motors, based 

on motor theory, the motor losses can be expressed as a function of both the fan speed 

and the fan power.  The deduction is given in literature (Wang and Liu, 2007, Liu, 2006). 

The following equation correlates the required fan power to the measureable 

motor power and motor speed based on the motor theory: 

 𝑊𝑚 = (𝑊𝑠ℎ𝑓 + 𝑏𝜔3) + 𝑐 + 𝑑(𝑊𝑠ℎ𝑓 + 𝑏𝜔3)2 (3-17)  

where b, c, and d are factors determined by the motor size and configuration. 
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Solving for Wshf, we can obtain : 

 
𝑊𝑠ℎ𝑓 =

−1 + �1 − 4𝑑(𝑐 −𝑊𝑚)
2𝑑

− 𝑏𝜔3 (3-18)  

Assuming the fan power is a linear function of the fan airflow, combining fan law, 

we have the power expression: 

 𝑊 = 𝑘0𝜔3 + 𝑘1𝜔2𝐶𝐹𝑀 (3-19)  

Also assuming the fan efficiency curve is approximately linear at the operation 

range: 

 
𝜂𝑓𝑎𝑛 = 𝑙0 + 𝑙1

𝐶𝐹𝑀
𝜔

 (3-20)  

Combining the equation from (3-16) to (3-19), we have the power-based FAS: 

 

𝐶𝐹𝑀𝜔 =
𝑙0 �

−1 + �1 − 4𝑑(𝑐 −𝑊𝑚)
2𝑑 − 𝑏𝜔3� − 𝑘0𝜔3

(𝑘1 + 𝑏𝑙1)𝜔2 − 𝑙1
−1 + �1 − 4𝑑(𝑐 −𝑊𝑚)

2𝑑𝜔

 (3-21)  

3.2.2 Control flowchart 

In the deduction of the IAHU concept and algorithms, the supply air temperature 

and the supply airflow of each individual AHU are not specified.  The two variables are 

mainly determined by the zone load and the original TAHU system configuration.  They 

do not violate the analysis on the IAHU OA intake to achieve energy savings and an 

acceptable IAQ in both zones.  They can be viewed as the characteristics of an individual 

AHU system and are not changed because of a new IAHU operation.  Zone loads vary 

along with the space conditioning means and/or AO temperature.  For example, the 
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supply air temperature might be reset in winter when the zone load drops to a specified 

threshold.  The supply airflow rate could be constant in a CAV, or subject to a low limit 

in a VAV to ensure the air circulation. 

There are four main combinations of single duct air based systems in commercial 

buildings: 

1. CAV in both zones; 

2. CAV in the interior zone, VAV in the exterior zone;  

3. VAV in the interior zone, CAV in the exterior zone; 

4. VAV in both zones. 

Different types of AHUs have different limitations on the supply air temperature 

and supply airflow rate.  This could lead to slightly different control in an IAHU system 

because of the AHUs’ different features and the limitations they incur.  In an IAHU 

operation, the OA temperature should be used as one of the most important indexes in the 

control algorithm to categorize which scenario the IAHU system is running in.  This 

approach also matches the operation strategies of most office buildings and can be 

accepted by onsite facility engineers.  The partial load status of the exterior zone should 

also be well defined and monitored to support the categorization. 

The control algorithm of an IAHU system adds the OA intake and air distribution 

logic to the operational control of the original system. 

The following part specifies the control for the aforementioned four AHU 

combinations. 

 CAV in both zones: 
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Because of its low initial cost and simple controls, CAVs are still used in office 

buildings, mainly in small premises.  A CAV system accommodates the change of zone 

load by varying the supply air temperature or modulating terminal reheats to offset the 

change. 

The corresponding IAHU flowchart for a dual CAV can be generalized as: 

ciT , ceT ,Calculate &
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Figure 3-10: Main control algorithm for CAV in both zones 

The AHU cold deck temperatures are reset based on the zone load in the two 

CAVs.  The signal of terminal reheats (i.e. more than 20% of reheats are on), the return 

air temperature (i.e. 4°F less than the set point) and the duration (i.e. longer than 10 

minutes) can be utilized to assist the determination in the supervisory control. 
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Sub-routine 1 in Fig 3-10 mainly checks whether the circulation air is in the 

redefined limits of IAHU when the OA is favorable to the interior zone.  Exhaust fans 

and relief dampers remain off unless the air must be extracted directly from the interior 

zone.  The relief dampers are modulated for a proper value, as given in the chart, to 

maintain the desired recirculation airflow rate γ into the exterior zone. 
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Figure 3-11: Sub-routine 1 for CAV system 
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Figure 3-12: Sub-routine 2 for CAV system 
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Figure 3-13: Sub-routine 3 for CAV system 
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In sub-routine 2, the feasibility of an IAHU system is determined.  When it is not 

feasible due to the limit of the circulation airflow rate, an IAHU system is turned back 

into a normal TAHU system.  Otherwise, the exterior zone OA damper and modulate 

relief dampers should be shut off for proper building pressure.  Thermal decoupling will 

be triggered once the feasibility is verified. 

Sub-routine 3 specifies the control of the exterior zone AHU.  When a direct OA 

intake is needed, the exterior zone OA damper is modulated to satisfy the requirement.  

Otherwise, the OA damper should be closed.  The exhaust fans and relief dampers in the 

exterior zone are controlled to maintain building pressure and air distribution. 
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Figure 3-14: Main control algorithm for CAV + VAV 



 
92 

For a CAV + VAV combination, the exterior zone has the ability to adjust the 

supply airflow rate based on the real time zone thermal load.  Therefore, the airflow rate 

needs to be updated from time to time via the FAS.  The restriction on the air 

recirculation could be relaxed since there are VFDs installed on the supply and return 

fans. 

The main control algorithm updates the real-time supply airflow rate from the 

exterior zone FAS.  The cold deck temperature will not be reset in this VAV application 

unless it is needed to ensure the air circulation in the space when the supply airflow rate 

decreases to the minimum (i.e. 50%).  Fan power can be saved by around 90% with this 

practice.  The determination of the exterior zone partial load status in VAV can be made 

based on the supply fan airflow rate and the room air temperature.  For example, it might 

be judged as a partial load status if the room air temperature is sensed to be lower than 

the set point (i.e. 4°F) and the supply airflow rate reaches the minimum. 

The sub-routine 1 of a CAV+VAV is similar to the standard one given in the 

previous section for a CAV system.  The only difference lies on the control of the 

exterior zone as given in sub-routine 3. 
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Figure 3-15: Sub-routine 2 for CAV+VAV 
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Figure 3-16: Sub-routine 3 for CAV+VAV 
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For the IAHU partial load operation in mild weather, the exterior zone exhaust 

fans and return fan VFDs are controlled to ensure the airflow across the zones and then to 

ensure the building pressure.  If a direct OA introduction is needed from the exterior 

zone, the OA damper in the exterior zone is also modulated to satisfy the IAQ. 

For a VAV + CAV combination, the interior zone is equipped with VFDs to 

adjust the supply airflow rate based on the zone load.  The supply air temperature is 

typically 55°F for the interior zone until the airflow hits the low threshold (i.e. 50%).  

The combination is very common in office buildings where VAV boxes are used in the 

interior zone, and fin tube induction terminals are deployed along the external walls. 

VAV+ CAV: 

 

Figure 3-17: Main control algorithm for VAV+CAV 
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The airflow rate is read from the FAS of the interior zone supply fans.  The 

airflow rate ratios might vary during the operation course in a day.  The supply air 

temperature of the exterior zone might be a linear reset based on the OA temperature.  

The sub-routine for air circulation is similar to the standard one given in the CAV 

section, but the VFD on the return fan of the interior zone is modulated to ensure the 

airflow across the zones. 
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Figure 3-18: Sub-routine 1 for VAV+CAV 

The sub-routine 2 and 3 for the exterior zone control in the VAV+CAV layout are 

similar to the standard one given in the CAV section. 

VAV in both zones: 
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This combination is also common in commercial buildings.  The AHUs have the 

capability to adjust airflow with the VFDs to accommodate the changing internal loads.  

Typically, the cold deck temperature remains 55°F until a reset is needed when the zone 

load makes the supply airflow drop to the minimum.  The supply air temperature might 

be gradually reset in winter to ensure the airflow rate is above the minimum.  The airflow 

across all the VFD fans needs to be measured and coordinated so that the IAHU 

operation maintains proper air distribution across the zones.  The return fan VFDs serve 

as the central means for the IAHU to maintain both the airflow across the zones and the 

building pressure. 

 

Figure 3-19: Main control algorithm for VAV system 

 The sub-routine 1 for the control of the equipment in the interior zone is identical 

to the one given in the VAV+CAV application.  The sub-routine 2 for the control of the 
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exterior zone is identical to the one given in the CAV+VAV application.  The FAS 

installed on the return fans are utilized to fulfill the desired air circulation across the 

zones and the proper building pressure. 

An IAHU system differs from a conventional TAHU system mainly because of its 

innovative control of the building OA intake.  The freshness of air in one zone is 

circulated to the other zones for ventilation.  The original zone conditioning modes are 

not changed in most operations, with one exception.  In winter, the interior zone air 

temperature set point could be slightly higher than that of the exterior zone to improve 

the heat transfer capability of the circulated air. 

IAHU control algorithm summary 

The IAHU control algorithm adds control over the airflow modulating equipment 

to the original TAHU thermal logics to ensure the proper OA allocation and building 

pressure.  The general control algorithm, regardless of the original AHU configuration, 

can be summarized for the previous system types: 

1. Determine the proper fan speed and cold deck temperature for the individual 

zone.  The supply airflow should be kept higher than the minimum to ensure 

indoor air circulation. 

2. Obtain the information of the OA temperature, OA enthalpy, and fan airflow 

rates via the instruments.  Update the supply fan airflow ratio for the two 

zones.  If multiple AHUs exist in one zone, sum up the total before calculating 

the ratio. 

3. Determine the scenario of IAHU based on Table 2-1. 
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4. Determine the feasibility of IAHU with the OA intake from the interior zone 

AHUs.  If it is feasible, determine the distribution of the OA intake among the 

interior zone AHUs.  Otherwise, preserve original TAHU operation and return 

to step 1. 

5. Calculate the ratio of circulated air between the two zones.  Calculate the OA 

intake from the exterior zone AHUs.  Modulate the OA dampers on the 

interior zone AHUs to introduce in the desired flow rate of the OA.  Modulate 

the OA dampers on the exterior zone AHUs to introduce in the calculated 

flow rate. 

6. Coordinate airflow control components on the interior zone AHUs (return fan 

VFDs if they are equipped, exhaust fans, and relief dampers) to ensure the air 

circulation between the interior zone and the exterior zone.  Coordinate 

airflow control components on the exterior zone AHUs (return fan VFDs if 

equipped, exhaust fans, and relief dampers) to ensure the air circulation and 

building pressure. 

7. Switch back to normal operation if any of the conditions do not support the 

given scenario: the OA temperature, the OA humidity, the airflow ratio, or the 

OA ratio. 

3.2.3 Instrumentation 

To develop and utilize FAS in real building operations, the manufacture fan curve 

should be verified onsite.  Fan head, fan power and fan airflow rates are linked via the fan 

curves and fan laws.  The instrumentation for implementation is briefly discussed here.  
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The detailed process can be found in literature (Wang and Liu, 2007, Liu, 2003 and Liu 

2006). 

A fan speed is one of the key parameters that should be obtained to shift the fan 

curves.  For most VAV systems, VFDs are installed and commanded to vary the fan 

speed.  A linear relationship with a minimum rotational speed intercept can be obtained 

by utilizing a laser tachometer for a one-time measurement.  After that, the fan speed is 

determined by utilizing the EMCS command.  Special attention should be paid to the 

minimum EMCS command and the corresponding VFD frequency. 

A fan head is the static pressure difference across a fan.  It should be obtained by 

using the differential pressure transducer with either current or voltage signals.  The 

manufacturer fan curve should be referred to in selecting the right pressure range.  The 

design static fan head should be around 2/3 of the full scale of a pressure transducer.  The 

most typical range is 5 in w.g. for HVAC applications. An accuracy of ±0.5% or higher 

can be achieved by brand pressure transducers.  The pressure tap should be installed near 

the fan inlet and outlet.  The relative AMCA standard should be referred to in 

determining the pressure probe location and installation for accurate measurements. 

Power measurements can be achieved by using a power meter or sensor.  This 

type of instrument is available with accuracies of 1% of the full scale for volts, amps and 

power factors and 2% of the full scale for watts.  VFDs also have reliable output for the 

power related variables and can be fed into EMCS for sharing.
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Chapter 4 IAHU PERFORMANCE EVALUATION 

In the previous chapters, the concept and structure of IAHU has been introduced 

and discussed.  The operation to ensure IAQ and energy savings is theoretically analyzed.  

The control algorithms are also developed for four typical system layouts, followed by 

the discussion of key implementation issues.  As one of its main traits, IAHU can be 

integrated into Continuous Commissioning© (CC) to retrofit an office building for better 

energy and IAQ performance. 

Since an IAHU operation is subject to the system static and dynamic constraints, 

the actual performance in terms of the quantity of energy saving differs from system to 

system.  An energy evaluation of IAHU helps to identify the opportunity before the 

adoption and assert the results after the implementation. 

An energy analysis plays an import role in developing an optimum HVAC and 

building CC methodology.  High cost-effectiveness is always desired; advanced CC 

algorithms for energy savings can be evaluated through detailed measurements before 

and after retrofit implementation in real building energy systems.  However, a non-

intrusive metering takes effort and can be time consuming, especially in modern 

commercial buildings where the systems are becoming larger and more complex.  

Meanwhile, detailed measurements before upgrades are generally not available, so such a 

direct comparison with real data could be challenging or problematic. 

Real buildings are seldom well-metered to clearly identify the cause-effect of the 

CC measures and are subject to many changing and non-repetitive excitements, from the 

indoor occupants’ activities to the outdoor weather.  CC typically includes a set of 



 
101 

measures designed to improve the building energy performance.  A clear-cut of 

interlacing implementation and evaluation is hardly practical. 

One alternative and also supplementary method is to use building energy system 

modeling and simulation.  Compared to a direct real time implementation and 

measurement, this method is much cheaper, safer, and can be controlled to discern the 

cause-effect of a single CC measure.  Energy savings can be predicted with the model 

assisted by engineering analysis.  The algorithm can be further improved if the 

preliminary results in a simulation are not as predicted. 

From the deduction in the previous chapters, it has been shown that the IAHU 

control algorithm and saving quantity mainly rely on the synergetic relationship of heat 

gain, sensible and latent load between the interior and exterior zones.  With the clear 

mathematic expressions of OA intake amount and allocation, a theoretical energy saving 

can be predicted for a given building and climate.  Zone load information is needed to 

perform a reliable energy consumption calculation for different operation strategies. 

In this section, building energy simulation methods are briefly reviewed to 

identify a practical approach for the study of IAHU. 

4.1 Introduction 

“Numerous building energy calculation procedures have emerged since the late 

1960s.  The methods range from simple degree day procedures to comprehensive 

program/ coding computations.” (Knebel, 1983).  The time step can decrease to minutes 

if the finest system dynamic response is desired for a study.  However, a simulation with 

a small time step is very time costly, while the results might not necessarily be more 
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accurate than a simplified method.  On the other hand, the time constants of building 

energy systems are much greater than minutes. 

In building energy system modeling, for most general purposes, hourly time series 

simulation is considered sufficient enough.  The modeling methodology can be 

categorized into two types: a forward (classical) approach and data-driven (inverse) 

approach (ASHRAE Handbook, ch19, 2009).  Hybrid utilization might be found to be 

more flexible and useful in building energy related applications. 

Forward modeling of building energy use begins with a physical description of 

the building system or components of interest.  The objective is to obtain the system 

performance and the output variables with known structures and parameters of the system 

when the system is subject to given variables.  For further classification, forward 

modeling can be either dynamic or steady state.  For dynamic forward modeling, 

fundamental engineering principles are employed to describe the dynamic response of the 

building, system and components of interest.  Time series of the inputs and outputs are 

produced with the simulation.  An advance control might also be imposed in the complete 

metrics of a building system. 

The major dynamic simulation software including EnergyPlus, DOE-2, eQuest,  

Trnsys, etc, are based on this approach.  Although procedures might vary from one to one 

in their degree of complexity, three common elements are normally involved: 

computation of space load, computation of secondary equipment load, and computation 

of primary equipment energy requirements.  Since the model has been coded as software, 

users are mainly responsible for the detailed inputs and interpretation of final results.  

Only the given accessible fields in the model can be changed, therefore the flexibility of 
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analysis is compromised and limited to general philosophy.  As indicated in ASHRAE 

standard 90.1, energy calculations lead to an economic analysis to establish the cost-

effectiveness of conservation measures.  This approach is normally used to design and 

size HVAC systems and have begun to be used for modeling existing buildings after 

calibration (Haberl and Culp, 2005). 

Forward modeling can also be steady state analysis-based.  Unlike a dynamic 

forward method, a steady state forward model is usually more handy and simplified 

without necessarily losing accuracy.  A complicated code or program package is not 

needed here.  The thermodynamics that govern the system and components are simplified 

in a way that maintains the acceptable accuracy while removing the complexity.  Typical 

steady state forward methods include simplified energy analysis using the modified bin 

method, the traditional ASHRAE bin method and change point models, etc.  The cause 

and effect in the building system analysis is much easier and more flexible with this 

approach since users are usually responsible for the model and simulation set up.  An 

innovative algorithm or operation for energy saving can be investigated with this method. 

Data-driven modeling, sometimes termed inverse modeling, relies on known and 

measured input and output variables.  The purpose is to determine a mathematical 

description of the system and to estimate system parameters.  To develop an inverse 

model, one must assume a physical configuration of the building or system, and then 

identify the parameter of interest using statistical analysis (Rabl and Riahle, 1992).  Once 

obtained and verified, the model is simple and useful to predict the system outputs in the 

future with a set of new inputs if the involved system characteristics are not changed. 
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Like forward modeling, data-driven modeling can be also either dynamic or 

steady state.  Advanced methodology is used to develop a dynamic data-driven model.  It 

is capable of capturing dynamic effects such as thermal mass which traditionally needs 

first-principles with differential equations.  But typically to gain the benefit of this 

approach, a large amount of data and detailed measurements are needed to train or tune 

the model, which is a gray or black box to the user.  The models are usually complex for 

applications.  The examples are equivalent thermal network analysis, ARMA models, 

Fourier series models, machine learning and artificial neural networks, etc. 

A steady state data-driven model is simple and has limited applications.  It can be 

single-variate, multivariate, polynomial, or physical.  Monthly utility billing data and OA 

temperatures are generally used for such a regression.  Several more variables, like solar 

radiation, OA humidity, occupancy (as dummy variables) etc., may be used to better 

capture the system characteristics, but they add a need for reliable inputs.  A steady state 

data-driven model is insensitive to dynamic effects and is used mainly with monthly or 

daily data. 

Data driven inverse modeling requires reliable data before and after the 

implementation of a retrofit in order to evaluate its performance, and for future 

performance prediction.  Hard coded forward models have effective dynamic simulation 

performance but low flexibility.  The internal mechanisms are predefined and 

modularized.  The simulation cannot be performed when the conventional system 

characteristics are changed. 
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In an IAHU operation, the original TAHU system characteristic is changed since 

the air flow in one zone is manipulated into another zone.  A hybrid steady state model is 

one option to evaluate the performance of an IAHU system in a given building. 

4.2 Evaluation Methodology 

Building energy simulation methods are briefly reviewed above.  Detailed 

forward dynamic modeling is stiff and cumbersome without necessarily providing us 

more accuracy if the inputs are not sufficiently accurate.  A data-driven model is not 

suitable for evaluating an innovative algorithm before its implementation.  A simplified 

hourly steady state modeling method is adopted here to perform a handy but reliable 

evaluation of IAHU in a commercial building. 

4.2.1 System simplification 

Many researchers have pointed out that a large commercial building can be 

modeled as two zones: an internal one and a perimeter one.  Knebel (1983) presented the 

idea to simplify energy analysis using a modified BIN method.  Katipamula and Claridge 

(1993) modeled a commercial building as two zones and considered it adequate for large 

commercial building load simulation.  Liu and Song, et al, (2004) applied a similar idea 

to a simplified building modeling and asserted it could provide good hourly average 

thermal load.  Liu and Claridge (1995, 1998) showed very accurate results by using the 

simplified zoning in a case study.  The studies support the claim that a two-zone model 

works well with properly defined interior and exterior zones for large commercial 

buildings. 
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The rules for simplification and simulation are followed to support the evaluation.  

Correspondingly, the zone HVAC systems are also modeled as two systems for the 

central AHUs and the terminals.  It follows the previous deduction for IAHU if there are 

more than two AHUs serving one zone.  In a real application, the calculated proper OA 

flow rate in an IAHU system can just be distributed among the interior zone AHUs and 

the exterior AHUs.  The physics and deduction of IAHU will not change.   

The AHUs serving zones with similar features typically have identical system 

configurations and operation strategies.  An IAHU operation does not change the 

similarity of AHUs serving the same zone.  For example, there are either all VAVs or all 

CAVs for the interior or exterior zone respectively.  The OA intake is specified with the 

same algorithm and ratio.  This is also true for the free cooling economizer control. 

The zone occupancy, peak load and load profile for individual AHU conditioned 

space in one of the two zones are similar.  The consolidated AHUs’ airflow rate is the 

sum flow rate of each individual AHU.  The cold and hot deck set points can be 

determined using an airflow weighted average value if the individual AHUs are different 

sizes. 

4.2.2 Inputs and variables 

Inputs are needed to drive the model and simulation.  In addition to the inputs and 

variables defined in table 3-1, which are mainly for the system side, inputs for the 

building load are also needed.  Some parameters, e.g. building geometry, location, CLF, 

that are involved to conduct a simulation, are not listed to maintain the simplicity.  The 

parameters can be found in ASHRAE handbooks. 
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Table 4-1: Inputs and variables for simulation 

Item Symbol Definition Unit 

Building 

1 

AF Building conditioned floor area 

Ft2 (m2) AF,in Conditioned interior area 

AF,ex Conditioned exterior area 

2 U Heat transfer coefficient for walls and roof Btu/hr F Ft2 (W/m2 K) 

3 UG Heat transfer coefficient for windows Btu/hr F Ft2 (W/m2 K) 

4 AG Window area Ft2 (m2) 

5 A Walls and roof area Ft2 (m2) 

6 qltg Maximum lighting power density W/ Ft2 (W/m2) 

7 qeqt Maximum equipment power density W/ Ft2 (W/m2) 

8 qpe,s Maximum sensible load density from occupants W/ Ft2 (W/m2) 

9 qpe,l Maximum latent load density from occupants W/ Ft2 (W/m2) 

10 ACHinf Infiltration air change rate /hr 

11 V Zone volume Ft3 (m3) 

System 

Refer to Table 3-1 

 
The inputs listed in the table for building load can be determined from design 

drawings, air balance reports, or building automation systems. 

4.2.3 Load simulations 

A building zone thermal load includes the external heat gain and the internal heat 

gain.  Windows and opaque surfaces are the interfaces between the internal environment 

and the external environment.  The simulation can be divided into the following parts: 

 Solar radiation through glass: 

In the reviewed literature, the seasonal variation of the solar load is considered to 

be a constant or more accurately approximated by a linear relationship with the OA 
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temperature.  The linearization is obtained by associating the January solar contribution 

to the winter design OA temperature and the July solar contribution to the summer design 

OA temperature.  The following equations are used to calculate the window glass solar 

heat gain in January and July: 

 𝑄𝑠𝑜𝑙,𝑗𝑎𝑛

=
∑ 𝑀𝑆𝐻𝐺𝐹𝑖 × 𝐴𝐺𝑖,𝑎𝑑𝑗 × 𝑆𝐶𝑖 × 𝐶𝐿𝐹𝑇𝑂𝑇𝑖 × 𝐹𝑃𝑆𝑗𝑎𝑛𝑁
𝑖=1

24 × 𝐴𝐹
 

(4-1)  

 
𝑄𝑠𝑜𝑙,𝑗𝑢𝑙 =

∑ 𝑀𝑆𝐻𝐺𝐹𝑖 × 𝐴𝐺𝑖,𝑎𝑑𝑗 × 𝑆𝐶𝑖 × 𝐶𝐿𝐹𝑇𝑂𝑇𝑖 × 𝐹𝑃𝑆𝑗𝑢𝑙𝑁
𝑖=1

𝑡𝑟𝑢𝑛 × 𝐴𝐹
 (4-2)  

MSHGF is the maximum solar heat gain factor for orientation i for the 

corresponding month at the latitude in literature [2].  The glass total cooling load factor, 

CLFTOT, and fraction of possible sunshine, FPS, are given in tables 3-2 and 3-1 in 

literature [1]. 

The slope is determined then by: 

 
𝑀𝑠𝑜𝑙 =

(𝑄𝑠𝑜𝑙,𝑗𝑢𝑙 − 𝑄𝑠𝑜𝑙,𝑗𝑎𝑛)
(𝑇𝑝𝑐 − 𝑇𝑝ℎ)

 (4-3)  

The solar radiation heat gain through windows can be simulated by using the 

linear relationship: 

 𝑄𝑠𝑜𝑙 = 𝑀𝑠𝑜𝑙 × �𝑇𝑜𝑎 − 𝑇𝑝ℎ� + 𝑄𝑠𝑜𝑙,𝑗𝑎𝑛 (4-4)  

External shading, such as overhangs and fins, is also considered to improve the 

accuracy of solar radiation calculation.  Table 3-5 through 3-9 in literature [1] can be 

referred to in determining the solar load factor (SLF) and adjusting the window area.  

AGi,adjn are noted as north facing windows. 
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 𝐴𝐺𝑖,𝑎𝑑𝑗 = 𝐴𝐺𝑖 × 𝑆𝐿𝐹𝑖 (4-5)  

 𝐴𝐺𝑖,𝑎𝑑𝑗𝑛 = 𝐴𝐺𝑖 × (1 − 𝑆𝐿𝐹𝑖) (4-6)  

Transmission load: 

The transmission load comes from the windows, the roof and the external walls.  

The contribution through glass is given as: 

 
𝑄𝑇,𝑔𝑙 =

∑ (𝐴𝐺𝑖 × 𝑈𝐺𝑖)(𝑇𝑜𝑎 − 𝑇𝑟)𝑁
𝑖

𝐴𝐹,𝑖
 (4-7)  

The air to air temperature difference causes heat transfer through the opaque 

surfaces.   

 
𝑄𝑇,𝑤𝑙 =

∑ 𝑈𝐴𝑖(𝑇𝑜𝑎 − 𝑇𝑟)𝑁
𝑖

𝐴𝐹,𝑖
 (4-8)  

In addition, the external surface temperature increase due to solar effects should 

be considered to avoid the underestimation of the transmission load.  A similar OA 

temperature linearization is applied to account for the effect. 

 
𝑄𝑡𝑠,𝑗𝑢𝑙 =

∑ 𝐴𝑖𝑈𝑖 × 𝐶𝐿𝑇𝐷𝑆𝑗𝑢𝑙 × 𝐾 × 𝐹𝑃𝑆𝑗𝑢𝑙𝑁
𝑖=1

𝐴𝐹
 (4-9)  

 
𝑄𝑡𝑠,𝑗𝑎𝑛 =

∑ 𝐴𝑖𝑈𝑖 × 𝐶𝐿𝑇𝐷𝑆𝑗𝑎𝑛 × 𝐾 × 𝐹𝑃𝑆𝑗𝑎𝑛𝑁
𝑖=1

𝐴𝐹
 (4-10)  

 
𝑀𝑡𝑠 =

(𝑄𝑡𝑠,𝑗𝑢𝑙 − 𝑄𝑡𝑠,𝑗𝑎𝑛)
(𝑇𝑝𝑐 − 𝑇𝑝ℎ)

 (4-11)  

 𝑄𝑡𝑠 = 𝑀𝑡𝑠 × �𝑇𝑜𝑎 − 𝑇𝑝ℎ� + 𝑄𝑡𝑠,𝑗𝑎𝑛 (4-12)  

Cooling load temperature differences, CLTD, are provided in the ASHRAE 

handbook (2009).   
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Infiltration load: 

Depending on the building operation, the infiltration might be considered for both 

the exterior and the interior zone.  It serves as a direct sensible and latent load source 

when the OA enters the building.  The expression can be: 

 𝑄𝑖𝑛𝑓,𝑠 = 𝐴𝐶𝐻𝑖𝑛𝑓 × 𝑉 × 𝐶𝑝 × (𝑇𝑟 − 𝑇𝑜𝑎)𝜌 (4-13)  

 𝑄𝑖𝑛𝑓,𝑙 = 𝐴𝐶𝐻𝑖𝑛𝑓 × 𝑉 × ℎ𝑓𝑔 × (𝑤𝑟 − 𝑤𝑜)𝜌 (4-14)  

For good mechanical ventilated commercial office building, a positive pressure is 

usually controlled.  Under this circumstance, the infiltration rate, ACH, is assigned as 0. 

 Internal load: 

The internal load constitutes a significant proportion of the total loads in 

commercial office buildings because of the increasing density of electrical equipment, 

e.g. printers, computers, lighting.  Cooling load factors, CLF, which can be found in the 

ASHRAE handbook (2009), should be used to account for the fact that all the internal 

heat gains do not appear as cooling loads instantaneously. 

 𝑄𝑙𝑡𝑔 = 𝐴 × 𝑞𝑙𝑡𝑔 × 𝐶𝐿𝐹 (4-15)  

 𝑄𝑒𝑞𝑡 = 𝐴 × 𝑞𝑒𝑞𝑡 × 𝐶𝐿𝐹 (4-16)  

 𝑄𝑝𝑒,𝑠 = 𝐴 × 𝑞𝑝𝑒,𝑠 × 𝐶𝐿𝐹 (4-17)  

 𝑄𝑝𝑒,𝑙 = 𝐴 × 𝑞𝑝𝑒,𝑙 × 𝐶𝐿𝐹 (4-18)  

Occupants also contribute latent load into the zone.  Liu, et al, discussed the 

process of introducing discount factors of rated power, diversity factors and load discount 

factors if a calibration evaluation is desired  (Liu and Song, 2004). 
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With the expressions for the individual sectors, the total zone load for the internal 

and the external zone can be simulated in a program: 

 𝑄 = 𝑄𝑠𝑜𝑙 +𝑄𝑡𝑠 + 𝑄𝑇,𝑔𝑙 + 𝑄𝑇,𝑤𝑙 + 𝑄𝑙𝑡𝑔 + 𝑄𝑒𝑞𝑡 + 𝑄𝑝𝑒,𝑠 (4-19)  

 𝑤 = 𝑄𝑝𝑒,𝑙/ℎ𝑓𝑔 (4-20)  

4.2.4 System simulations 

For air-based commercial office buildings, the components are illustrated in the 

deduction of IAHU for energy considerations in chapter 2.  The main thermal 

components are heating coils and cooling coils.  With different AHU configurations, the 

simulation might vary slightly due to the different constraints imposed and the different 

corresponding operations in the system level simulation. 

For instance, in a CAV, the airflow rate is a constant constraint to the simulation.  

For a VAV, the minimum airflow rate is a constraint.  The control flow chart in chapter 3 

is the main part of the simulation for an IAHU operation that determines the energy 

consumption of a system.  To evaluate the energy saving of IAHU, the original TAHU 

system configuration and operation should be simulated for a comparison. 

In a system, mixing, heating and cooling (sensible and latent) are the basic 

thermal processes for both TAHU and IAHU, as depicted in Fig 2-12. 

The mixing air status can be simulated by using: 

 𝑇𝑚𝑖𝑥 = 𝑇𝑜𝑎𝛽 + (1 − 𝛽)𝑇𝑟 (4-21)  

 ℎ𝑚𝑖𝑥 = ℎ𝑜𝑎𝛽 + (1 − 𝛽)ℎ𝑟 (4-22)  
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 𝑤𝑚𝑖𝑥 = 𝑤𝑜𝑎𝛽 + (1 − 𝛽)𝑤𝑟 (4-23)  

The heating coil energy consumption is simulated as: 

 𝐸ℎ𝑐 = 60 × 𝑚 × 𝐶𝑝 × (𝑇𝑟 − 𝑇𝑚𝑖𝑥) (4-24)  

The cooling energy consumption of the main AHU is: 

 𝐸𝑐𝑐 = 60 × 𝑚 × (ℎ𝑚𝑖𝑥 − ℎ𝑐) (4-25)  

The reheat coil is simulated as: 

 𝐸𝑟ℎ = 60 × 𝑚 × 𝐶𝑝 × (𝑇𝑠 − 𝑇𝑐) (4-26)  

The zoom air humidity is determined as a steady state: 

 
𝑤𝑟 =

𝑤 + 𝑚
𝜌 𝑤𝑐 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉𝑤𝑜𝑎
𝑚
𝜌 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉

 (4-27)  

The return air humidity wr and the supply air humidity wc are coupled when the 

coil is dry.  Under this circumstance, the supply air humidity equals the mix air humidity.  

An iteration with equation (4-23) and (4-27) is needed, or the following equation (4-28) 

can be used, to solve for the room air humidity. 

 
𝑤𝑟 =

𝑤𝑜𝑎
𝑚
𝜌 𝛽 + 𝑤 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉𝑤𝑜𝑎
𝑚
𝜌 𝛽 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉

 (4-28)  

In some conventional systems, there are induction units deployed along the 

external walls.  The induction coil energy consumption is simulated as: 

 𝐸𝑖𝑑 = 60 × 𝑛 × 𝑚 × (ℎ𝑟2 − ℎ𝑟) (4-29)  
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Additional governing equations are needed to obtain the room air humidity for 

this special system layout. 

In winter, both coils are in a heating mode, the humidity ratio does not change 

across the coils, and equation (4-28) is applicable.  In summer, either the primary cooling 

coil or the secondary cooling coil can be dry or wet.  The return air humidity wr, the 

supply air humidity wc and the induction air humidity wid are coupled under this 

circumstance.  After the induction unit, the room air humidity is expressed as: 

 
𝑤𝑟 =

𝑤𝑖𝑑𝑛
𝑚
𝜌 + 𝑚

𝜌 𝑤𝑐 + 𝑤 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉𝑤𝑜𝑎
𝑚
𝜌 + 𝑛𝑚𝜌 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉

 (4-30)  

If the primary coil is dry, it needs to be reevaluated as: 

 
𝑤𝑟 =

𝑤𝑖𝑑𝑛
𝑚
𝜌 + 𝑚

𝜌 𝛽 + 𝑤 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉𝑤𝑜𝑎
𝑚
𝜌 𝛽 + 𝑛𝑚𝜌 + 𝐴𝐶𝐻𝑖𝑛𝑓𝑉

 (4-31)  

If the induction coil is wet, equation (4-31) is enough to obtain the room air 

humidity.  If the induction coil is also dry, equation (4-28) is utilized to evaluate the room 

air humidity.  When either coil is supposed to provide heating to the space, there is no 

dehumidification. 

After obtaining the room air humidity, equation (4-23) should be reevaluated to 

solve for the mixed air humidity. 

To this end, a steady-state air-based system simulation structure for building 

demand side energy consumption (to the secondary system) is presented for performance 
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evaluation.  An hourly performance and the system states, e.g. the various air humidities, 

can be predicted with the simulation. 

4.2.5 Simulation procedure 

With the governing equations for the building and components, a supervisory 

control is needed to direct the operation and performance.  The rules and algorithm given 

in Table 2-1 and the flow charts in Chapter 3 for the corresponding system configuration, 

should be incorporated into the model to accomplish the simulation.  For evaluation 

purposes, a baseline with the existing conventional TAHU should also be simulated.  The 

difference between the two will be the energy saving potential that might be achieved by 

introducing an IAHU operation.  The analysis can be utilized to direct the implementation 

and verify it in a CC® process. 

Load simulation

Weather data

1. TAHU system
simulation 2. IAHU system

simulation

Performance
 evaluation

Building data

Occupancy
 schedule

Control
 algorithm

System
parameters

System
 constraints

 
Figure 4-1: IAHU evaluation procedure based on simulation 
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The simulation procedure for the evaluation can be depicted as in Fig 4-1. 

The weather data, building data, as well as the occupancy schedule are fed into 

the simulation engine to predict the building load.  It is assumed that the room air is well 

mixed and the physical condition is satisfied through the system’s dynamic PI control 

loops.  Afterward, the TAHU and IAHU system simulation with different control 

algorithms, system constraints, and system parameters imposed is used to determine the 

system energy consumption with the same user side demand.  The result is then 

compared and organized for performance evaluation. 

4.3 Evaluation of IAHU in a case building 

A case building located in Omaha, Nebraska is selected to demonstrate the IAHU 

operation and its performance. 

4.3.1 Building and system 

The selected building is a government office building.  From the 3rd floor to the 

12th floor is the office area is identical in layout.  The long side of the building faces the 

west and the east.  Tinted double layer glazes are installed with aluminum frames along 

the external walls.  Internal blinds are also equipped for shading. 

    
                             Outside view from south east                      Inside view of an office 

Figure 4-2: Pictures of the case building 



 
116 

The office area is occupied by about 620 people, and operated an average 60 

hours per week.  The occupants’ density is about 0.0033 /ft2.  The space is conditioned by 

three AHUs.  The main heating and cooling sources are district supplied chilled water 

and steam.  A building automation system from INET is deployed in the building and is 

available for customers to program the control of the main equipment. 

A single duct VAV system, with 60 electrical reheat equipped terminal boxes, 

serves the interior zone.  Two constant air systems, with 495 induction terminals each, 

are in charge of the perimeter space along the external wall.  One is for the east and north 

sides, and the other one is for the west and south sides.  The layout is a typical TAHU 

and the system consolidation can be applied.  All supply and return fans are equipped 

with VFDs.  Four constant fans are installed to exhaust air from the rest rooms. 

The room air is returned via the ceiling plenum without ductwork through evenly 

deployed slot diffusers.  The light panels have either three slots for return in the internal 

zone or four slots for return in the external zone. 
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Figure 4-3: Typical floor layout of the office building 
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Figure 4-3 illustrates the space layout of the office building.  The floor area is 

18900 ft2 per floor.  The conditioned air in the internal zone is distributed via slot 

diffusers along one side of the lighting panel.  The density of the panels is even across the 

space except for the elevator, stairs and rest room area. 

4.3.2 Control and operation as TAHU 

The existing TAHU has normal, conventional air system algorithms as below: 

System ON/OFF: 

Both systems have a warm up/cool down control for the average season.  Facility 

engineers start the system at 4:00 am and shut it down at 10:00 pm from Monday to 

Friday in normal operation.  During the hot summer and cold winter, the system is kept 

on constantly 24/7. 

Supply air temperature: 

AHU1 is a year around cooling only system serving the interior zone.  The 

discharge air temperature is set at 55ºF (adjustable).  For AHU2-3, the discharge air 

temperature is set at 55ºF (adjustable) when the OAT is greater than 70ºF, 75ºF when the 

OAT is less than 55ºF.  A linear reset is applied when the OAT is in between. 

OAT

SAT

75 Fo

55 Fo

55 Fo 70 Fo

 
Figure 4-4: Supply air temperature for AHU2-3 
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Outdoor air intake: 

The systems satisfy the minimum OA intake requirement in summer and winter 

via the individual AHUs. 

Economizer: 

An air temperature based economizer is used for the systems.  It is enabled when 

the OA temperature is below 70ºF.  The return air dampers and the OA dampers are 

controlled to maintain the mixed air temperature set point 55ºF (adjustable), provided the 

minimum OA intake is satisfied. 

Operation: 

The TAHU operation regarding to the OA intake can be summarized in the 

following table. 

Table 4-2: TAHU operation of OA intake 

No. 𝑇𝑜𝑎 Condition Interior OA (AHU1) Exterior OA (AHU) 

A 𝑇𝑜𝑎 ≤ 𝑇𝑖,𝑐 𝛽𝑖 = max (𝛽𝑖,𝐼𝐴𝑄,𝑑 ,𝛽𝑖,𝑒𝑐𝑜) 𝛽𝑒 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 

B (𝑇𝑖,𝑐 ,𝑇𝑒,𝑐] 𝛽𝑖 = 1 𝛽𝑒 = max (𝛽𝑒,𝐼𝐴𝑄,𝑑,𝛽𝑒,𝑒𝑐𝑜) 

C (𝑇𝑒,𝑐 ,𝑇𝑟], 𝛽𝑖 = 1 𝛽𝑒 = 1 

E 𝑇𝑟 < 𝑇𝑜𝑎 𝛽𝑖 = 𝛽𝑖,𝐼𝐴𝑄 𝛽𝑒 = 𝛽𝑒,𝐼𝐴𝑄,𝑑 

4.3.3 Outdoor information 

The TMY3 weather data from the Department of Energy for EnergyPlus is used 

for the simulation.  Omaha, in climate zone 5A, has cold winters and hot summers.  The 

hottest temperature reaches above 100ºF while the lowest decreases to -11ºF in the data 

file.  The long winter time and occasionally mild weather in swing season and summer 

provide opportunities for IAHU to exert its energy saving capability. 
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Figure 4-5: Hourly outdoor air temperature in Omaha 

 
Figure 4-6: Outdoor air temperature BIN in Omaha 

The corresponding hours for the location are sorted according to the IAHU 

operation scenarios.  The results are collected in the table below: 

Table 4-3: OA condition hours during occupied time ( Tr set as 75ºF ) 

No. 𝑂𝐴 Condition Hours 

A 𝑇𝑜𝑎 ≤ 𝑇𝑖,𝑐 1508 
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B (𝑇𝑖,𝑐 ,𝑇𝑒,𝑐] 224 

C (𝑇𝑒,𝑐 ,𝑇𝑟], ℎ𝑜,𝑎 < ℎ𝑟 169 

D (𝑇𝑒,𝑐 ,𝑇𝑟], ℎ𝑜,𝑎 ≥ ℎ𝑟 488 
448, mild weather 

E 𝑇𝑟 < 𝑇𝑜𝑎 896 

4.3.4 Simulation inputs and process 

The building and system information are collected from the building drawings, 

onsite observation and control documentations.  The designed indoor air temperature is 

75ºF in summer and 72ºF in winter.   The system design air flow rate for AHU1 is 90696 

cfm and 54000 cfm for AHU2-3 respectively.  The total OA intake is set based on the 

ASHRAE standard: 5*620 + 180000*0.06 = 13900 cfm, which is 16.7% of the total 

designed air flow rate.  Correspondingly, AHU1 requires 6636.5 CFM (7.5%) and 

AHU2-3 requires 7263.5 CFM (14%) of OA. 

The main simulation inputs of the building features are collected below: 

Table 4-4: Main inputs of the building 

Symbol Info 

Building conditioned 
floor area 

180000 Ft2 (16722.5 m2)  

Interior zone  85940 Ft2 (8318.5 m2)  
Exterior zone 94060 Ft2 (8738.4 m2)  

External Wall East 18337 Ft2 (1703.6 m2) 

0.148 Btu/hr F Ft2 
(0.842 W/m2 K) 

West 24423 Ft2 (2269 m2) 
North 30000 Ft2 (2787 m2) 
South 30000 Ft2 (2787 m2) 

Windows East 17550 Ft2 (1630 m2) 

0.633 Btu/hr F Ft2 
(3.6 W/m2 K) 

West 12480 Ft2 (1160 m2) 
North 2600 Ft2 (242 m2) 
South 2600 Ft2 (242 m2) 

Roof 18000 Ft2 (1672.3 m2) 0.099 Btu/hr F Ft2 
(0.559 W/m2 K) 

Maximum lighting 
power density 

1.45 W/Ft2 (15.61 W/m2)  
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Maximum equipment 
power density 

1 W/Ft2 (10.78 W/m2)  

Maximum occupants 
density 0.0034 / Ft2  

Infiltration air change 
rate 

0 ACH  

Minimum airflow rate 
ratio 

AHU1: 30%  

AHU2-3: 100% 

 
The simulation is conducted in Matlab.  The functions are coded as a main 

program, an internal load simulation, an external load simulation, two mechanical system 

simulations, and several supportive functions.  The subroutines for IAHU decision 

making are also individually coded for better readability.  The system states for the air 

temperatures and air humidity are simulated hourly.  The codes are included in Appendix 

A.  Other supportive materials, including drawings, pictures, etc, are provided in 

Appendix B. 

4.3.5 Results and analysis 

The hourly simulation is performed for the normal TAHU operation and the 

improved IAHU operation with the process and parameters provided in the above 

sections.  Part of the simulation results for the discharge air humidity, room air humidity, 

etc are collected in appendix B for reference. 

The savings are divided into four groups corresponding to the IAHU operation A, 

B, C and D/E mild weather.  From Table 4-3, we might roughly weigh the IAHU saving 

potential.  The descending sequence is A, E, D, B and C in terms of the duration.  Since 

an IAHU operation does not have a retrofit cost, the adoption of the improved operation 

is of high flexibility.  In Omaha, NE, in conditions A and D, IAHU should be first 

considered in CC® to achieve energy savings. 
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The simulated annual heating and cooling energy savings are collected in the table 

below. 

Table 4-5: Energy saving performance of IAHU in a case building, x=0.4 

OA 
conditions 

Total Heating 
(MMBTU) 

Total Cooling 
(MMBTU) 

Savings 
(MMBTU) 

Percentage 
(%) 

Normalized 
savings 

(BTU/ft2 yr) 
A 1566.7 34.6 368.9 23 2049 
B 32.4 53.8 70.4 82 391 
C 95.1 615 32.3 5 179 

D/E 89.8 1981 162.6 8 903 

Total 14 3523 

 
From the table, it can be seen that the absolute energy savings mainly come from 

OA conditions A and D/E for the case building.  For heating seasons, applying the IAHU 

operation saves about 2049BTU/ft2 yr, equivalent to 23% of the overall heating energy 

consumption.  Considering that heating is usually provided by steam/hot water, or 

electricity, the saving percentage is significant.  The next biggest savings comes from the 

thermal load decoupling in mild weather condition, where 163 MMBTU of thermal 

energy is saved.  The normalized overall annual energy savings of using IAHU in this 

building is 3387 BTU/ft2.  The two together contribute nearly 80% of savings.  In total, 

IAHU operation saves 14% of thermal energy for heating and cooling the building. 

To compare the difference between an IAHU system and an OAHU system, a set 

of parametric runs is conducted using different circulation ratio γ.  Since it must fall in 

the range between 0 and βi, the energy saving difference between the two AHUs is 

subject to the constraints illustrated in Figure 3-5, from the OA intake ratio and airflow 

ratio between the two individual AHUs.  Using a duct work connection in an OAHU 

might not necessarily yield greater savings once the savings is already fulfilled with a 
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smaller value of circulation air ratio.  With the same other simulation parameters, the 

difference of energy savings are plotted in the figure below. 

 
Figure 4-7: Normalized energy saving of using IAHU for different circulation ratio x 

When the two zones are in different air conditioning modes, the OA intake from 

the interior zone has a positive effect on the system for heat transferring.  The OA intake 

is warmed up by going through the interior zone.  The energy savings acquired by using 

IAHU in cold winter (condition A) is given in Table 4-5 and Fig 4-7.  With an increasing 

circulation air ratio x from 0.1 to 0.4, the overall energy savings of warming up the OA 

intake also increases until the OA is fully satisfied through the dedicated interior zone 

AHU. 

It is worthy to mention that additional heat can be transferred from the interior 

zone to the exterior zone, provided the interior zone air temperature is higher than that of 

the exterior zone.  This is stated in Chapter 1as one of the IAHU’s traits.  The amount of 

the additional energy savings is a function of the room air temperature difference and the 

amount of circulation air between the two zones.  Although a large value should be 



 
124 

avoided for comfort consideration, a reasonable difference is recommended to not only 

bring in more energy savings in IAHU, but also avoid unnecessary zone fighting between 

the two zones that are in opposite modes. 

As also shown in the simulation results, the sensible and latent load decoupling 

feature has a dependency on the circulation air percentage in IAHU.  The maximum is 

around 40% for this selected building.  If the ratio limit is set lower than this value, the 

interior zone has to introduce more OA in summer to satisfy the IAQ requirement of the 

exterior zone.  Since there is an associated penalty of taking in more OA in summer, 

IAHU should be run as TAHU under this limit condition.  The overall energy savings by 

utilizing IAHU finally saturates when the re-circulated ratio is about 40%.  Allowing 

more air recirculation does not yield additional savings for x equal to or above 0.5 as 

given in Fig 4-7.
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Chapter 5 CONCLUSION AND DISCUSSION 

Modern office buildings have higher internal heat gains compared to decades ago, 

as more and more electricity-powered equipment enters office buildings, which results in 

an increase in both the quantity and density.  Office building heating, ventilation and air-

conditioning systems, mainly air based, have evolved from single air handling unit 

system (SAHU) to two air handling unit system (TAHU), constant air volume system 

(CAV) to variable air volume system (VAV) for better energy performance.  However, 

the air handling units (AHUs) in a building are mainly operated individually for 

designated zones. 

This study investigated the thermal load features in office buildings and proposed 

an Integrated Air Handling Unit (IAHU) concept for an integrated operation in order to 

achieve benefits with little to zero retrofitting.  The internal heat gain can be transferred 

from an interior zone into an exterior zone in winter, the sensible load and latent load can 

also be decoupled in mild weather.  With no additional duct remodeling, the integrated 

operation is much easier to be accepted by customers for generalization than Office Air 

Handling Unit (OAHU). 

In this study, the deduction of IAHU is theoretically conducted for an acceptable 

indoor air quality (IAQ) and better energy performance.  Five scenarios based on the 

outdoor air conditions are defined for an annual operation.  The system variables and 

constraints are investigated in detail to comprehend the feasibility and operability of 

IAHU.  The implementation methods and issues of airflow rate information are addressed 

based on Fan Airflow Station (FAS) developed by Energy Systems Lab (ESL) at the 
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University of Nebraska-Lincoln (UNL).  The control flow charts are then provided in 

Chapter 3 for different AHU combinations.   IAHU can be easily integrated into 

Continuous Commissioning® measures to achieve energy savings in most existing and 

new office buildings. 

To evaluate the performance of IAHU, a case building in Omaha is chosen as the 

simulation base.  An hourly steady state modeling method is considered suitable for the 

evaluation of the innovative algorithm.  The corresponding simulation method and 

procedure for the building and system are then elaborated upon.  The simulation is later 

conducted in Matlab. 

The simulation results demonstrate that converting the existing TAHU system 

into an IAHU system can achieve about 14% thermal energy savings for the case building.  

If normalized, about 3.5 MBTU/ft2 yr can be saved for this case building in the given 

climate.  By transferring the internal heat gain from the interior region to the exterior 

region, 58% of the total savings, by applying IAHU, can be achieved in winter and 17% 

achieved in swing seasons.  Another 25% savings comes from the sensible and latent load 

decoupling with IAHU in summer mild weather. 

In the previous chapters, IAHU is presented as a system consisting of two AHUs 

to facilitate the theory deduction and interpretation.  The implementation of IAHU in a 

real office building might have some practical challenges.  For example, the plenum 

above the ceiling is blocked by fire walls between zones.  Under these conditions, the 

building cannot be just simplified into two consolidated zones.  IAHU theory should be 

adopted in a smaller scale among the AHUs.  Additional analysis might be necessary to 

evaluate the utilization of IAHU. 
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 There are several topics that can be conducted as the future work: 

1. The algorithm can be implemented in the case building for performance 

verification.  Since the savings are categorized accordingly, IAHU can be 

performed step by step with proper tuning. 

2. An IAHU simulation based control in a real building can be further 

investigated with a tool, e.g. the building control virtual test bed (BCVTB) 

provided by Lawrence Berkley National Lab. 

3. Research on automated IAHU logic generation, diagnostics and 

troubleshooting for different building systems can be performed. 
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Appendix A: 

% this is the main function to calculate the load and energy 
consumption 
% for TAHU and IAHU system 
clear all; 
originalData=importdata('Omaha_Weather.csv'); 
%originalData=importdata('Pittsburgh_Weather.csv'); 
%% control parameters 
W2BTUhr=3.412;Tic=55;summerPoint=55;CFMRatio_in=0.30;CFMRatio_out=1; 
CFM_in_design=90696;% design airflow rate for the interior zone 
CFM_ex_design=54000;% design airflow rate for the exterior zone 
Ti_sm=75;Ti_in_wt=75;Ti_ex_wt=75; 
% yearly indoor air temperature for interior zone and the exterior zone 
AirCapRou60=1.06; % 60*rou*Cp: Btu min/ft^3 F hr . Energy Btu/hr= 
AirCap60*CFM*delt 
SAT_in_summer=55;SAT_in_winter=60; 
SAT_in=ones(8760,1).*SAT_in_summer; 
SAT_ex_summer=55;SAT_ex_winter=Ti_ex_wt; 
Ti_in= (originalData.data(:,4)> summerPoint).*Ti_sm + 
(originalData.data(:,4)<= summerPoint).*Ti_in_wt; 
Ti_ex= (originalData.data(:,4)> summerPoint).*Ti_sm + 
(originalData.data(:,4)<= summerPoint).*Ti_ex_wt; 
SAT_ex=(originalData.data(:,4)>70).*SAT_ex_summer+... 
    (originalData.data(:,4)< 
55).*SAT_ex_winter+(originalData.data(:,4)<=70).*... 
    (originalData.data(:,4)>= 55).*round(148-
(4/3).*originalData.data(:,4)); 
  
OAinIAQ=6636.5; % 12% 
OAexIAQd=7263.5; % 27% 
AirDensity=0.0736; % lbm/cfm 
Ocu_Schedule=[zeros(7,1);ones(9,1);zeros(8,1)]; % occupancy 
scheduleones(24,1);% 
Ocu_Density=[zeros(7,1);ones(9,1);zeros(8,1)]; % occupancy density 
OAinIAQ=OAinIAQ.*Ocu_Density; 
OAexIAQd=OAexIAQd.*Ocu_Density; 
Tec=60;Trc=75; 
  
%% this is the explanation of the functions 
% Env_Load_Coeffs.glass=[M_Glass_sol Qsol_Jan_PerArea]; 
% M_Glass_sol: W/sqf K, Qsol_Jan_PerArea: W/sqf:  
% Env_Load_Coeffs.int=[Qt_Int M_Int_Sol Qts_IntRoof_Jan]; 
% Env_Load_Coeffs.ext=[Qt_Ext M_Ext_Sol Qts_Ext_Jan]; 
% M_Glass_sol*(Weather_Data(:,4)-Tphc)+Qsol_Jan_PerArea; 
OAinIAQY=[];OAexIAQdY=[]; 
for i=1:365 
    OAinIAQY=[OAinIAQY;OAinIAQ]; 
    OAexIAQdY=[OAexIAQdY;OAexIAQd]; 
end 
  
%% get the basic equation coefficients 
Tpc=100;%92 
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Tph=30;% outside design temperature 
Bld_Width=70;Bld_Length=270;%ft 
Side_Width=16; %ft 
Ele_Area=900; 
Floor_Area=Bld_Length*Bld_Width-Ele_Area; %sft 
Int_Area=(Bld_Width-(2*Side_Width))*(Bld_Length-(2*Side_Width))-
Ele_Area/2;% sft 
Ext_Area=Floor_Area-Int_Area; % sft 
Area=[Floor_Area Int_Area Ext_Area]; % area of each floor to calcuate 
the load/ sft 
interLoad=intLoad(Area,Ocu_Density'); % 24 hours repeat pattern, W/sft 
EnvCoeff=Envelop(Area); 
TotalArea= Area*10; % 10 story, sft 
%% data interpretation 
%Weather_Data column 1: month (1-12) 
%Weather_Data column 2: day (1 to 31, change may happen) 
%Weather_Data column 3: hours (1 to 24) 
%Weather_Data column 4: dry bulb (F) 
%Weather_Data column 5: wet bulb (F) 
%Weather_Data column 6: dewpoint (F) 
%Weather_Data column 7: Relative humidity ration (%) 
%Weather_Data column 8: HumidityRatio (lbmw/lbma) 
%Weather_Data column 9: Solar global horizontal (W/m2) 
%Weather_Data column 10: Solar direct norm (W/m2) 
%Weather_Data column 11: Wind speed (MPH) 
%Weather_Data column 12: Wind direction (degree) 
% LoadData column 1-3: month, day and hours 
% LoadData column 4: Glass solar load, exterior zone W 
% LoadData column 5: Wall transmission load, exterior zone W 
% LoadData column 6: All envelope (Wall, column, window and roof all 
included) transmission load due to solar effect, exterior zone W 
% LoadData column 7: Internal sensible load, exterior zone W 
% LoadData column 8: Exterior zone sensible load summary, W 
% LoadData column 9: roof transmission load, interior zone W 
% LoadData column 10: Solar load through roof, interior zone W 
% LoadData column 11: Internal sensible load, interior zone W 
% LoadData column 12: Interior zone load summary, W 
% LoadData column 13: Exterior zone latent load, W 
% LoadData column 14: Interior zone latent load, W 
  
%% basic load simulation, in W 
LoadData=originalData.data(:,1:3); 
LoadData(:,4)=((originalData.data(:,4)-
Tph)./1.8.*EnvCoeff.glass(1)+EnvCoeff.glass(2)).*TotalArea(3); % solar 
glass 
LoadData(:,5)=(originalData.data(:,4)-
Ti_ex)./1.8.*EnvCoeff.ext(1).*TotalArea(3); % transmission 
LoadData(:,6)=((originalData.data(:,4)-
Tph)./1.8.*EnvCoeff.ext(2)+EnvCoeff.ext(3)).*TotalArea(3); % opaque 
solar 
inload_ExtZoneSen=[];% repeat 365 times for the same schedule of 
internal load 
for i=1:365 
    
inload_ExtZoneSen=[inload_ExtZoneSen;interLoad.ext(:,2).*TotalArea(3)]; 
end 
LoadData(:,7)=inload_ExtZoneSen; 
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LoadData(:,8)=LoadData(:,4)+LoadData(:,5)+LoadData(:,6)+LoadData(:,7); % 
W 
  
LoadData(:,9)=(originalData.data(:,4)-
Ti_in)./1.8.*EnvCoeff.int(1).*TotalArea(2); 
LoadData(:,10)=((originalData.data(:,4)-
Tph)./1.8.*EnvCoeff.int(2)+EnvCoeff.ext(3)).*TotalArea(2); 
inload_IntZoneSen=[]; 
for i=1:365 
    
inload_IntZoneSen=[inload_IntZoneSen;interLoad.int(:,2).*TotalArea(2)]; 
end 
LoadData(:,11)=inload_IntZoneSen; 
LoadData(:,12)=LoadData(:,9)+LoadData(:,10)+LoadData(:,11); 
  
inload_ExtZoneLat=[];% repeat 365 times for the same schedule of 
internal load 
for i=1:365 
    
inload_ExtZoneLat=[inload_ExtZoneLat;interLoad.ext(:,3).*TotalArea(3)]; 
end 
LoadData(:,13)=inload_ExtZoneLat; 
  
inload_IntZoneLat=[];% repeat 365 times for the same schedule of 
internal load 
for i=1:365 
    
inload_IntZoneLat=[inload_IntZoneLat;interLoad.int(:,3).*TotalArea(2)]; 
end 
LoadData(:,14)=inload_IntZoneLat; 
  
%% calculate outdoor air humidity and anthalpy 
OAhumDesnity=originalData.data(:,8); % lbmw/lbma 
OAanthalpy=0.24.*originalData.data(:,4)+OAhumDesnity.*... 
    (0.444*originalData.data(:,4)+970); 
% Btu/lbm 
% it can be a negative value if the air temp is below 0 C degree 
  
%% control and energy simulation 
%% Now Start the IAHU simulation 
% SAT of the interior zone is the same as TAHU, SAT of the exterior 
zone is 
% optimized under the control algorithm. 
% meanwhile, the outside air intake ratio is dynamic according to the 
IAHU 
% algorithm.  the initialization should be made at the begining 
CCLAW_asump_in=ones(8760,1).*0.0082; % lbw/lba , 55F, 90% 
Ocu_Schedule_in=[]; 
for i=1:365 
    Ocu_Schedule_in=[Ocu_Schedule_in;Ocu_Schedule]; 
end 
Schedule_in= Ocu_Schedule_in; 
Loadsen_in=LoadData(:,12).*W2BTUhr; % Btu/hr 
Loadlat_in=LoadData(:,14).*W2BTUhr; % Btu/hr 
QCS_in=zeros(8760,1); 
QCL_in=zeros(8760,1); 
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QH_in=zeros(8760,1); 
QRH_in=zeros(8760,1); 
  
RAW_in=ones(8760,1).*0.0082; 
CCLAW_in=ones(8760,1).*0.0082; 
MAT_in=Ti_in; % F 
DAT_in=Ti_in; % F 
MAW_in=RAW_in; % lbw/lba 
SA_CFM_Required_in=(Loadsen_in./(AirCapRou60.*(Ti_in-SAT_in))); 
SA_CFM_in=max(SA_CFM_Required_in,CFM_in_design*CFMRatio_in); 
  
OA_IAQ_in=OAinIAQY; % vector 
k=(Ti_in-SAT_in)./(Ti_in-originalData.data(:,4)); 
OA_eco_beta_in=((k>0).*(k<=1).*k+(k>1).*(originalData.data(:,4)<Trc)).*
Schedule_in;  
%acceptable Economizer has a positive ratio, Trc=70 
OA_IAQ_beta_in=OA_IAQ_in./SA_CFM_in.*Schedule_in; 
OA_beta_in=max(OA_eco_beta_in,OA_IAQ_beta_in); 
OA_CFM_in=OA_beta_in.*SA_CFM_in; 
  
  
CCLAW_asump_in_I=ones(8760,1).*0.0082; % lbw/lba , 55F, 90% 
Ocu_Schedule_I=[]; 
for i=1:365 
    Ocu_Schedule_I=[Ocu_Schedule_I;Ocu_Schedule]; 
end 
Schedule_I= Ocu_Schedule_I; 
Loadsen_in_I=LoadData(:,12).*W2BTUhr; % Btu/hr 
Loadlat_in_I=LoadData(:,14).*W2BTUhr; % Btu/hr 
QCS_in_I=zeros(8760,1); 
QCL_in_I=zeros(8760,1); 
QH_in_I=zeros(8760,1); 
QRH_in_I=zeros(8760,1); 
  
RAW_in_I=ones(8760,1).*0.0082; 
CCLAW_in_I=ones(8760,1).*0.0082; 
SAT_in_I=SAT_in; 
Ti_in_I=Ti_in; 
MAT_in_I=Ti_in; % F 
DAT_in_I=Ti_in; % F 
MAW_in_I=RAW_in_I; % lbw/lba 
SA_CFM_Required_in_I=(Loadsen_in_I./(AirCapRou60.*(Ti_in_I-SAT_in_I))); 
SA_CFM_in_I=max(SA_CFM_Required_in_I,CFM_in_design*CFMRatio_in); 
  
OA_IAQ_in_I=Schedule_I.*OAinIAQY; % based on schedule 
k=(Ti_in_I-SAT_in_I)./(Ti_in_I-originalData.data(:,4)); 
OA_eco_beta_in_I=((k>0).*(k<=1).*k+(k>1).*(originalData.data(:,4)<Trc))
; % acceptable Economizer has a positive ratio, Trc=70 
OA_IAQ_beta_in_I=OA_IAQ_in_I./SA_CFM_in_I; 
OA_beta_in_I=max(OA_eco_beta_in_I,OA_IAQ_beta_in_I); 
OA_CFM_in_I=OA_beta_in_I.*SA_CFM_in_I; 
  
induct_Ratio=3; 
CCLAW_asump_ex=ones(8760,1).*0.0082; % lbw/lba , 55F, 90% 
Ocu_Schedule_ex=[]; 
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for i=1:365 
    Ocu_Schedule_ex=[Ocu_Schedule_ex;Ocu_Schedule]; 
end 
Schedule_ex= Ocu_Schedule_ex; 
Loadsen_ex=LoadData(:,8).*W2BTUhr; % Btu/hr 
Loadlat_ex=LoadData(:,13).*W2BTUhr; % Btu/hr 
QCS_ex=zeros(8760,1); 
QCL_ex=zeros(8760,1); 
QH_ex=zeros(8760,1); 
QRCS_ex=zeros(8760,1); 
QRCL_ex=zeros(8760,1); 
QRH_ex=zeros(8760,1); 
  
RAW_ex=ones(8760,1).*0.0082; 
CCLAW_ex=ones(8760,1).*0.0082; 
RA2W_ex=CCLAW_ex; % lbw/lba 
MAW_ex=ones(8760,1).*0.0082; % lbw/lba 
DAW_ex=ones(8760,1).*0.0082;% lbw/lba 
MAT_ex=Ti_ex; % F 
RA2T_ex=Ti_ex; % F degree 
DAT_ex=Ti_ex; % F 
SA_CFM_ex=ones(8760,1).*36000; 
RA2_CFM_ex=SA_CFM_ex.*induct_Ratio; 
  
OA_IAQd_ex=OAexIAQdY; % based on schedule 
OA_IAQd_beta_ex=OA_IAQd_ex./SA_CFM_ex.*Schedule_ex; 
  
k=(Ti_ex-SAT_ex)./(Ti_ex-originalData.data(:,4)); 
OA_eco_beta_ex=(((k>0).*(k<=1).*k+(k>1).*(originalData.data(:,4)<Trc)))
.*Schedule_ex; % acceptable Economizer has a positive ratio, Trc=70 
OA_beta_ex=max(OA_eco_beta_ex,OA_IAQd_beta_ex); 
OA_CFM_ex=OA_beta_ex.*SA_CFM_ex; 
  
induct_Ratio=3; 
CCLAW_asump_ex_I=ones(8760,1).*0.0082; % lbw/lba , 55F, 90% 
Loadsen_ex_I=LoadData(:,8).*W2BTUhr; % Btu/hr 
Loadlat_ex_I=LoadData(:,13).*W2BTUhr; % Btu/hr 
QCS_ex_I=zeros(8760,1); 
QCL_ex_I=zeros(8760,1); 
QH_ex_I=zeros(8760,1); 
QRCS_ex_I=zeros(8760,1); 
QRCL_ex_I=zeros(8760,1); 
QRH_ex_I=zeros(8760,1); 
  
RAW_ex_I=ones(8760,1).*0.0082; 
CCLAW_ex_I=ones(8760,1).*0.0082; 
RA2W_ex_I=CCLAW_ex_I; % lbw/lba 
MAW_ex_I=ones(8760,1).*0.0082; % lbw/lba 
DAW_ex_I=ones(8760,1).*0.0082;% lbw/lba 
Ti_ex_I=Ti_ex; 
SAT_ex_I=SAT_ex; 
MAT_ex_I=Ti_ex; % F 
RA2T_ex_I=Ti_ex; % F degree 
DAT_ex_I=Ti_ex; % F 
SA_CFM_ex_I=ones(8760,1).*36000; 
RA2_CFM_ex_I=SA_CFM_ex_I.*induct_Ratio; 
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OA_IAQd_ex_I=Schedule_I.*OAexIAQdY; % based on schedule 
OA_IAQd_beta_ex_I=OA_IAQd_ex_I./SA_CFM_ex_I; 
OA_IAQ_beta_ex_I=zeros(8760,1); 
  
k=(Ti_ex_I-SAT_ex_I)./(Ti_ex_I-originalData.data(:,4)); 
OA_eco_beta_ex_I=(((k>0).*(k<=1).*k+(k>1).*(originalData.data(:,4)<Trc)
)); % acceptable Economizer has a positive ratio, Trc=70 
OA_beta_ex_I=max(OA_eco_beta_ex_I,OA_IAQd_beta_ex_I); 
OA_CFM_ex_I=OA_beta_ex_I.*SA_CFM_ex_I; 
  
MoveAir_CFM=zeros(8760,1); 
Gama=zeros(8760,1).*Schedule_I; 
Fai=SA_CFM_in_I./(SA_CFM_in_I+SA_CFM_ex_I).*Schedule_I; 
Dlt=zeros(8760,1); 
Kexi=zeros(8760,1); 
Nanda=zeros(8760,1); 
  
X=1; 
Delt_CFM=3000;% 3000 cfm exhaust from the interior zone 
  
ACase1HtSaving=0;ACase1ClSaving=0; 
ACase2HtSaving=0;ACase2ClSaving=0; 
ACase3HtSaving=0;ACase3ClSaving=0; 
ACase4HtSaving=0;ACase4ClSaving=0; 
ACase1Ht=0;ACase1Cl=0; 
ACase2Ht=0;ACase2Cl=0; 
ACase3Ht=0;ACase3Cl=0; 
ACase4Ht=0;ACase4Cl=0; 
  
III=[];AAA=[]; 
AAB=[]; 
for i=1:8760 
    if (Schedule_I(i)>0) 
        %% 
        if (originalData.data(i,4)<=Tic) % Tic is 55 F 
            %% case 1 
            
[Gama(i),Dlt(i),Kexi(i)]=sub1(OA_beta_in_I(i),SA_CFM_in_I(i),... 
                SA_CFM_ex_I(i),X,Delt_CFM/SA_CFM_in_I(i)); 
            
OA_IAQ_beta_ex_I(i)=beIAQ(OA_IAQd_beta_ex_I(i),Gama(i),Fai(i),... 
                OA_IAQ_beta_in_I(i),OA_beta_in_I(i)); 
            OA_beta_ex_I(i)=max(OA_IAQ_beta_ex_I(i),0); 
            OA_CFM_ex_I(i)=OA_beta_ex_I(i)*SA_CFM_ex_I(i); 
            MoveAir_CFM(i)=Gama(i)*SA_CFM_in_I(i); 
            %% 
            
resulinI=intVAV(OA_CFM_in_I(i),OAhumDesnity(i),originalData.data(i,4),S
AT_in_I(i),... 
            
CCLAW_asump_in_I(i),SA_CFM_in_I(i),Ti_in_I(i),Loadsen_in_I(i),Loadlat_i
n_I(i)); 
            MAT_in_I(i)=resulinI(1); 
            MAW_in_I(i)=resulinI(2); 
            CCLAW_in_I(i)=resulinI(3); 
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            DAT_in_I(i)=resulinI(4); 
            RAW_in_I(i)=resulinI(5); 
            QCS_in_I(i)=resulinI(6); 
            QCL_in_I(i)=resulinI(7); 
            QH_in_I(i)=resulinI(8); 
            QRH_in_I(i)=resulinI(9); 
            %% 
            
resul=extCAV(OA_CFM_ex(i),OAhumDesnity(i),originalData.data(i,4),... 
            SAT_ex(i),CCLAW_asump_ex(i),SA_CFM_ex(i),RA2_CFM_ex(i),... 
            Ti_ex(i),Loadsen_ex(i),Loadlat_ex(i)); 
            MAT_ex(i)=resul(1); 
            MAW_ex(i)=resul(2); 
            CCLAW_ex(i)=resul(3); 
            RA2T_ex(i)=resul(4); 
            RA2W_ex(i)=resul(5); 
            DAT_ex(i)=resul(6); 
            DAW_ex(i)=resul(7); 
            RAW_ex(i)=resul(8); 
            QCS_ex(i)=resul(9); 
            QCL_ex(i)=resul(10); 
            QH_ex(i)=resul(11); 
            QRCS_ex(i)=resul(12); 
            QRCL_ex(i)=resul(13); 
            QRH_ex(i)=resul(14); 
            %% 
            
resultexI=extCAVI(OA_CFM_ex_I(i),OAhumDesnity(i),originalData.data(i,4)
,... 
            
SAT_ex_I(i),CCLAW_asump_ex_I(i),SA_CFM_ex_I(i),RA2_CFM_ex_I(i),... 
            
Ti_in_I(i),Ti_ex_I(i),RAW_in_I(i),Loadsen_ex_I(i),Loadlat_ex_I(i),MoveA
ir_CFM(i)); 
            MAT_ex_I(i)=resultexI(1); 
            MAW_ex_I(i)=resultexI(2); 
            CCLAW_ex_I(i)=resultexI(3); 
            RA2T_ex_I(i)=resultexI(4); 
            RA2W_ex_I(i)=resultexI(5); 
            DAT_ex_I(i)=resultexI(6); 
            DAW_ex_I(i)=resultexI(7); 
            RAW_ex_I(i)=resultexI(8); 
            QCS_ex_I(i)=resultexI(9); 
            QCL_ex_I(i)=resultexI(10); 
            QH_ex_I(i)=resultexI(11); 
            QRCS_ex_I(i)=resultexI(12); 
            QRCL_ex_I(i)=resultexI(13); 
            QRH_ex_I(i)=resultexI(14); 
            ACase1Ht=ACase1Ht+QH_ex(i)+QRH_ex(i); 
            ACase1Cl=ACase1Cl+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i); 
            ACase1HtSaving=ACase1HtSaving+QH_ex(i)+QRH_ex(i)-
(QH_ex_I(i)... 
                +QRH_ex_I(i)); 
            
ACase1ClSaving=ACase1ClSaving+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i)-(QCS_ex_I(i)+QCL_ex_I(i)+QRCS_ex_I(i)+... 



 
138 

                QRCL_ex_I(i)); 
        end 
        %% case 2 
        if (Tic<originalData.data(i,4))&&(originalData.data(i,4)<= Tec) 
            % III=[III;OA_beta_in_I(i)]; 
            if X>0 % the sameving is brought by IAHU 
            if LoadData(i,8)<0 % exterior heating needed, no direct 
outside air intake 
                AAA=[AAA,i]; 
                
[Gama(i),Dlt(i),Kexi(i)]=sub1(OA_beta_in_I(i),SA_CFM_in_I(i),... 
                SA_CFM_ex_I(i),X,Delt_CFM/SA_CFM_in_I(i)); 
                
OA_IAQ_beta_ex_I(i)=beIAQ(OA_IAQd_beta_ex_I(i),Gama(i),Fai(i),... 
                OA_IAQ_beta_in_I(i),OA_beta_in_I(i)); 
                OA_beta_ex_I(i)=max(OA_IAQ_beta_ex_I(i),0); 
                SAT_ex_I(i)=Ti_ex_I(i); 
                OA_CFM_ex_I(i)=OA_beta_ex_I(i)*SA_CFM_ex_I(i); 
                MoveAir_CFM(i)=Gama(i)*SA_CFM_in_I(i); 
            else % cooling savings regardless of X 
  
                Gama(i)=0; 
                Dlt(i)=Delt_CFM/SA_CFM_in_I(i); 
                Kexi(i)=1-Dlt(i); 
                MoveAir_CFM(i)=0; 
                SAT_ex_I(i)=Ti_ex_I(i)-
Loadsen_ex_I(i)/(AirCapRou60*SA_CFM_ex_I(i)); 
                k=(Ti_ex_I(i)-SAT_ex_I(i))./(Ti_ex_I(i)-
originalData.data(i,4)); 
                
OA_eco_beta_ex_I(i)=(k>0)*(k<=1)*k+(k>1).*(originalData.data(i,4)<Trc); 
                
OA_beta_ex_I(i)=max(OA_eco_beta_ex_I(i),OA_IAQd_beta_ex_I(i)); 
                OA_CFM_ex_I(i)=OA_beta_ex_I(i).*SA_CFM_ex_I(i); 
            end 
            end 
%             
            
resulinI=intVAV(OA_CFM_in_I(i),OAhumDesnity(i),originalData.data(i,4),S
AT_in_I(i),... 
            
CCLAW_asump_in_I(i),SA_CFM_in_I(i),Ti_in_I(i),Loadsen_in_I(i),Loadlat_i
n_I(i)); 
            MAT_in_I(i)=resulinI(1); 
            MAW_in_I(i)=resulinI(2); 
            CCLAW_in_I(i)=resulinI(3); 
            DAT_in_I(i)=resulinI(4); 
            RAW_in_I(i)=resulinI(5); 
            QCS_in_I(i)=resulinI(6); 
            QCL_in_I(i)=resulinI(7); 
            QH_in_I(i)=resulinI(8); 
            QRH_in_I(i)=resulinI(9); 
             
            
resul=extCAV(OA_CFM_ex(i),OAhumDesnity(i),originalData.data(i,4),... 
            SAT_ex(i),CCLAW_asump_ex(i),SA_CFM_ex(i),RA2_CFM_ex(i),... 
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            Ti_ex(i),Loadsen_ex(i),Loadlat_ex(i)); 
            MAT_ex(i)=resul(1); 
            MAW_ex(i)=resul(2); 
            CCLAW_ex(i)=resul(3); 
            RA2T_ex(i)=resul(4); 
            RA2W_ex(i)=resul(5); 
            DAT_ex(i)=resul(6); 
            DAW_ex(i)=resul(7); 
            RAW_ex(i)=resul(8); 
            QCS_ex(i)=resul(9); 
            QCL_ex(i)=resul(10); 
            QH_ex(i)=resul(11); 
            QRCS_ex(i)=resul(12); 
            QRCL_ex(i)=resul(13); 
            QRH_ex(i)=resul(14); 
  
            
resultexI=extCAVI(OA_CFM_ex_I(i),OAhumDesnity(i),originalData.data(i,4)
,... 
            
SAT_ex_I(i),CCLAW_asump_ex_I(i),SA_CFM_ex_I(i),RA2_CFM_ex_I(i),... 
            
Ti_in_I(i),Ti_ex_I(i),RAW_in_I(i),Loadsen_ex_I(i),Loadlat_ex_I(i),MoveA
ir_CFM(i)); 
            MAT_ex_I(i)=resultexI(1); 
            MAW_ex_I(i)=resultexI(2); 
            CCLAW_ex_I(i)=resultexI(3); 
            RA2T_ex_I(i)=resultexI(4); 
            RA2W_ex_I(i)=resultexI(5); 
            DAT_ex_I(i)=resultexI(6); 
            DAW_ex_I(i)=resultexI(7); 
            RAW_ex_I(i)=resultexI(8); 
            QCS_ex_I(i)=resultexI(9); 
            QCL_ex_I(i)=resultexI(10); 
            QH_ex_I(i)=resultexI(11); 
            QRCS_ex_I(i)=resultexI(12); 
            QRCL_ex_I(i)=resultexI(13); 
            QRH_ex_I(i)=resultexI(14); 
            ACase2Ht=ACase2Ht+QH_ex(i)+QRH_ex(i); 
            ACase2Cl=ACase2Cl+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i); 
            ACase2HtSaving=ACase2HtSaving+QH_ex(i)+QRH_ex(i)-
(QH_ex_I(i)... 
                +QRH_ex_I(i)); 
            
ACase2ClSaving=ACase2ClSaving+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i)-(QCS_ex_I(i)+QCL_ex_I(i)+QRCS_ex_I(i)+... 
                QRCL_ex_I(i));             
        end 
        % case 3 
        if (originalData.data(i,4)> Tec)&&(originalData.data(i,4)<=Trc)% 
from 60 to 70 F 
           % III=[III;OA_beta_ex_I(i)]; 
            Enthp=0.24*Ti_ex_I(i)+0.0082*(0.444*Ti_ex_I(i)+970); 
            if (X>0) 
                if (OAanthalpy(i)<Enthp) 
            OA_beta_ex_I(i)=1; 
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            OA_CFM_ex_I(i)=OA_beta_ex_I(i)*SA_CFM_ex_I(i); 
            Gama(i)=0; 
            Dlt(i)=Delt_CFM/SA_CFM_in_I(i); 
            Kexi(i)=1-Dlt(i); 
            MoveAir_CFM(i)=0; 
            SAT_ex_I(i)=Ti_ex_I(i)-
Loadsen_ex_I(i)/(AirCapRou60*SA_CFM_ex_I(i)); 
                end 
            end 
%             
            
resulinI=intVAV(OA_CFM_in_I(i),OAhumDesnity(i),originalData.data(i,4),S
AT_in_I(i),... 
            
CCLAW_asump_in_I(i),SA_CFM_in_I(i),Ti_in_I(i),Loadsen_in_I(i),Loadlat_i
n_I(i)); 
            MAT_in_I(i)=resulinI(1); 
            MAW_in_I(i)=resulinI(2); 
            CCLAW_in_I(i)=resulinI(3); 
            DAT_in_I(i)=resulinI(4); 
            RAW_in_I(i)=resulinI(5); 
            QCS_in_I(i)=resulinI(6); 
            QCL_in_I(i)=resulinI(7); 
            QH_in_I(i)=resulinI(8); 
            QRH_in_I(i)=resulinI(9); 
             
            
resul=extCAV(OA_CFM_ex(i),OAhumDesnity(i),originalData.data(i,4),... 
            SAT_ex(i),CCLAW_asump_ex(i),SA_CFM_ex(i),RA2_CFM_ex(i),... 
            Ti_ex(i),Loadsen_ex(i),Loadlat_ex(i)); 
            MAT_ex(i)=resul(1); 
            MAW_ex(i)=resul(2); 
            CCLAW_ex(i)=resul(3); 
            RA2T_ex(i)=resul(4); 
            RA2W_ex(i)=resul(5); 
            DAT_ex(i)=resul(6); 
            DAW_ex(i)=resul(7); 
            RAW_ex(i)=resul(8); 
            QCS_ex(i)=resul(9); 
            QCL_ex(i)=resul(10); 
            QH_ex(i)=resul(11); 
            QRCS_ex(i)=resul(12); 
            QRCL_ex(i)=resul(13); 
            QRH_ex(i)=resul(14); 
  
            
resultexI=extCAVI(OA_CFM_ex_I(i),OAhumDesnity(i),originalData.data(i,4)
,... 
            
SAT_ex_I(i),CCLAW_asump_ex_I(i),SA_CFM_ex_I(i),RA2_CFM_ex_I(i),... 
            
Ti_in_I(i),Ti_ex_I(i),RAW_in_I(i),Loadsen_ex_I(i),Loadlat_ex_I(i),MoveA
ir_CFM(i)); 
            MAT_ex_I(i)=resultexI(1); 
            MAW_ex_I(i)=resultexI(2); 
            CCLAW_ex_I(i)=resultexI(3); 
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            RA2T_ex_I(i)=resultexI(4); 
            RA2W_ex_I(i)=resultexI(5); 
            DAT_ex_I(i)=resultexI(6); 
            DAW_ex_I(i)=resultexI(7); 
            RAW_ex_I(i)=resultexI(8); 
            QCS_ex_I(i)=resultexI(9); 
            QCL_ex_I(i)=resultexI(10); 
            QH_ex_I(i)=resultexI(11); 
            QRCS_ex_I(i)=resultexI(12); 
            QRCL_ex_I(i)=resultexI(13); 
            QRH_ex_I(i)=resultexI(14); 
            ACase3Ht=ACase3Ht+QH_ex(i)+QRH_ex(i); 
            ACase3Cl=ACase3Cl+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i); 
            ACase3HtSaving=ACase3HtSaving+QH_ex(i)+QRH_ex(i)-
(QH_ex_I(i)... 
                +QRH_ex_I(i)); 
            
ACase3ClSaving=ACase3ClSaving+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i)-(QCS_ex_I(i)+QCL_ex_I(i)+QRCS_ex_I(i)+... 
                QRCL_ex_I(i));     
        end 
                     
    %     
            Enthp=0.24*Ti_ex_I(i)+0.0082*(0.444*Ti_ex_I(i)+970); 
            case4=(originalData.data(i,4)> 
Tec)&&(originalData.data(i,4)<=Trc)&&... 
                (OAanthalpy(i)>Enthp); 
  
        if (case4||(originalData.data(i,4)> Trc)) 
            %% case 4 and 5 together 
            if (Loadsen_ex_I(i)< AirCapRou60*SA_CFM_ex_I(i)*... 
                    (Ti_ex_I(i)-SAT_ex_I(i))) 
                BiTemp=OA_IAQd_beta_ex_I(i)*(1-
Fai(i))/Fai(i)+OA_IAQ_beta_in_I(i); 
                GamaTemp=BiTemp; 
                if (GamaTemp<=(X*(1-
Fai(i))/Fai(i)))&&(BiTemp>=0)&&(BiTemp<=1) 
                    Gama(i)=GamaTemp; 
                    OA_beta_in_I(i)=max(OA_IAQ_beta_ex_I(i),0); 
                    OA_beta_ex_I(i)=0; 
                    SAT_ex_I(i)=Ti_ex_I(i); 
                else 
                    Gama(i)=0; 
                    Dlt(i)=Delt_CFM/SA_CFM_in_I(i); 
                end 
            else  
                % either not mild weather or IAHU not possible 
                %OA_CFM_ex_I(i)=OA_beta_ex_I(i)*SA_CFM_ex_I(i); 
                Gama(i)=0; 
                Dlt(i)=Delt_CFM/SA_CFM_in_I(i); 
                Kexi(i)=1-Dlt(i); 
                MoveAir_CFM(i)=0; 
                OA_beta_ex_I(i)=OA_IAQd_beta_ex_I(i); 
            end 
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resulin=intVAV(OA_CFM_in(i),OAhumDesnity(i),originalData.data(i,4),SAT_
in(i),... 
            
CCLAW_asump_in(i),SA_CFM_in(i),Ti_in(i),Loadsen_in(i),Loadlat_in(i)); 
            MAT_in(i)=resulin(1); 
            MAW_in(i)=resulin(2); 
            CCLAW_in(i)=resulin(3); 
            DAT_in(i)=resulin(4); 
            RAW_in(i)=resulin(5); 
            QCS_in(i)=resulin(6); 
            QCL_in(i)=resulin(7); 
            QH_in(i)=resulin(8); 
            QRH_in(i)=resulin(9); 
  
            
resulinI=intVAV(OA_CFM_in_I(i),OAhumDesnity(i),originalData.data(i,4),S
AT_in_I(i),... 
            
CCLAW_asump_in_I(i),SA_CFM_in_I(i),Ti_in_I(i),Loadsen_in_I(i),Loadlat_i
n_I(i)); 
            MAT_in_I(i)=resulinI(1); 
            MAW_in_I(i)=resulinI(2); 
            CCLAW_in_I(i)=resulinI(3); 
            DAT_in_I(i)=resulinI(4); 
            RAW_in_I(i)=resulinI(5); 
            QCS_in_I(i)=resulinI(6); 
            QCL_in_I(i)=resulinI(7); 
            QH_in_I(i)=resulinI(8); 
            QRH_in_I(i)=resulinI(9); 
             
            
resul=extCAV(OA_CFM_ex(i),OAhumDesnity(i),originalData.data(i,4),... 
            SAT_ex(i),CCLAW_asump_ex(i),SA_CFM_ex(i),RA2_CFM_ex(i),... 
            Ti_ex(i),Loadsen_ex(i),Loadlat_ex(i)); 
%             
resul=extCAVI(OA_CFM_ex(i),OAhumDesnity(i),originalData.data(i,4),... 
%             
SAT_ex(i),CCLAW_asump_ex_I(i),SA_CFM_ex_I(i),RA2_CFM_ex(i),... 
%             
Ti_ex(i),Ti_ex(i),RAW_in_I(i),Loadsen_ex(i),Loadlat_ex(i),0); 
            MAT_ex(i)=resul(1); 
            MAW_ex(i)=resul(2); 
            CCLAW_ex(i)=resul(3); 
            RA2T_ex(i)=resul(4); 
            RA2W_ex(i)=resul(5); 
            DAT_ex(i)=resul(6); 
            DAW_ex(i)=resul(7); 
            RAW_ex(i)=resul(8); 
            QCS_ex(i)=resul(9); 
            QCL_ex(i)=resul(10); 
            QH_ex(i)=resul(11); 
            QRCS_ex(i)=resul(12); 
            QRCL_ex(i)=resul(13); 
            QRH_ex(i)=resul(14); 
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resultexI=extCAVI(OA_CFM_ex_I(i),OAhumDesnity(i),originalData.data(i,4)
,... 
            
SAT_ex_I(i),CCLAW_asump_ex_I(i),SA_CFM_ex_I(i),RA2_CFM_ex_I(i),... 
            
Ti_in_I(i),Ti_ex_I(i),RAW_in_I(i),Loadsen_ex_I(i),Loadlat_ex_I(i),MoveA
ir_CFM(i)); 
            MAT_ex_I(i)=resultexI(1); 
            MAW_ex_I(i)=resultexI(2); 
            CCLAW_ex_I(i)=resultexI(3); 
            RA2T_ex_I(i)=resultexI(4); 
            RA2W_ex_I(i)=resultexI(5); 
            DAT_ex_I(i)=resultexI(6); 
            DAW_ex_I(i)=resultexI(7); 
            RAW_ex_I(i)=resultexI(8); 
            QCS_ex_I(i)=resultexI(9); 
            QCL_ex_I(i)=resultexI(10); 
            QH_ex_I(i)=resultexI(11); 
            QRCS_ex_I(i)=resultexI(12); 
            QRCL_ex_I(i)=resultexI(13); 
            QRH_ex_I(i)=resultexI(14); 
              ACase4Ht=ACase4Ht+QH_ex(i)+QRH_ex(i); 
              ACase4Cl=ACase4Cl+QCS_ex(i)+QCL_ex(i)+QRCS_ex(i)... 
                +QRCL_ex(i); 
            ACase4HtSaving=ACase4HtSaving+QH_ex(i)+QRH_ex(i)-
(QH_ex_I(i)... 
                +QRH_ex_I(i)); 
            
ACase4ClSaving=ACase4ClSaving+QRCS_ex(i)+QRCL_ex(i)+QCS_ex(i)... 
                +QCL_ex(i)+QCS_in(i)+QCL_in(i)-
(QRCS_ex_I(i)+QRCL_ex_I(i)+QCS_ex_I(i)... 
                +QCL_ex_I(i)+QCS_in_I(i)+QCL_in_I(i)); 
        end 
        ACooling_ex=sum(QRCS_ex)+sum(QRCL_ex); 
        ACooling_ex_I=sum(QRCS_ex_I)+sum(QRCL_ex_I); 
    end 
end 
TotalHeat_TAHU=sum(QH_ex+QRH_ex+QH_in_I+QRH_in_I); 
TotalCool_TAHU=sum(QCS_ex+QRCS_ex+QCL_ex+QRCL_ex+QCS_in_I+QCL_in_I); 
AAAA=[ACase1Ht,ACase1Cl,ACase1ClSaving-ACase1HtSaving;... 
    ACase2Ht,ACase2Cl,ACase2ClSaving-ACase2HtSaving;... 
    ACase3Ht,ACase3Cl,ACase3ClSaving-ACase3HtSaving;... 
    ACase4Ht,ACase4Cl,ACase4ClSaving-ACase4HtSaving]; 
  
TotalHeatingSaving=ACase1HtSaving+ACase2HtSaving+ACase3HtSaving+... 
    ACase4HtSaving; 
TotalCoolingSaving=ACase1ClSaving+ACase2ClSaving+ACase3ClSaving+... 
    ACase4ClSaving; 
% 
AATotalHeating_I=(sum(QH_in_I)+sum(QRH_in_I)+sum(QH_ex_I)+sum(QRH_in_I)
)/TotalArea(1); 
% 
AATotalCooling_I=(sum(QCS_in_I)+sum(QCL_in_I)+sum(QCS_ex_I)+sum(QCL_ex_
I)+... 
%     sum(QRCS_ex_I)+sum(QRCL_ex_I))/TotalArea(1); 
% Qheating_in_I=QH_in_I+QRH_in_I; 
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% Qcooling_in_I=QCS_in_I+QCL_in_I; 
% Qheating_ex_I=QH_ex_I+QRH_ex_I; 
% Qcooling_ex_I=QCS_ex_I+QCL_ex_I+QRCS_ex_I+QRCL_ex_I; 
% Qheating_I=Qheating_in_I+Qheating_ex_I; 
% Qcooling_I=Qcooling_in_I+Qcooling_ex_I; 
% monthI.a=originalData.data(:,1); 
% energyI.a=[Qheating_I,Qcooling_I]; 
% MonthlyEnergyI=Monthly(monthI,energyI); 
% figure(5);scatter(originalData.data(:,4),-
(Qheating_I),5,'*','r');hold on; 
% figure(6);scatter(originalData.data(:,4),Qcooling_I,5,'*','b');hold 
on; 
% figure(7);bar([1:12],-MonthlyEnergyI(:,2),'r');hold on; 
% figure(8);bar([1:12],MonthlyEnergyI(:,3),'b');hold on; 
% figure(3);h=bar([-
(MonthlyEnergy(:,2)),MonthlyEnergy(:,3)],'grouped');hold on; 

 

function Env_Load_Coeffs = Envelop(area) 
%% a proper formate of BIN data for simplified application 
originalData=importdata('Omaha_Weather.csv'); 
[hours, cols]=size(originalData.data); 
Ti_I_Summer=76;Ti_I_Winter=76; 
Ti_E_Summer=76;Ti_E_Winter=70; 
sqf2sqm=0.09290304;btuh2w=0.29307107; 
%% data interpretation 
%Weather_Data column 1: month (1-12) 
%Weather_Data column 2: day (1 to 31, change may happen) 
%Weather_Data column 3: hours (1 to 24) 
%Weather_Data column 4: dry bulb (F) 
%Weather_Data column 5: wet bulb (F) 
%Weather_Data column 6: dewpoint (F) 
%Weather_Data column 7: Relative humidity ration (%) 
%Weather_Data column 8: HumidityRatio (lbmw/lbma) 
%Weather_Data column 9: Solar global horizontal (W/m2) 
%Weather_Data column 10: Solar direct norm (W/m2) 
%Weather_Data column 11: Wind speed (MPH) 
%Weather_Data column 12: Wind direction (degree) 
%% Building Basic Info 
% Bld_Width=70;Bld_Length=270;%ft 
% Side_Width=16; %ft 
% Floor_Area=Bld_Length*Bld_Width; %ft 
% Int_Area=(Bld_Width-(2*Side_Width))*(Bld_Length-(2*Side_Width)); 
% Ext_Area=Floor_Area-Int_Area; 
% Floor_Area=18000; % sft 
% Int_Area=8594; % sft 
% Ext_Area=9406; % sft 
Floor_Area=area(1); % sft 
Int_Area=area(2); % sft 
Ext_Area=area(3); % sft 
East_Wdow=1755;West_Wdow=1248;North_Wdow=260;South_Wdow=260; % sft 
U_Wdow=3.596*1.2;% W/m2 K 
West_Wall=2442;East_Wall=1833.8;North_Wall=300;South_Wall=300;% sft, 
each floor 
Int_Roof=Int_Area; 
Ext_Roof=Floor_Area-Int_Roof; 
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U_Wall=0.8418;U_Roof=0.559;% W/m2 K 
West_Con=317.33;East_Con=317.33;North_Con=466.67;South_Con=466.67; 
U_Con=0.45;% W/m2 K 
% Density_Ocup=0.002;Lit=540;Density_Eqp=2;Unit_Lit=40; 
% 
Ext_Ocup=Density_Ocup*Ext_Area;Ext_Lit=Lit*Ext_Area/Floor_Area*Unit_Lit; 
% Ext_Eqp=Density_Eqp*Ext_Area; 
% 
Int_Ocup=Density_Ocup*Int_Area;Int_Lit=Lit*Int_Area/Floor_Area*Unit_Lit; 
% Int_Eqp=Density_Eqp*Int_Area; 
AG=[North_Wdow East_Wdow South_Wdow West_Wdow]; 
Wall_Area=[North_Wall East_Wall South_Wall West_Wall]; 
Column_Area=[North_Con East_Con South_Con West_Con]; 
U_Value=[U_Wall U_Con U_Wdow U_Roof]; 
%% Solar Through Glass Linear function of To 
MSHGF_Jul=[38 216 109 216];%N, E, S, W 
Ac_Hr=18; 
SC_Jul=[0.55 0.55 0.55 0.55]; 
CLFTOT_Jul=[11.57 5.46  6.43 5.46]; 
FPS_Jul=[0.78 0.78 0.78 0.78]; 
SLFD_Jul=[1 0.65 0.07 0.65]; 
Norht_AG2_Jul=AG(1,1)*SLFD_Jul(1,1)+sum(AG(1,2:4).*(1-SLFD_Jul(1,2:4))); 
AG2_Jul=[Norht_AG2_Jul AG(1,2:4).*SLFD_Jul(1,2:4)]; 
Qsol_Jul=sum(MSHGF_Jul.*SC_Jul.*CLFTOT_Jul.*FPS_Jul.*AG2_Jul)*btuh2w; 
Qsol_Jul_PerArea=Qsol_Jul/Floor_Area/Ac_Hr; 
MSHGF_Jan=[20 154 254 154];%N, E, S, W 
SC_Jan=[0.55 0.55 0.55 0.55]; 
CLFTOT_Jan=[11.57 5.46  6.43 5.46]; 
FPS_Jan=[0.61 0.61 0.61 0.61]; 
SLFD_Jan=[1 0.55 0.7 0.55]; 
Norht_AG2_Jan=AG(1,1)*SLFD_Jan(1,1)+sum(AG(1,2:4).*(1-SLFD_Jan(1,2:4))); 
AG2_Jan=[Norht_AG2_Jan AG(1,2:4).*SLFD_Jan(1,2:4)]; 
Qsol_Jan=sum(MSHGF_Jan.*SC_Jan.*CLFTOT_Jan.*FPS_Jan.*AG2_Jan)*btuh2w; % 
W 
Qsol_Jan_PerArea=Qsol_Jan/Floor_Area/24;% W/sft, winter divided by 24 
Tpc=100;% 92 
Tph=30;% outside design temperature -2 
Tpcc=(Tpc-32)/1.8; 
Tphc=(Tph-32)/1.8; 
M_Glass_sol=(Qsol_Jul_PerArea-Qsol_Jan_PerArea)/(Tpcc-Tphc);% W/K sqf 
%Sol_Load=M_Glass_sol*(Weather_Data(:,4)-Tphc)+Qsol_Jan_PerArea;%solar 
load for each floor, W/sqf 
%% Opaque surfaces, due to solar contribution, Linear Function of To 
CLTD_Jan=[0 6 21 6 3 3]./1.8;% from F degree to K degree 
CLTD_Jul=[5 15 10 15 22 22]./1.8;% from F degree to K degree 
K_Color=[0.83 0.83 0.83 0.83 0.75 0.75]; 
Qts_Wall_Jul=sum((FPS_Jul.*K_Color(1:4).*CLTD_Jul(1:4).*U_Value(1,1).*W
all_Area)')*sqf2sqm;% W/ K 
Qts_Wall_Jan=sum((FPS_Jan.*K_Color(1:4).*CLTD_Jan(1:4).*U_Value(1,1).*W
all_Area)')*sqf2sqm;% W/ K 
Qts_Colum_Jul=sum((FPS_Jul.*K_Color(1:4).*CLTD_Jul(1:4).*U_Value(1,2).*
Column_Area)')*sqf2sqm;% W/ K 
Qts_Colum_Jan=sum((FPS_Jan.*K_Color(1:4).*CLTD_Jan(1:4).*U_Value(1,2).*
Column_Area)')*sqf2sqm;% W/ K 
Qts_ExtRoof_Jul=(FPS_Jul(1)*K_Color(1,6)*CLTD_Jul(1,6)*U_Value(1,4)*Ext
_Roof)*sqf2sqm/10;% W/ K 
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Qts_ExtRoof_Jan=(FPS_Jan(1)*K_Color(1,6)*CLTD_Jan(1,6)*U_Value(1,4)*Ext
_Roof)*sqf2sqm/10;% W/ K 
Qts_IntRoof_Jul=(FPS_Jul(1)*K_Color(1,6)*CLTD_Jul(1,6)*U_Value(1,4)*Int
_Roof)*sqf2sqm/10;% W/ K 
Qts_IntRoof_Jan=(FPS_Jan(1)*K_Color(1,6)*CLTD_Jan(1,6)*U_Value(1,4)*Int
_Roof)*sqf2sqm/10;% W/ K 
Qts_IntRoof_Jul_PerArea=Qts_IntRoof_Jul/Floor_Area; % W/ K sft 
Qts_IntRoof_Jan_PerArea=Qts_IntRoof_Jan/Floor_Area; % W/ K sft 
Qts_Ext_Jul=Qts_Wall_Jul+Qts_Colum_Jul+Qts_ExtRoof_Jul; % W/ K 
Qts_Ext_Jan=Qts_Wall_Jan+Qts_Colum_Jan+Qts_ExtRoof_Jan; % W/ K 
Qts_Ext_Jul_PerArea=Qts_Ext_Jul/Floor_Area;  % W/ K sft  
Qts_Ext_Jan_PerArea=Qts_Ext_Jan/Floor_Area; % W/K sft  
M_Ext_Sol=(Qts_Ext_Jul_PerArea-Qts_Ext_Jan_PerArea)/(Tpcc-Tphc);% W/K 
sft 
M_Int_Sol=(Qts_IntRoof_Jul_PerArea-Qts_IntRoof_Jan_PerArea)/(Tpcc-
Tphc);% W/K sft 
%% Transmission Load, due to air-to-air difference 
Qt_Wdow=U_Value(1,3)*sum(AG)*sqf2sqm; % W/K 
%% Opaque surfaces, due to air-to-air difference 
Qt_Wall=U_Value(1,1)*sum(Wall_Area)*sqf2sqm; % W/ K 
Qt_Colum=U_Value(1,2)*sum(Column_Area)*sqf2sqm; % W/ K 
Qt_IntRoof=U_Value(1,4)*Int_Roof*sqf2sqm/10; % W/ K 
Qt_ExtRoof=U_Value(1,4)*Ext_Roof*sqf2sqm/10; % W/ K 
Qt_Int=Qt_IntRoof;% W/K sft 
Qt_Ext=Qt_Wall+Qt_Colum+Qt_ExtRoof+Qt_Wdow;% W/ K 
Qt_Int_PerArea=Qt_Int/Int_Area;% W/K sft 
Qt_Ext_PerArea=Qt_Ext/Ext_Area;% W/K sft 
%  
%% start outputs 
Env_Load_Coeffs.glass=[M_Glass_sol Qsol_Jan_PerArea]; % W/sft K,  W/sft 
Env_Load_Coeffs.int=[Qt_Int_PerArea M_Int_Sol 
Qts_IntRoof_Jan_PerArea]; % W/sft K, W/sft K, W/ sft K 
Env_Load_Coeffs.ext=[Qt_Ext_PerArea M_Ext_Sol Qts_Ext_Jan_PerArea]; % 
W/sft K,  

 

 

function 
resl=extCAV(OA_CFM,OAW,OA_temp,SAT_set,CCLW,SA_CFM,RA2_CFM,Ti_set,LoadS
en,LoadLat) 
% a subfunction for induction unit CAV simulation 
AirCapRou60=1.06; % 60*rou*Cp: Btu min/ft^3 F hr . Energy Btu/hr= 
AirCap60*CFM*delt 
W2BTUhr=3.412; 
OABeta=OA_CFM/SA_CFM; 
induRatio=RA2_CFM/SA_CFM; 
QCL=0;QCS=0;QH=0;heat=0;QRH=0;QRCS=0;QRCL=0; 
  
MAT=OABeta*OA_temp+(1-OABeta)*Ti_set; 
RA2T=Ti_set;DAT=SAT_set; 
RAW=CCLW;RA2W=CCLW;DAW=CCLW; 
MAW=CCLW;CCLAW=CCLW; 
  
k=0; 
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j=0; 
if (abs(MAT-SAT_set))>0.01 
k=AirCapRou60*SA_CFM*(MAT-SAT_set); % primary sensible load 
end 
j= LoadSen-AirCapRou60*SA_CFM*(Ti_set-SAT_set);  % secondary sensible 
load 
     
if (OA_temp>55) % dehumidification might be needed 
    QCS=(k>1)*k; 
    QH= (k<-1)*k; 
    QRCS= (j>1)*j; 
    QRH= (j<-1)*j; 
     
    if j>1 % secnodary cooling and possible dehumidification 
        RAW=(RA2W*RA2_CFM+CCLAW*SA_CFM+... 
       (LoadLat)/4840)/(RA2_CFM+SA_CFM); 
        MAW=RAW+OABeta*(OAW-RAW); 
        if (MAW<CCLAW)||(k<=0) 
            RAW=(RA2W*RA2_CFM+OABeta*SA_CFM*OAW+... 
                LoadLat/4840)/(RA2_CFM+OA_CFM); 
            MAW=RAW+OABeta*(OAW-RAW); 
            CCLAW=MAW; 
            if (RAW<RA2W)||(j<=0) 
                if OA_CFM>0 
                RAW=(LoadLat)/(4840*SA_CFM*OABeta)+OAW; 
                end 
                RA2W=RAW; 
            else 
                RA2W=CCLW; 
            end 
            MAW=RAW+OABeta*(OAW-RAW); 
            CCLAW=MAW; 
        else 
            if (RAW<RA2W)||(j<=0) 
                RAW=(LoadLat)/(4840*SA_CFM)+CCLW; 
                MAW=RAW+OABeta*(OAW-RAW); 
            end 
        end 
        QCL= 4840*SA_CFM*(MAW-CCLAW)*(k>1); % Btu/hr 
        QRCL= 4840*RA2_CFM*(RAW-RA2W); % Btu/hr 
    else % secondary heating, no dehumidification 
        RAW=(CCLAW*SA_CFM+LoadLat/4840)/(SA_CFM); 
        MAW=RAW+OABeta*(OAW-RAW); 
        if (MAW<CCLAW)||(k<=0) % if the primary no dehumidification 
either 
            if OA_CFM>0 
            RAW=(LoadLat)/(4840*SA_CFM*OABeta)+OAW; 
            end 
            RA2W=RAW; 
            MAW=RAW+OABeta*(OAW-RAW); 
            CCLAW=MAW; 
        end 
        QRCL=0; 
        QCL= 4840*SA_CFM*(MAW-CCLAW); % Btu/hr 
        DAW=(RA2W*induRatio+CCLAW)/(1+induRatio); 
    end 
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    RA2T= j/(AirCapRou60*RA2_CFM)+ Ti_set; 
    DAT= (RA2T*induRatio+SAT_set)/(1+induRatio); 
else % no dehumidification 
    QCS=(k>1)*k; 
    QH= (k<-1)*k; 
    QRCS= (j>1)*j; 
    QRH= (j<-1)*j; 
    RA2T= j/(AirCapRou60*RA2_CFM)+Ti_set; 
    DAT= (RA2T*induRatio+SAT_set)/(1+induRatio); 
    if OABeta>0 
    RAW=(LoadLat)/(4840*SA_CFM*OABeta)+OAW;% lbw/lba 
    end 
    RA2W=RAW; 
    MAW=RAW+OABeta*(OAW-RAW); 
    CCLAW=MAW; 
    DAW=(RA2W*induRatio+CCLAW)/(1+induRatio); 
    QRCL=0;QCL=0; 
end 
    
resl=[MAT,MAW,CCLAW,RA2T,RA2W,DAT,DAW,RAW,QCS,QCL,QH,QRCS,QRCL,QRH]; 
end 

 

 

function 
resl=extCAVI(OA_CFM,OAW,OA_temp,SAT_set,CCLW,SA_CFM,RA2_CFM,Ti_in_set,T
i_ex_set,RAW_in,LoadSen,LoadLat,Move_CFM) 
% a subfunction for induction unit CAV simulation 
AirCapRou60=1.06; % 60*rou*Cp: Btu min/ft^3 F hr . Energy Btu/hr= 
AirCap60*CFM*delt 
W2BTUhr=3.412; 
OABeta=OA_CFM/SA_CFM; 
induRatio=RA2_CFM/SA_CFM; 
QCL=0;QCS=0;QH=0;heat=0;QRH=0;QRCS=0;QRCL=0; 
  
MAT=OABeta*OA_temp+(1-OABeta)*Ti_ex_set; 
RA2T=Ti_ex_set;DAT=SAT_set; 
RAW=CCLW;RA2W=CCLW;DAW=CCLW; 
MAW=CCLW;CCLAW=CCLW; 
  
k=0; 
j=0; 
if (abs(MAT-SAT_set))>0.01 
k=AirCapRou60*SA_CFM*(MAT-SAT_set); 
end 
j= LoadSen-AirCapRou60*SA_CFM*(Ti_ex_set-SAT_set)-
AirCapRou60*Move_CFM*... 
    (Ti_ex_set-Ti_in_set); 
  
if (OA_temp>55) 
    QCS=(k>1)*k; 
    QH= (k<-1)*k; 
    QRCS= (j>1)*j; 
    QRH= (j<-1)*j; 
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    if j>1  % secnodary cooling and possible dehumidification 
        RAW=(RA2W*RA2_CFM+CCLAW*SA_CFM+RAW_in*Move_CFM+... 
       (LoadLat)/4840)/(RA2_CFM+SA_CFM+Move_CFM); 
        MAW=RAW+OABeta*(OAW-RAW); 
        if (MAW<CCLAW)||(k<=0) 
            RAW=(RA2W*RA2_CFM+OABeta*SA_CFM*OAW+RAW_in*Move_CFM+... 
                LoadLat/4840)/(RA2_CFM+OA_CFM+Move_CFM); 
            MAW=RAW+OABeta*(OAW-RAW); 
            CCLAW=MAW; 
            if (RAW<RA2W)||(j<=0) 
                if (OA_CFM+Move_CFM)>0 
                RAW=(LoadLat/4840+OA_CFM*OAW+Move_CFM*RAW_in)/... 
                    (OA_CFM+Move_CFM); 
                end 
                RA2W=RAW; 
            else 
                RA2W=CCLW; 
            end 
            MAW=RAW+OABeta*(OAW-RAW); 
            CCLAW=MAW; 
        else 
            if (RAW<RA2W)||(j<=0) 
                RAW=(LoadLat/4840+CCLW*SA_CFM+Move_CFM*RAW_in)/... 
                    (SA_CFM+Move_CFM); 
                MAW=RAW+OABeta*(OAW-RAW); 
            end 
        end 
        QCL= 4840*SA_CFM*(MAW-CCLAW); % Btu/hr 
        QRCL= 4840*RA2_CFM*(RAW-RA2W); % Btu/hr             
    else % secondary heating, no dehumidification 
        RAW=(CCLAW*SA_CFM+LoadLat/4840+Move_CFM*RAW_in)/... 
            (SA_CFM+Move_CFM); 
        MAW=RAW+OABeta*(OAW-RAW); 
        if (MAW<CCLAW)||(k<=0) % if the primary no dehumidification 
either 
            if (OA_CFM+Move_CFM)>0 
            
RAW=(LoadLat/4840+OA_CFM*OAW+RAW_in*Move_CFM)/(OA_CFM+Move_CFM); 
            end 
            RA2W=RAW; 
            MAW=RAW+OABeta*(OAW-RAW); 
            CCLAW=MAW; 
        end 
        QRCL=0; 
        QCL= 4840*SA_CFM*(MAW-CCLAW); % Btu/hr 
        DAW=(RA2W*induRatio+CCLAW)/(1+induRatio);     
    end 
    RA2T= j/(AirCapRou60*RA2_CFM)+Ti_ex_set; 
    DAT= (RA2T*induRatio+SAT_set)/(1+induRatio); 
else % no dehumidification 
    QCS=(k>1)*k; 
    QH= (k<-1)*k; 
    QRCS= (j>1)*j; 
    QRH= (j<-1)*j; 
    RA2T= j/(AirCapRou60*RA2_CFM)+Ti_ex_set; 
    DAT= (RA2T*induRatio+SAT_set)/(1+induRatio); 
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    if (OA_CFM+Move_CFM)>0 
    RAW=(LoadLat/4840+OA_CFM*OAW+RAW_in*Move_CFM)/(OA_CFM+Move_CFM);% 
lbw/lba   
    end 
    RA2W=RAW; 
    MAW=RAW+OABeta*(OAW-RAW); 
    CCLAW=MAW; 
    DAW=(RA2W*induRatio+CCLAW)/(1+induRatio); 
    QRCL=0;QCL=0; 
end 
    
resl=[MAT,MAW,CCLAW,RA2T,RA2W,DAT,DAW,RAW,QCS,QCL,QH,QRCS,QRCL,QRH]; 
end 

 

 

function interLoad=intLoad(area,OcuDensity) 
% zone type B, refer to ASHRAE Handbook 1997, CHP 28, Table 35-38 
Floor=area(1); 
Int=area(2); 
Ext=area(3); 
density_people_in=0.00344.*OcuDensity;% #/sft 
density_people_ex=0.00344.*OcuDensity;% #/sft 
density_equip_in=1; % W/sft 2.2 
density_equip_ex=1; % W/sft 2.2 
density_Light_in= 0.028571429; % fixture/sft 
density_Light_ex= 0.028571429; % fixture/sft 
CLF_peop_Ocp=[0 0 0 0 0 0 0 0 0 0.65 0.75 0.81 0.89 0.91 0.93 0.95 0.31 
0.22 0.17 0.13 0 0 0 0]; 
CLF_Lit_Ocp=[0 0 0 0 0 0 0 0 0 0.86 0.93 0.96 0.97 0.98 0.98 0.98 0.98 
0.98 0.98 0.98 0 0 0 0]; 
CLF_Unocp=ones(1,24); 
%% for interior zone 
% occupied hours (9-17) 
Light_Ocp_in = density_Light_in*50*0.9;% w/sft 
Equip_Ocp_in = density_equip_in*1*0.95;% w/sft 
Peop_Ocp_Sens_in= density_people_in.*75*0.95;% w/sft 
Peop_Ocp_Lat_in= density_people_in.*75*0.95;% w/sft 
%  unoccupied hours (18-8) 
Light_Unocp_in = density_Light_in*40*0.1;% w/sft 
Equip_Unocp_in = density_equip_in*1*0.05;% w/sft 
Peop_Unocp_Sens_in= density_people_in.*75*0.05;% w/sft 
Peop_Unocp_Lat_in= density_people_in.*75*0.05;% w/sft 
% over 24 hour course 
Light_in=(Light_Unocp_in.*CLF_Unocp+Light_Ocp_in.*CLF_Lit_Ocp)'; 
Equip_in=(Equip_Unocp_in.*CLF_Unocp+Equip_Ocp_in.*CLF_peop_Ocp)'; 
Peop_sens_in=(Peop_Unocp_Sens_in.*CLF_Unocp+Peop_Ocp_Sens_in.*CLF_peop_
Ocp)'; 
Peop_lat_in=(Peop_Unocp_Lat_in.*CLF_Unocp+Peop_Ocp_Lat_in.*CLF_peop_Ocp
)'; 
Time=[1:1:24]'; 
%% for exterior zone 
% occupied hours (9-17) 
Light_Ocp_ex = density_Light_ex*50*0.9;% w/sft 
Equip_Ocp_ex = density_equip_ex*1*0.95;% w/sft 
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Peop_Ocp_Sens_ex= density_people_ex.*75*0.95;% w/sft 
Peop_Ocp_Lat_ex= density_people_ex.*75*0.95;% w/sft 
%  unoccupied hours (18-8) 
Light_Unocp_ex = density_Light_ex*40*0.1;% w/sft 
Equip_Unocp_ex = density_equip_ex*1*0.05;% w/sft 
Peop_Unocp_Sens_ex= density_people_ex.*75*0.05;% w/sft 
Peop_Unocp_Lat_ex= density_people_ex.*75*0.05;% w/sft 
% over 24 hour course 
Light_ex=(Light_Unocp_ex.*CLF_Unocp+Light_Ocp_ex.*CLF_Lit_Ocp)'; 
Equip_ex=(Equip_Unocp_ex.*CLF_Unocp+Equip_Ocp_ex.*CLF_peop_Ocp)'; 
Peop_sens_ex=(Peop_Unocp_Sens_ex.*CLF_Unocp+Peop_Ocp_Sens_ex.*CLF_peop_
Ocp)'; 
Peop_lat_ex=(Peop_Unocp_Lat_ex.*CLF_Unocp+Peop_Ocp_Lat_ex.*CLF_peop_Ocp
)'; 
Time=[1:1:24]'; 
%% interior zone 
Int_sens_in=Light_in+Equip_in+Peop_sens_in; % W/sft 
%Int_sens_in=(Light+Equip+Peop_sens)*Int/Floor; % W/sft 
Int_lat_in=Peop_lat_in; % W/sft 
%Int_lat_in=Peop_lat*Int/Floor; % W/sft 
%% exterior zone 
Int_sens_ex=Light_ex+Equip_ex+Peop_sens_ex;% W/sft 
%Int_sens_ex=(Light+Equip+Peop_sens)*Ext/Floor; % W/sft 
Int_lat_ex=Peop_lat_ex; % W/sft 
%Int_lat_ex=Peop_lat*Ext/Floor; % W/sft 
  
%% overall output 
interLoad.int=[Time, Int_sens_in, Int_lat_in]; 
interLoad.ext=[Time, Int_sens_ex, Int_lat_ex]; 

 

 

function 
resl=intVAV(OA_CFM,OAW,OA_temp,SAT_set,CCLW,SA_CFM,Ti_set,LoadSen,LoadL
at) 
% a subfunction for single duct VAV simulation 
AirCapRou60=1.06; % 60*rou*Cp: Btu min/ft^3 F hr . Energy Btu/hr= 
AirCap60*CFM*delt 
W2BTUhr=3.412; 
OABeta=OA_CFM/SA_CFM; 
QCL=0;QCS=0;QH=0;heat=0;QRH=0; 
  
MAT=OABeta*OA_temp+(1-OABeta)*Ti_set; 
  
if abs((MAT-SAT_set))>0.01 
heat=AirCapRou60*SA_CFM*(MAT-SAT_set); % Btu/hr 
end 
if (MAT-SAT_set)<0 
QH=heat; 
else 
QCS=heat; 
end 
  
k=LoadSen-AirCapRou60*SA_CFM*(Ti_set-SAT_set); 
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if abs(k)>0.01 
    QRH=k; 
end 
  
if (OA_temp>55) 
RAW=(LoadLat)/(4840*SA_CFM)+CCLW; 
MAW=RAW+OABeta*(OAW-RAW); 
CCLAW=CCLW; 
  
    if (MAW<CCLAW)||(heat<=0) 
        if OABeta>0 
        RAW=(LoadLat)/(4840*SA_CFM*OABeta)+OAW; 
        end 
        MAW=RAW+OABeta*(OAW-RAW); 
        CCLAW=MAW; 
    end 
QCL=4840*SA_CFM*(MAW-CCLAW); % Btu/hr     
else 
    if OABeta>0 
    RAW=(LoadLat)/(4840*SA_CFM*OABeta)+OAW; 
    end 
    MAW=RAW+OABeta*(OAW-RAW); 
    CCLAW=MAW; 
    QCL=0; 
end 
  
DAT=-QRH/(AirCapRou60*SA_CFM)+SAT_set; 
  
resl=[MAT,MAW,CCLAW,DAT,RAW,QCS,QCL,QH,QRH]; 
end 
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Appendix B: 

Omaha is in climate zone 5A, latitude: 41.3, longitude: -95.9, heating: -2ºF (99%), 

cooling: 92ºF (1%). 

 

Figure B-0-1 DOE Climate zone map. Source: ASHRAE 90.1-2004 

 

Figure B-0-2 Mean dew-point temperature isolines for August 
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Figure B-0-3: Omaha OA condition psychrometric chart, yearly 

 

Figure B-0-4: Omaha OA condition psychrometric chart, summer 
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Figure B-0-5: Omaha OA condition psychrometric chart, winter 

 

Figure B-0-6: Case building side view 
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Figure B-0-7: Floor drawing for slot diffusers and induction units- 1 

 

Figure B-0-8: Floor drawing for slot diffusers and induction units- 2 
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Figure B-0-9: One mechanical room view 

 

Figure B-0-10: An induction unit 
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Figure B-0-11: The roof construction 

 

Figure B-0-12: The building wall layout 
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Figure B-0-13: The building elevation 
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Figure B-0-14: CAV induction unit system illustration 
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Figure B-0-15: Simulated hourly room air humidity, with x=0.4 

 

Figure B-0-16: OA intake ratio for the interior zone AHU under IAHU mode, x=0.4 



 
161 

 
Figure B-0-17: OA intake ration for the exterior zone AHU under IAHU mode, x=0.4 

Table B-0-1: Historical energy consumption for the whole case building 

Chilled Water and Steam Data 
Date Read Month Days Ton-hr Cost (CW) Steam,lbs  Cost (Steam) 
01/31/05 Jan 31 0   $         100.00  1,893,900   $     34,655.69  
02/28/05 Feb 28 0   $         100.00  1,305,800   $     28,935.43  
03/31/05 Mar 31 0   $         100.00  1,154,000   $     22,660.52  
04/30/05 Apr 30 36,948   $      8,191.37  289,551   $       9,331.85  
05/31/05 May 31 86,286   $    23,817.32  129,115   $       3,607.12  
06/30/04 Jun 30 145,556   $    36,592.01  350,100   $      5,993.82  
07/31/04 Jul 31 205,766   $    58,529.35  228,825   $       5,191.56  
08/31/04 Aug 31 178,265   $    42,651.74  133,113   $       2,441.03  
09/30/04 Sep 30 140,764   $    40,447.57  102,459   $       1,791.62  
10/31/04 Oct 31 38,403   $    13,673.84  214,831   $       3,193.79  
11/30/04 Nov 30 6,314  $      3,692.97 664,000   $       9,965.23  
12/31/04 Dec 31 0   $         814.91  1,331,400   $     23,272.36  
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