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Ultrasonic radiative transfer in polycrystalline media:
Effects of a fluid—solid interface

Joseph A. Turner and Richard L. Weaver
Department of Theoretical and Applied Mechanics, 216 Talbot Laboratory, 104 South Wright Street,
University of lllinois at Urbana-Champaign, Urbana, lllinois 61801

(Received 14 November 1994; revised 9 May 1995; accepted 15 May 1995

In previous derivations of the ultrasonic radiative transfer equal#iRTE) for the modeling of
multiply scattered diffuse ultrasound in polycrystalline media, the boundary conditions appropriate
to experiments performed in a water bath were not used. In the present work, this fluid—solid
boundary condition is discussed as it applies to the URTE. An interpolation scheme is developed
that is consistent with the discrete ordinates method used for the solution of the URTE. Steady-state
and time-dependent results are presented for the solution of the URTE with a fluid—solid boundary
condition. The steady-state results show that diffusive behavior is exhibited nearer the specimen
surface than before. The time-dependent results show the qualitative change one might expect from
such a boundary condition. @995 Acoustical Society of America.

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35.Cg

INTRODUCTION The URTE was previously solved for both the steady-
state and time-dependent ca8édhese results showed that
Microstructural characterization of polycrystalline met- the multiply scattered energy contains much more micro-
als is often performed using ultrasonic backscatterstructural information than is available to conventional sin-
techniques The backscattered diffuse or incoherent sig-gly scattered measurements.For both of these problems a
nals, also called grain noise, contain microstructural informatransparent boundary condition was assumed such that the
tion about grain size, orientation, and composition which isdiffuse energy entering the medium was set to zero. How-
useful for materials characterization. The grain noise carever, experiments with diffuse ultrasound are ordinarily per-
also interfere with flaw detection. Understanding the scatterformed in a water bath. In this case, a large amount of the
ing mechanism is thus important. When the time and/orenergy incident on the front face of the specimen will be
length scales of a backscatter experiment are long comparaxherently reflected and not enter the specimen. A consider-
with the time and length scales of the random scatteringible amount of the internally scattered diffuse energy will
events occurring within the medium, multiple-scattering ef-likewise reflect from the interface back into the specimen
fects become important. The multiple-scattering problem haand be further scattered. Because these effects may become
two limits. In the limit of early times or weakly scattering important after only a few scatterings, they must be appro-
materials, and for experiments involving focused transducpriately included in the ultrasonic radiative transfer model.
ers, a single-scattering approximation has been successful f&eflective boundary conditions are also important when the
modeling grain noisé-3 This assumption implies that the specimen cannot be accurately modeled as semi-infinite so
incident wave strikes only one scatterer before being dethat reflections from the lower boundary must also be in-
tected. In the opposite limit, at late times after the energy hasluded.
scattered many times, the behavior is governed by a diffusion  In the next section the URTE with appropriate fluid—
equatior® The intermediate multiple-scattering regime hassolid boundary conditions is briefly discussed. Section II
not, however, been fully utilized for microstructural charac-contains the derivation of the reflection and transmission co-
terization possibly because of the lack of an adequate theosfficients necessary for the reflective boundary condition.

with which to describe corresponding experiments. Section Il contains the development of an interpolation
A method was recently proposed to model the multiplescheme which is necessary for use with the discrete ordinates

scattering of diffuse ultrasound in polycrystalline solution method! Steady-state and time-dependent results
materials>~” It has its foundations in optical radiative trans- Of the URTE with a reflective boundary condition are then

fer theory which was developed to quantify the diffuse scatiPresented in Secs. IV and V, respectively.

tering of light from planetary and stellar atmosphéete?.

The ultrasonic radiative transfer equatidRTE) is derived

for a polycrystalline medium through an examination of en-l- ULTRASONIC RADIATIVE TRANSFER THEORY

semble averaged responses of the elastic wave equation by cgnsider a polycrystalline specimen with Voigt average
use of the Bethe—Salpeter equattdtiThe URTE is expected longitudinal and transverse wave speegsand c;, im-

to be valid within the limit of its primary assumption that the ,arsed in a fluid bath with wave speeg. The fourth-rank

material heterogeneity is weak. Many materials of interesg|astic moduli tensor is assumed to be of the form
satisfy this requirement and thus are expected to be modeled

appropriately by the URTE. Cijia (X)=Cl + ¥ijua (X), 1
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Stokes vector is a function of depth, time, and the direction
of propagation defined by.=cosé, where 8 is the angle
between thez axis and the direction of propagation. The
matricesc, «, andv define the wave speed, scattering, and
absorption matrice$.
z=0 The Mueller matrixP governs the scattering between
Scattering medium H=cos 6 the Stokes parameters which comprise the multiple-
>‘ scattering process. Each compongBtis of the form
o\ (z,tp)

E, o)

Py WE T 5 (@)
where(, v, g, andr are the displacement vectors aménd
S are the incident and scatter directions which are separated
by an angle® ,s. Thus P contains combinations of inner
products of the covariance of elastic moduli fluctuations and
where C?jk| are the Voigt average moduli angj, are the wave vectors. The matriR is also a function of the spatial
elastic moduli fluctuations which depend upon the positionFourier transform of the two-point geometric correlation
vectorx. The fluctuations are assumed small such $ha€®  function of the material properties given b, which is a
and have an ensemble average of 2¢40=0). The material function of ®, and the length scale of the medium. It has
is presumed statistically homogeneous and isotropic whicheen derived for polycrystalline aggregates of cubic and hex-
implies thatC? is independent ok and of the standard iso- agonal crystallites and is parametrically dependent upon the
tropic form>® The material property of interest is then the excitation frequencyw. The Mueller matrix contains all of
covariance of the moduli fluctuationgyy), which is as- the relevant statistical information about the scattering me-

FIG. 1. Geometry of the problem.

sumed to be of the form dium.
The URTE is a first-order integro-partial differential
" " =5 aBrd —x’ . ) . .
{Yapys(X) i (X)) ~ijkl W([x=x]). 2 equation which, for a general Mueller matrix, has nontrivial

The eighth-rank tensdE is assumed independent of po- Solutions. The left-hand side of the URTE represents the
sition. The geometric correlation functiow defines the Propagation and subsequent attenuatture to both scatter-
probability that two points within the medium,andx’, lie  ing and absorptionof the Stokes parameters in thedirec-
within the same crystallite. The form of E() is obtained tion. The right-hand side is composed of two source terms.
from the assumption that all crystallite orientations areThe integral term represents the total energy entering the
equally likely and that the material is statistically isotropic scattering volume from thg’ direction that scatters into the
and statistically homogeneo?. direction . Thus this term appears as a secondary source of

The specimen is excited by a normally incident planeintensity. The second term on the right-hand side of @.
wave with incident flux®, , as shown in Fig. 1. Furthermore, containingS, is the source due to the incident wave that has
for the time-dependent problem, the incident field is ideal-Singly scattered. The quanti§ is proportional to the flux of
ized as a delta function in time as discerned on the time scalée incident wave. Numerical solutions for both the steady-
of the slowly evolving diffuse field. One may think of this state and the time-dependent URTE have been developed
field as a short tone burst with center frequenayTime  using the discrete ordinates metHod:" For both of these
domain results for longer tone bursts may be found by conproblems a transparent boundary condition was assumed
volution. such that the diffuse energy entering the medium at the sur-

The URTE for this problem fs’ face was set to zerd(z=0,t,u>0)=0. This boundary con-

dition does not appropriately model experiments performed

N (z,t,u) P al(z,t, ) in a water bath. Therefore a modification is necessary. Per-

M +(’=<+1=J)l(zvt!/-l')

oo

0z at haps the simplest way to include the surface reflection is to

171 modify this homogeneous boundary condition. With a reflec-
:_J' P ) (2t )’ + Sy o o) tive boundary, the' downward |r.1tenS|ty is linearly related to

2) 1 the upward intensity as follows:

X e~ Ll mos(t—z/c, wo), (3) 1(z=0,t,u>0)=RI(z=0,t,u<0). 5)

where the Stokes vectdr contains the five elastic Stokes The reflection matrixR relates the upward propagating
parameters, one longitudindl, , and four shearlgy, lgy, (u<0) Stokes parameters to the downward propagating
U, andV, which characterize the diffuse intensity. The spe-(u>0) Stokes parameters at the specimen surface(.

cific intensitiesl | , sy, andlgy are proportional to the re- Once the intensities in the solid are calculated, the intensity
spective average square longitudinal, shear vertical, anith the fluid is found using the transmission vectowhich
shear horizontal displacements and have units of energy peelates the Stokes parameters in the solid to the fluid Stokes
unit area per unit time per unit solid angle. The parameaters parametei; by

andV are related to Fhe pohergnt _mterference between the |, =TTI(z=0.t, u<0), ©)

two shear waves which is maintained over long distances
because of the identical wave speeds of these waves. Thehere theT superscript denotes the transpose.
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0, tively. An incident potentialg, or ¢, reflects intog, and i,

9 and reflects intog; in the fluid. Since the fluid does not
support shear waveg;;=0. The longitudinal and shear ver-
tical displacement amplitudes are related to the potentials as
u_=wde/c, andugy= wi/cy, respectively. The pressure in
the fluid is p=pw?¢;. For an incident longitudinal plane

P cs wave described by the potentid,, the reflected and re-
¢ c fracted potentials are proportional to the incident potential
pf Lér .
and given by
%" o CHER o, 0, $2=ViLd1, $=Visvh1, Pi=Wi1¢;. 8

For an incident shear vertical wave described by the potential
¥, the reflected and refracted potentials are given by

b2=Vsyihr, o=Vsvswi, ¢i=Wsyih. 9

FIG. 2. Reflection and transmission of potential functions. The quantitiesV,, Vi gy, Wi, Vv, Vsysy and Wgy¢
given in Egs.(8) and (9) are the reflection and transmission
The components oR and T are related to the power coefficients for the potentials defined"as
. . - . . _15
reflection coefficients prevalent in the literatdfe™ These Z,+Zay S 20sy—Z, co2 20y

components are now derived. VLL:Zf+ZSV 7 20072, 002 200y’

v Y

Il. DERIVATION OF THE REFLECTION MATRIX 2(1—V,,)cot 6, Sir? fgy

The form of the reflection matrix and transmission vec- ~ YLsV= ~ cos gy ' (10
tor given in Egs.(5) and (6) may immediately be written as
o | _ (1-V )tan 6; cot 6,
RlLL RISVL 0 0 0 W= cos 205y )
R R 0 O 0
LSV TISvsv for Egs.(8) and
R=| O 0 1 0 0], 2 .
h Zi+Z, coS 20gy—Zgy SiY 26
0 0 0 RIUU RI\/U VSVSV:— f L 52 SV SV nz SV,
| | Zi+Z, cos 2605yt Zgy St 260gy
0 0 0 Ryv Ry
| (7) _ (1+VSVS\)tan 0|_ cos 205\/
TILf Vv 2 Sit? Oy , (11)
Tsvs
1-: 0 . W _(1+VSVS\)tan 0f
0 VI 2 sir? Bgy
0 for Egs.(9) where the impedances are defined as
The superscript is used as a reminder that these are
reflection and transmission coefficients for the specific inten- 7= PiCt = PCL - PCr _ (12)
sities. The longitudinal and shear vertical Stokes parameters COs 6 cos 6, CoS fsy

couple to each other and are the only intensities that couple At the interface between the fluid and the solid, energy
with the fluid. The shear horizontal intensity reflects entirelyﬂux normal to the boundary must balance. For an incident

into itself. TheU andV components affect only each other longitudinal wave this energy balance is giver-by
as discussed by Tsareg all” for the electromagnetic case.

BecauseU andV describe the coherence of the two shear ES Edy Ef
component§;* these two parameters do not transmitintothe 1= g=+ = T £=

. .. . L L L
fluid because of the zero transmission of the shear horizontal

mode. tan 6, tan 6,

Pt

The derivation of the components & and T is now =i+ tan 63, Visd®+ p tan 6; Wel® (13
discussed. The reflection and refraction of incident longitu- o
dinal and shear waves is given most compactly byFor an incideniSVwave
Brekhovskikh and Godii in terms of potential functions. EX EY EC
Their work will be outlined here. 1= @/Jr —E —i

Consider the reflection and transmission at an interface Esv Esv Esy
shown in Fig. 2 for a fluid—solid system. The upper half- tan Oy p; tan fsy
space is a fluid with densitp; and wave speed;. The =|Vgys?+ P~ |std2+w AES
lower half-space is the scattering solid with dengitygnd anoy P f
longitudinal and transverse wave speedsandcy, respec- (19

2803 J. Acoust. Soc. Am., Vol. 98, No. 5, Pt. 1, November 1995 J. A. Turner and R. L. Weaver: Polycrystalline media 2803



I cosf da dQ =1 cosé, da dQ,

+14y cosfsy da dQgy
+1¢ cosé; da dQ¢ (16)
or
L I 1dycosbsydQgy |f cosé; dy L
1] 1] cosf_dQ, I cosd dQ, (17
Similarly, for an incident shear vertical intensity
. Idy 1 cosé dQ, 17 cosé; dQ;
T gy lsyC0SOsydQgy gy COSOsy dQgy’
(18)
FIG. 3. Reflection and transmission of Stokes parameters. These equations may be simplified by differentiating Snell’s
Law,
In Egs. (13) and (14) the + and — superscripts designate sin 6 sin fsy  sin 6
energy propagating in the>0 and <0 directions, respec- c. ¢ ¢’ (19
tively. From these two equations the power reflection and _
transmission coefficients may be defined as which gives
tan 6 cosf, df, cosbgydbsy, cosb; db; 20
T T L = = i
REL=IVL?, sv=|Vis? tan 6oy’ CL Ct Cs
Multiplying Egs. (19) and (20) together and noting that
T7 =Wy 2 ps tan 6, d¢ =d¢g,=d¢; gives the relation between the solid
Lf L tan 6 angles needed in Eq6l7) and (18):
tan sy (15 cosf d) cosfsydQdsy cos b dldg (21)
REvsv=[Vsvsi?,  REv=[Vsvll? tan 6, cf B cs - c? '
The power flux relationship that the Stokes parameters must
T2, = |Wey? ps tan fsv satisfy is then
SVf SV p tan Gf ’ R X , -,
1= I Ii/ﬁ IL C_f 22
where the superscript implies that these are power reflec- 0. g ¢t I ¢ (22)
tion and transmission coefficients. With these definitions, the o o
flux balance equations becon®[, +R[s,+T7;=1 and for an incident longitudinal wave and
RZ, syt RZy + T2y~ 1. Ergint® has plotted the square root T P R
of these power coefficients as a function of incident angle for - S¥, £ L, 1“7 (23)
three different parameter regimes. sy lsvCt lsyCT

r an incident shear vertical wave. Thus a beam divergence
the Stokes parameters is seen which is proportional to the
square of the wave-speed ratio for the respective Stokes pa-
Fameters. Comparing Eq6L3) and (14) for the energy flux
balance with Eqs(22) and(23) for the Stokes parameter flux

dinal Stok o with b thd Q. impi : balance leads to the definition of the specific intensity reflec-
tr:na' : Of es patranje t[t'WI eam V(;" fined ? |mp|tnhges al " tion and transmission coefficients. For an incident longitudi-
e interface at orientation anglg , defined from the nor- nal Stokes parameter

mal. Two intensities are reflected from the interface: a lon-
gitudinal intensityl,” with beamwidthd(}, and orientation RLL=RML=IViL/?
angle §,_ and a shear vertical intensity, with beamwidth

The Stokes parameters that reflect and transmit mug
also satisfy this flux balance. These parameters were defin%a
as the energy per time per arpar solid angle Thus any

beam divergence due to reflection or transmission must b
examined. The reflection and transmission of an incident lon
gitudinal Stokes parameter are depicted in Fig. 3. A longitu

dQgy and orientation anglés,. One intensity];, is trans- A E_ , tan o, c?
mitted into the fluid with beamwidtid(}; and orientation Risv= RLSVE_WLS\A tan HstTT’ (24
angle ¢; . The incremental beamwidtti() is related to the
orientation angle ¢ and azimuthal angle¢ by dQ ct ps tan 4, cf
e : T.=T7 =W |2 =
=sin § d@ d¢ for each of the particular beams. L= 2 Lf tan 6 '
. . f p tan 6; ct
Conservation of power flux at the surface implies that
for an incident longitudinal Stokes parameter and for an incident shear vertical

2804 J. Acoust. Soc. Am., Vol. 98, No. 5, Pt. 1, November 1995 J. A. Turner and R. L. Weaver: Polycrystalline media 2804



where the expansion polynomiaig(u) defined in Eq(28)

RI _R7T _|V \}2
SVSV ''SVSV ™ SVSV » -
equal unity whenu=u; and equal zero whem=u;.;.

R _RT %_ Ve |2 tan Oy c% 25 Thus the approximation givel u) exactly at each of the
SVL™ SVLEE_| svi mgg (29 ordinates and is exact for all if f(u) is a polynomial of
order N—1 or less’ This expansion, Eq28), can be used

L e c? B , Pt tan sy c? to approximate the intensity at some off-ordinate value given
Tsvi= TSVfC_fZ_ |Wsyd Tptanf; c2’ the values on-ordinate. The value loin a direction defined

by w; off-ordinate is approximated by
The U and V reflection coefficients are related to the

two shear component reflections. The definition&JadindV N Pon( i)

and the fact that the shear horizontal mode reflects com- |(Mi)E,Z_N I(u) (o) P (29
pletely gives the reflection coefficients for andV, = M B Tan K
Rl,,=R\y=—Re&Vsysy, Equation(29) implies that the off-ordinate intensity is related
(26) to each of the on-ordinate intensities. The interpolation given
RLy=—Ryy=—Im(Vgysy. by Eq.(29) will be exact if the intensity is well defined by a

(10 2N—1 degree polynomial. Thus the error associated with
' this interpolation is related to the higher-order behavior of
She intensities.

These coefficients agree with those given by Tsahg

for the reflection of electromagnetic waves from the interfac

between two materials with differing permittivities. The problem of mode conversion at the surface may
The derived reflection and transmission coefficients are

di d with 4 to imol ati ing the di w be examined. An on-ordinate downwagg, at the sur-
now discussed with regard to impiementation using the diSg, . 5 rejated to some off-ordinate upwdridthrough the
crete ordinates method which is used to solve @4.

reflection coefficient

lsv(>0) =Rl g\ (1i<0), (30)

where u, is on-ordinate andu; is off-ordinate. The two

The solution method outlined previoushmade use of angles which defingy, and u; are related through Snell’s
the discrete ordinates method in which the intensities weréaw, Eq.(19). Using the approximation given in E9), Eq.
discretized in angle. One may immediately see a problenf30) becomes
that arises when this method is used with the reflection
boundary condition. When a longitudin@r shear vertical | Pon( i)
intensity is incident on the interface, the portion that mode IS\/(,U«k>O):R|_sv_=2N IL(pj<0) (i— ) Pon()”
converts into shear verticébr longitudina) will not, in gen- : CaeA 631)
eral, fall on the chosen ordinates. This complication would
arise in electromagnetic problems only when the interface ofrhis approximation provides a relation between the on-
two dissimilar materials is considered. For the ultrasonicordinate downwardbV intensity in terms of the on-ordinate
case, some type of interpolation is then necessary. An intepward L intensities. A similar approximation is made for
polation scheme is derived here that is consistent with th¢he SVto L conversion:
underlying character of the discrete ordinates method.

IIl. IMPLEMENTATION USING DISCRETE ORDINATES

-1

According to the methodology of the discrete ordinates | = Pon( i)
method®1° the integral of some functiofi(x) is approxi- IL('“l<>0):RSVL]:E_N lsvu<0) (= 1) Pon()
mated using Gaussian quadrature as : 632)

+1 - In the previous numerical discussi®dhl!a vectorl was
flf(ﬂ)d"‘:j;N 3jf(ny), defined as
a 1 J”“l Pon(u) w27 1(z,n-n)
VPN J o1 (mm ) T - (2) :
whereP,y is the 2Nth Legendre polynomial with the prime I(Z):[IJ'(Z)] - ' (33
denoting a derivative. Tha;'s are the quadrature weights |
and theu;’s the quadrature divisions which are the zeroes of Hzpin)

P, This approximation is equivalent to expanding the in-
tegrand in terms of polynomial basis functions:

+N
fw= > flu) —t2
(W= 2 ) G o P )
3 1" (z=0)=RI"(2=0), (34)
:j;N f(u))ej(p), (28)

which contains the Stokes parameters for each of the direc-
tional components. The previously used transparent bound-
Pon( ) ary condition implied that(z=0)=0. The reflective bound-
ary condition for this vector is now

where the discretized reflection matfkhas the form

2805 J. Acoust. Soc. Am., Vol. 98, No. 5, Pt. 1, November 1995 J. A. Turner and R. L. Weaver: Polycrystalline media 2805



resy 0 0 O 0 sy fsvsy 0 0 0
0 0 0 O 0 0 0 1 0 0
0 0 0 O 0 0 0 0 ryy rwu
0 0 0O O 0 0 0 0 ryy ryy
L rfsve 0O 0 0 rgyy O O 0
sy fsysy 0 0 sy 0O 0O O 0
0 0 1 0 0 0 0 O 0
0 0 0 ryy rwu 0 0 0 O 0
L O 0 0 ryv ryy 0 0 0 O 0.
|
The components oR are the discretized reflection coeffi- The backscattered intensity in the fluid as a function of

cients. The form of the 85 submatrices shown in the upper angle is shown in Fig. @) for polycrystalline iron at low
right and lower left corners of Eq35) repeats down the dimensionless frequency= w/ct8=0.5. Thelongitudinal
diagonal. The other:85 submatrices given in E§35) com-  and shear vertical contributions to the fluid intensity are
prise the remainder oR and represent the interpolation shown separately in Fig.(ld) to show the contribution from
terms. each mode. The critical angles for both wave types are ap-

With the boundary condition given in E¢34) the solu-  parent. The longitudinal contribution has a maximum at nor-
tion using discrete ordinates follows previous mal incidence and decreases until the longitudinal critical
development§.”* Solution methods other than the one dis- angle is reached. The shear vertical contribution is zero at
cussed here are possible, but in order to use the discret®rmal incidence as expected and slowly increases until the
ordinates method, an interpolation scheme was needed. Otengitudinal critical angle is reached. The shear vertical con-
could imagine using a different discretization for the longi- tribution then reaches a maximum and decreases until the
tudinal and transverse intensities such that the mode conveshear vertical critical angle is reached. The angular depen-
sion would occur directly from ah ordinate to arSVordi-  dence of the backscattered intensity for other frequencies is
nate. This method may simplify the boundary condition butsimilar to Fig. 4 and is not shown. Figure 4 suggests that the
may create additional difficulties. Because these new ordifluid intensity will be rather constant within the longitudinal
nates would not necessarily be the Gaussian ordinates preritical angle. Thus one may be able to avoid the large front
scribed by the discrete ordinates method, more ordinates mdgce reflection by orienting the receiving transducer slightly
be needed to obtain the necessary convergence. This optiamvay from normal for steady-state measurements.
will not be examined further but merely noted as a possible  The intensity in the solid as a function of dimensionless
alternative to the above interpolation scheme. depth, 7= x4z, is shown in Fig. 5 for polycrystalline iron at

a high frequencyx;=3.5. Thehorizontal line is theu=0
line which denotes the demarcation between the upward

IV. STEADY-STATE RESULTS

The polycrystalline URTE given in Eq3) was solved 5
using the discrete ordinates method with the reflection A
boundary condition given in Eq5). An exponential two-
point correlation function was assumed such that
W(r)=e #" whereBis a measure of the inverse length scale
which is on the order of the grain size. The excitation is a
plane wave in the fluid with flu¥; normally incident on the
polycrystalline medium. The total flux entering the solid is
thenTf F;, whereT{ is the power transmission coefficient (a) (b)
from the fluid to a longitudinal wave in the solid. For normal

incidencé®

FIG. 4. Angular dependence of the steady-state intensity in the water as a

piCs 1 2 function of angle for a normally incident longitudinal wavg,=0.5, with-
TZTL=4 (36) out absorption{(a) total fluid intensity,(b) separation of longitudinaisolid
pcL \1+psci/pc line) and shear verticaldashed ling contributions.

2806 J. Acoust. Soc. Am., Vol. 98, No. 5, Pt. 1, November 1995 J. A. Turner and R. L. Weaver: Polycrystalline media 2806



) ] ) ] ] FIG. 6. Angular dependence of intensity as a function of dimensionless
FIG. 5. Angular dependence of intensity as a function of dimensionlesgjepth for aluminum in waterx;=3.5, without absorption for the three
depth for iron in waterx;= 3.5, without absorption for the three modis modesl, (solid line), I gy (dotted, and g, (dot dash.

(solid line), 1y (dotted, andl g (dot dash.

The influence of the boundary on the steady-state mul-
(u<0) and downward(x>0) propagating intensities. The tjply scattered solutions is intuitively satisfying. The diffu-
upward intensities at the surfaces0, represent the intensi-  sjon regime is reached at shallower depths and is a function
ties before they have passed through the interface. The URf the water—solid impedance mismatch. It was also shown
ward intensities just beneath the surface are nearly iSotropiggat the upward intensity just beneath the surface is nearly

This result implies that the angular structure seen in Fig. 4sotr0pic and equipartitioned which may be a useful result

angular dependence of the transmission coefficients. The lon-
g!tudlnal and shear _horlzontal intensities in the dovynwa_lrok/' TIME-DEPENDENT RESULTS
direction are nearly isotropic as well. The shear vertical in-
tensity has some structure which is the result of the angular The time-dependent URTE was solved using the reflec-
dependence of the reflection coefficients. The shear horizortion boundary condition given above. Figure 7 shows the
tal intensity is symmetric about the=0 line as expected.  backscatterefu=—1) fluid intensity as a function of dimen-
Figure 5 may be compared with previous results for thesionless time=crxt, measured in units of shear mean
same parameters with a transparent boundary conditionfree times. This figure may be compared with results which
Away from the boundary, the vertical and horizontal sheardid not include boundary effectsThe peak in the multiply
intensities converge and become isotropic as before. With thiackscattered intensity with the boundary occurs later than
boundary, the intensities reach the diffusive limit at muchbefore and is much wider. Both of these effects are the result
shallower depths. In fact, the shear intensities are isotropiof the energy having a more difficult time escaping the scat-
after only three shear mean free paths. The longitudinal intering medium. The effect of absorption is also more pro-
tensity takes longer to become isotropic as before, but imounced. The dimensionless absorptiops vi/ k1, is mea-
much more isotropic for all depths than previously. Thus itsured with respect to the scattering attenuation. The
can be seen that the boundary reflection increases the apbsorption rate per wavelength was assumed constant such
proach to the diffusive limit. Results for lower frequenciesthatv, c, = v;ct. The solutions with absorption deviate more
are nearly isotropic at all depths. from the zero absorption solution than the solutions without
The effect of the impedance mismatch between the fluidhe boundary effects as expected. Because a typical ray is
and solid is seen by comparing the above results for iron iness likely to escape from the medium, it will be more greatly
water with results for a lesser mismatch aluminum-watemffected by absorption.
system. Figure 6 contains the angular dependence as a func- A comparison of the qualitative features of the two so-
tion of angle for polycrystalline aluminum at=3.5. The lutions may be examined by dividing the reflective solution
approach to the diffusive limit, especially for the longitudinal by the two transmission factof ; and T7,. This compari-
intensity, is much slower in this case and occurs at depthson is shown in Fig. 8 for polycrystalline iron &=0.5
almost as deep as without the boundary effects. without absorption. The two solutions agree&t0 which
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. ; VI. DISCUSSION
0.0018 - J
T A fluid—solid boundary condition has been presented for

use with ultrasonic radiative transfer theory. This type of
boundary condition is more realistic for comparison with ex-
periments which are normally performed in a water bath.
Both the steady-state and time-dependent results qualita-
tively behaved as expected. The steady-state solutions
. reached an isotropic, diffusive limit at shallower depths than
\ with the transparent boundary and were nearly equiparti-

0.0016
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0.0012
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TL(n

0.0008

00006 1 ] tioned just beneath the specimen surface. The time-
o004 b\ ] dependent results decayed much more slowly and were more
00002 - \\ ] significantly affected by absorption. Both of these effects oc-
) g e cur because the energy has a more difficult time escaping the
0.0000 ° = 2 2 scattering medium.
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