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Abstract

The tertiary structure of a maize (Zea mays ssp. mays) non-symbiotic hemoglobin (Hbm) was modeled using computer tools and the
known tertiary structure of rice Hb1 as a template. This method was tested by predicting the tertiary structure of soybean leghemoglobin a
(Lba) using rice Hb1 as a template. The tertiary structures of the predicted and native Lba were similar, indicating that our computer methods
could reliably predict the tertiary structures of plant Hbs. We next predicted the tertiary structure of Hbm. Hbm appears to have a long
pre-helix A and a large CD-loop. The positions of the distal and proximal His are identical in Hbm and rice Hb1, which suggests that heme-Fe
is hexacoordinate in Hbm and that the kinetic properties of Hbm and rice Hb1 are expected to be very similar, i.e. that Hbm has a high
O2-affinity. Thermostability analysis showed that Hbm CD-loop is unstable and may provide mobility to amino acids located at the heme
pocket for both ligand binding and stabilization and heme-Fe coordination. Analysis of the C-terminal half of Hbm showed the existence of a
pocket-like region (the N/C cavity) where interactions with organic molecules or proteins could be possible. Lys K94 protrudes into the N/C
cavity, suggesting that K94 may sense the binding of molecules to the N/C cavity. Thus, it is likely that the instability of the CD-loop and the
possibility of binding molecules to the N/C cavity are essential for positioning amino acids in the heme pocket and in regulating Hbm activity
and function.
© 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Hemoglobins (Hbs) are ancient O2-binding proteins that
have been identified in all kingdoms [27,29]. In plants, three
types of Hbs have been identified: symbiotic, non-symbiotic
(nsHbs) and truncated Hbs (tHbs) [22]. Symbiotic Hbs are
synthesized in root nodules of nitrogen fixing plants, and their
main function is to facilitate the diffusion of O2 to respiring
bacteroids [1,2]. Plant tHbs are short versions of the classical
globin fold. These proteins were recently detected in organs
of angiosperm species, such as Arabidopsis [28], barley (Gen-
bank accession number AF376063), maize (Genbank acces-
sion number AY104867) and wheat [18]. The function of plant
tHbs is not known.

NsHbs have been detected in a number of land plants, rang-
ing from primitive bryophytes [6] to angiosperms [4,22]. The
nshb genes are expressed in plant embryonic and vegetative
organs, and upregulation of nshb genes occurs in plants that
are subjected to energetic stress, such as microaerobiosis and
light limitation [19,24,26]. Although the function of nsHbs is
still not known, recent work suggests that these proteins play
important roles in plant metabolism. For example, it has been
proposed that barley nsHb functions by modulating the energy
status and NO-levels in transgenic maize cells [23] and
stressed alfalfa root cultures [10], respectively.

A characteristic of nsHbs is a very high affinity for O2

because of an extraordinarily low O2-dissociation constant
(k′O2). For example, the k′O2 value for rice recombinant
Hb1 is 316-fold lower than the k′O2 of sperm whale myoglo-
bin [4,5]. This observation suggests that nsHbs do not release
O2 after oxygenation, and that these proteins might not func-
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tion as O2-carriers. However, it has been hypothesized that
nsHbs interact with regulatory molecules in plants [4]. A pos-
sible consequence of such interactions might be a change in
the nsHb tertiary structure and kinetic constants, perhaps
allowing nsHbs to function as O2-carriers or as O2-donors.

The best characterized nsHbs are rice Hb1 and barley Hb
[5,8,11,14,15]; however, limited structural analysis has been
performed on other plant nsHbs. In this work we have uti-
lized computational methods to predict the tertiary structure
of a Hb from maize (Hbm) [3]. Results showed that Hbm and
rice Hb1 tertiary structures are almost identical, and suggest
that Hbm is a high O2-affinity protein whose function might
be modulated by binding of regulatory molecules.

2. Results and discussion

2.1. Modeling and general features of Hbm

Despite the elucidation of the rice recombinant Hb1 crys-
tal structure [14,15], only few analyses have been performed
on the structure of other plant nsHbs. Although the function
of nsHbs is not known, understanding the structural proper-
ties of nsHbs will help to clarify the role that these proteins
play in plant organs.A maize nshb gene (hbm) has been cloned
and characterized [3]. The deduced Hbm amino acid sequence
and hydropathy profiles were highly similar to rice Hb1 [3],
suggesting that the two proteins should have similar crystal
structures. In order to test this hypothesis, we have used com-
puter tools and rice Hb1 as a template to predict a possible
tertiary structure of Hbm. We have next used this model to
discern potential properties of the Hbm molecule.

A Hbm tertiary structure was obtained by replacing the
rice Hb1 primary sequence with the Hbm amino acid resi-

dues using the MUTATE and CHARMM tools of the Swis-
sPdbViewer program (see below). However, in order to test
the reliability of this method, we first predicted a structure
for soybean leghemoglobin a (Lba) using rice Hb1 as a tem-
plate (Fig. 1A), and compared the resulting Lba structure with
the native Lba crystal structure deposited in the Brookhaven
Protein Data Base (http://www.rcsb.org/pdb, accession num-
ber 1FSL). Fig. 1B shows that the tertiary structures of pre-
dicted and native Lba are similar, indicating that the SwissP-
dbViewer program and the structure of template rice Hb1 are
useful tools for predicting the tertiary structures of other plant
Hbs.

Program Cn3D and MUTATE tool of SwissPdbViewer
were used to align Hbm and rice Hb1 sequences, and to
replace Hbm amino acids in the rice Hb1 structure, respec-
tively. Thus, the initial structure for Hbm corresponded to a
rice Hb1 structure with the Hbm amino acid sequence. The
Hbm initial structure was used as template to predict a ther-
modynamically stable Hbm structure by using the CHARMM
tool of SwissPdbViewer. The resulting structure showed that
the Hbm tertiary structure is similar to that of rice Hb1 (Fig. 2).
Like rice Hb1, Hbm has a long pre-helixA and large CD-loop.
The positions of the distal and proximal His residues are iden-
tical in Hbm and rice Hb1, which suggests that in Hbm the
heme-Fe is hexacoordinate (see below).

2.2. Analysis of Hbm tertiary structure

Thermostability analysis showed that the N- and C-termini
and the CD-loop regions of Hbm and rice Hb1 structures are
relatively unstable thermodynamically (Fig. 3). This obser-
vation suggests that the instability of the N- and C-termini
and the CD-loop might provide high flexibility to the bottom
and left side of Hbm and rice Hb1. The existence of instabil-

Fig. 1. (A) A predicted tertiary structure of soybean Lba (blue) from the rice Hb1 template (green). (B) Overlapped tertiary structure of the predicted (magenta)
and native (blue) soybean Lba. Alpha helices are indicated with letters A–H. Ring structure above the heme corresponds to nicotinic acid. See Section 4 for
experimental details.
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ity in the N- and C-termini and CD-loop of Hbm and rice
Hb1 could affect the function of these proteins.

Analysis of the heme pocket of Hbm and rice Hb1 showed
that the key amino acid residues involved in ligand binding
and stabilization, and in heme-Fe coordination are located at
the same position and are in an identical orientation (Fig. 4).
In both proteins, Ne from the proximal and distal His resi-
dues are located 2.08 Å from the heme-Fe. This observation
shows that the proximal and distal His residues coordinate to
the heme-Fe in Hbm. Also, FCD1 is located 5.02 Å from the
heme-Fe and FCD1 and FB10 are located at the same dis-
tances from the distal His Ne in both Hbm and rice Hb1.
Because of these observations, it is likely that kinetic prop-

erties of Hbm and rice Hb1 are identical. The prediction is
that Hbm has an extremely low k′O2 constant because ligand
stabilization by distal His, which results in a very high
O2-affinity [5,14–16].

Ferric Hbs exhibit pseudoperoxidase activity. In the mecha-
nism of this reaction, electrons are transferred from Hbs to
H2O2 [13,20]. During pseudoperoxidase reactions of Lbs one
electron is transferred from an amino acid sidechain in the
Lb heme pocket, generating a cation radical. EPR analysis
showed that soybean Lba Y133 and lupin Lb Y138 are can-
didates for electron transfer [9]. Hbm Y151 is located at a
similar distance and orientation from heme-Fe as soybean Lba
Y133 and lupin Lb Y138 (Table 1, Fig. 4). This observation

Fig. 2. Comparison of the predicted Hbm (blue) and rice Hb1 (red) tertiary
structures. Tertiary structures are shown in the wireframe mode. Heme pros-
thetic group is shown from a side view. DisH above heme is distal His. Alpha
helices are indicated with letters A–H. See Section 4 for experimental details.

Fig. 3. Thermostability of Hbm (A) and rice Hb1 (B). Light blue to red colors show stable to unstable regions, respectively. Tertiary structures are shown in the
spacefill mode. Heme prosthetic group is shown in dark blue color. See Section 4 for experimental details.

Fig. 4. Comparison of the orientation and position of selected amino acids in
the Hbm (blue) and rice Hb1 (red) heme pocket. DisH and proxH are distal
and proximal His, respectively. See text for a detailed explanation.

893J. Sáenz-Rivera et al. / Plant Physiology and Biochemistry 42 (2004) 891–897



suggests that Hbm Y151 might function in electron transfer,
and that Hbm is likely to possess peroxidative activity.

The lengths of Hbm and rice Hb1 CD-loops are similar to
that from several plant and non-plant Hbs. However, the Hbm
and rice Hb1 CD-loops are unique in that they are extended,

poorly ordered and oriented outward (Fig. 5, upper panel).
Thermostability analysis showed that the Hbm and rice
Hb1 CD-loops are unstable and flexible (Fig. 3, above). The
apparent instability of the CD-loop in Hbm and rice Hb1 may
provide mobility to helix E, resulting in positioning the distal
His closer to the heme-Fe for hexacoordination and ligand
stabilization [15]. We tested this possibility by displacing the
Hbm CD-loop 0.5 Å upward and downward. Results showed
that the position of the distal and proximal His, FB10,
FCD1 andY151 changed with the CD-loop movement (Fig. 5,
lower panel). This observation suggests that the mobility of
CD-loop affects the positioning of amino acids located at the
heme pocket for both ligand binding and stabilization and
heme-Fe coordination. For example, it has been hypoth-
esized that the distal His dissociates from the heme-Fe in hexa-
coordinate Hbs before O2 can bind, and then moves back to

Table 1
Tyrosine (Y151/133/138) orientation in the Hbm and soybean and lupin Lbs
heme pocket

Tyrosine (Y) residue Orientationa Fe-Y(OH)
distance (Å)x (°) u (°) φ (°)

Hbm Y151 –177.17 –59.59 –53.94 8.03
Soybean Lb Y133b –179.61 –67.17 –54.04 8.38
Lupin Lb Y138b +178.39 –58.93 –54.00 8.57

a Omega (x), phi (u) and psi (φ) are dihedral angles of picked tyrosine.
b Y133 and Y138 coordinates were obtained from soybean and lupin Lb

structures with the accession numbers 1FSL and 2LH6, respectively.

Fig. 5. Upper panel: comparison of (A) Hbm (blue) and rice Hb1 (red) CD-loops, and (B) Hbm (blue) and soybean Lba (red) CD-loops and sperm whale
myoglobin helices C and D (black). Lower panel: positions of disH, proxH, FB10, FCD1 and Y151 after displacing the Hbm CD-loop 0.5 Å upward (green) or
downward (red). Amino acids in blue color show positions before CD-loop movement.
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stabilize the bound O2 [16,25]. Thus, it is likely that instabil-
ity of CD-loop is critical in Hbm and rice Hb1 for regulating
an open E closed conformation mechanism for ligand (i.e.
O2)-affinity.

Analysis of the C-terminal half of Hbm showed that the
pre-helix A, helices A, F and H and the C-terminus form a
pocket-like region (the N/C cavity) (Fig. 6A, B). Topology of
the N/C cavity suggests that either organic molecules or
protein-partners could interact with this region. Interaction
of Hbs with small molecules is well documented [7,21], and
it has also been suggested that interactions of nsHbs with cel-
lular metabolites could impact their function [4]. Thus, a pos-
sibility is that the N/C cavity is a region where Hbm interacts
with small molecules. An interesting observation is that Lys
K94 (which is located at the EF turn) protrudes into the N/C
cavity (Fig. 6C), which suggests that K94 may function as a
trigger if molecules accommodate into the N/C cavity. If this
is true, K94 might sense binding of molecules to the N/C

cavity and transmit a signal to helices E and F, where distal
and proximal His are located, respectively. This (K94) mecha-
nism may help to modulate Hbm kinetics and function in the
plant cell.

3. Conclusions

Analysis of the predicted structure of Hbm shows that Hbm
and rice Hb1 tertiary structures are similar and suggests that
the biochemical properties of both proteins are the same, i.e.
Hbm is a hexacoordinate Hb with a very high affinity for O2

because an extraordinarily low k′O2. Also, analyses from this
work predict that Hbm is a flexible protein, whose activity
(and function) is modulated through changes in the positions
of amino acid sidechains that are essential for ligand binding
and stabilization, such as the distal His, FB10 and FCD1. It is
likely that CD-loop instability and the possibility of binding

Fig. 6. Front (A) and back (B) views of Hbm C-terminal half showing the N/C cavity formed by N- and C-termini and helices A, F and H. Blue and red colors
show positively or negatively charged amino acids, respectively. (C) Location of Lys K94 in the EF turn indicates that it can protrude into the N/C cavity.
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molecules to the N/C cavity could affect the positions of
amino acids in the distal region of the heme pocket, and
thereby regulate Hbm activity and function in plant cells.

4. Methods

Prediction of tertiary structure, modeling and analysis of
Hbm were performed by using the computer programs
SwissPdbViewer and Cn3D. These programs are available
from the web sites http://www.expasy.ch/spdbv/ and
http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.shtml,
respectively.

4.1. Prediction and modeling of the Hbm tertiary structure

The Hbm amino acid sequence [3] and rice Hb1 tertiary
structure [15] were obtained from the GenBank database
(http://www.ncbi.nlm.nih.gov/GenBank/index) using the
accession numbers AAG01375 and 1D8U, respectively. Hbm
and rice Hb1 sequences were aligned by using the Cn3D pro-
gram. The first version of the Hbm tertiary structure was
obtained by replacing amino acids from the Hbm sequence
into the rice Hb1 sequence and tertiary structure by using the
MUTATE tool of SwissPdbViewer program. The final ver-
sion of the Hbm tertiary structure was obtained by using the
CHARMM tool of SwissPdbViewer program, which pre-
dicted a thermodynamically stable conformation for the Hbm
model.

In order to test the reliability of the above method, the ter-
tiary structure of soybean Lba was predicted by using rice
Hb1 structure as template. The resulting Lba model was com-
pared with the Lba tertiary structure [12,17] deposited in the
Brookhaven Protein Data Base (http://www.rcsb.org/pdb)
under the accession number 1FSL.

4.2. Analysis of Hbm tertiary structure

The predicted Hbm tertiary structure was analyzed by using
tools from the SwissPdbViewer program. Specific regions of
predicted Hbm were selected with the SHOW tool. Amino
acid residues that form the heme pocket, pre-helix A and heli-
ces F and H were selected with the DISPLAY RADIUS tool.
Surface areas were selected with the COMPUTE MOLECU-
LAR SURFACE tool. Charge distribution and temperature
factors were calculated with the COLOR TYPE and COLOR
B-FACTOR tools, respectively. Existence of hydrogen bonds
and electrostatic potentials were predicted and calculated with
the COMPUTE H-BONDS and COMPUTE ELECTRO-
STATIC POTENTIAL tools, respectively. Exposure of amino
acid residues from the Hbm structure was calculated with the
ACCESIBLE AA tool. Distances between atoms, amino acid
orientation and torsion angles were calculated by using
options from the program’s main menu.
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