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Detailed dynamics of electron beams self-trapped and accelerated
in a self-modulated laser wakefield

S.-Y. Chen, M. Krishnan, A. Maksimchuk, R. Wagner, and D. Umstadter
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109

~Received 5 April 1999; accepted 9 September 1999!

The electron beam generated in a self-modulated laser-wakefield accelerator is characterized in
detail. A transverse normalized emittance of 0.06p mm mrad, the lowest ever for an electron
injector, was measured for 2 MeV electrons. The electron beam was observed to have a
multicomponent beam profile and energy distribution. The latter also undergoes discrete transitions
as the laser power or plasma density is varied. In addition, dark spots that form regular modes were
observed in the electron beam profile. These features are explained by analysis and test particle
simulations of electron dynamics during acceleration in a three-dimensional plasma wakefield.
© 1999 American Institute of Physics.@S1070-664X~99!03612-5#

I. INTRODUCTION

Acceleration of electrons by an electron plasma wave
has been of great current interest because of its much larger
~four orders of magnitude! acceleration gradient than that of
conventional rf linacs~, 20 MeV/m!.1 Several methods
have been proposed for driving a large-amplitude fast-phase-
velocity plasma wave,1 such as the plasma wakefield accel-
erator, the plasma beat-wave accelerator, the Laser Wake-
Field Accelerator ~LWFA!, the resonant laser plasma
accelerator, and the Self-Modulated Laser Wake-Field Ac-
celerator~SMLWFA!. The former two methods were dem-
onstrated first because the required technologies, e.g., rela-
tivistic electron beam or long-pulse medium-power laser,
were well developed. The LWFA and the SMLWFA have
recently received considerable attention and shown tremen-
dous progress because of invention of ultrashort-duration
terawatt-peak-power lasers based on the chirped-pulse ampli-
fication technique.2

In the LWFA, an electron plasma wave is driven reso-
nantly by a short laser pulse through the laser ponderomotive
force.3 In the SMLWFA, an electron plasma wave is excited
by a relatively long laser pulse undergoing the stimulated
Raman forward scattering instability.4–6 The injection of
electrons can occur uncontrollably by trapping of hot back-
ground electrons, which are preheated by other processes
such as Raman backscattering and sidescattering
instabilities,7–9 or by wave breaking ~longitudinal1 or
transverse10!. It can also be achieved by specific injection
schemes11,12in order to control the characteristics of the gen-
erated electron beam. In this case, self-trapping is also im-
portant because the electrons accelerated by it represent a
dark current, which may ultimately limit the maximum
plasma-wave amplitude that can be used in a plasma-based
accelerator, and that also forms a noise source for applica-
tions of the electron beam. An understanding of the dynam-
ics of electron trapping and detrapping during acceleration in
a plasma wave is fundamental to the design of viable
plasma-based accelerators.

Several groups have observed the generation of MeV

electrons from the SMLWFA.8,9,13–15A two-temperature dis-
tribution in the electron energy spectrum was reported by
Malka et al.15 They attributed such a distribution to be a
result of the combination of two different acceleration
mechanisms, i.e., acceleration by a laser field and by a
plasma wave. Gordonet al.16 have observed the acceleration
of electrons beyond the linear dephasing limit, and explained
it, using Particle-In-Cell~PIC! simulations, as a result of
acceleration in wakefields driven by accelerated electrons.
We14 have previously observed that the generated electron
beam has a two-component spatial beam profile, and that the
temperature of electrons in the low-energy range undergoes
an abrupt change, coinciding with the onset of extension of
the laser channel due to self-guiding of the laser pulse, when
the laser power or plasma density is varied. Several PIC and
test particle simulations7,17–21have also been done to study
the characteristics of the electron beam accelerated in a
plasma wave, in addition to simple theoretical analyses given
in, e.g., Refs. 21–23. However, none of these experiments
has revealed the dynamics of electron acceleration in an elec-
tron plasma wave, and little direct comparison between the
theories~simulations! and the experiments has been made.

In this experiment, the electron beam produced from a
self-modulated laser wakefield accelerator, injected with
self-trapping of electrons, was characterized in detail. The
observations of up-to-three-component electron-beam pro-
files and up-to-two discrete changes in the slope of electron
energy distribution are reported. In addition, dark spots that
form regular modes were observed in the first beam-profile
component. These new observations provide us important
new clues to the underlying dynamics of electron accelera-
tion in a three-dimensional~3-D! plasma wave. The observed
phenomena could be explained by use of a 3-D test particle
simulation, which is based on a simple model that takes into
account only the longitudinal and transverse electric fields of
the electron plasma wave and trapping of electrons along the
entire plasma-wave channel. In this paper we present a study
of dynamics of electron acceleration in a plasma wave for the
first time, via the comparison between the experimental re-
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sults and simulations. In addition, an electron beam with a
normalized emittance that is an order of magnitude lower
than that of best rf guns was produced. This shows that a
laser wakefield accelerator can potentially serve as a better
injector because the high acceleration gradient can lower the
beam emittance by minimizing the time during which elec-
trons are nonrelativistic and thus susceptible to space charge
effects.11

This paper is organized as follows. In Sec. II, basic dy-
namics of electron acceleration in a one-dimensional~1-D!
electron plasma wave is reviewed. In Sec. III, diagnostic
systems used for characterization of the electron beam are
shown, and the results of the experiment are presented. In
Sec. IV, a simple 3-D test particle simulation code was used
to analyze the features of electron acceleration in a 3-D
plasma wave. The results are compared with the experimen-
tal observations. A summary is given in Sec. V.

II. BASIC PHYSICS OF LASER–PLASMA-BASED
ELECTRON ACCELERATORS

A. Motion of electrons in a 1-D plasma wave

Trapping and acceleration of a test electron in a nonlin-
ear plasma wave were analyzed in one dimension using
Hamiltonian dynamics by Esarey and Pilloff.23 The motion
of electrons in the plasma wave can be represented by a
phase-space diagram~Fig. 1!, which shows the orbits of the
electrons in the plasma wave. Electrons inside the bounded
region ~inside the separatrix! are ‘‘trapped’’ by the plasma
wave and carried along in the same wavelength of the plasma
wave ~often called a ‘‘bucket’’!. Electrons above and below
this bounded region are ‘‘untrapped.’’ When an electron is
below the separatrix initially, it gains and loses energy
quickly, and never has an energy higher than that corre-
sponding to the phase velocity of the plasma wave. On the
other hand, when an electron is inside the separatrix, it can
move to the top of the separatrix and gain significant energy.
This is the process of electron acceleration in a plasma wave.
As a result, the bottom and the top of the separatrix deter-

mine the minimum trapping threshold and the maximum
electron energy attainable, respectively, for a given plasma-
wave amplitude. They are given by

gmin5gp~11gpDf!2gpbp@~11gpDf!221#1/2, ~1!

gmax5gp~11gpDf!1gpbp@~11gpDf!221#1/2, ~2!

where

Df52bp@~11e2/2!221#1/2, ~3!

in which gp51/A12bp
2 is the relativistic factor of plasma-

wave phase velocity,bp5vp /c is the normalized phase ve-
locity, e5Emax/Eb is the plasma-wave amplitude, andEb

5mevpvp /e is the nonrelativistic cold wave-breaking limit.
The actual trapping threshold and the actual maximum en-
ergy for each electron depends on its position~phase! in the
plasma wave at injection.

The maximum electron energy attainable in a plasma
wave increases with an increase of the plasma-wave ampli-
tude, which is limited by wave breaking. The latter is defined
by the point at which the plasma wave traps the bulk of
electrons that constitute the plasma wave itself and thus self-
destructs. In a cold plasma, the maximum plasma-wave am-
plitude is given by24

Emax5E0A2~gp21!, ~4!

and the maximum electron energy is23

gmax54gp
323gp . ~5!

For a higher plasma temperature, the wave-breaking limit is
lowered, due to trapping of hot bulk electrons at a lower
plasma-wave amplitude.25,26 For a plasma wave with an am-
plitude below the wave-breaking limit, it can trap hot elec-
trons that are at the tail of a Maxwellian distribution of a
thermal plasma, or that are preheated to exceed the trapping
threshold by other mechanisms, or that are injected exter-
nally. In this case, these trapped electrons are accelerated and
thus take energy away from the plasma wave, resulting in
damping of the plasma wave. This is referred to as electron
beam loading or nonlinear Landau damping.27–29In fact, un-
trapped electrons can also gain energy~as seen in Fig. 1! and
damp the wave, a process referred to as Landau damping.30

B. Limitations on laser-plasma-based electron
accelerators

Under practical conditions, in a plasma wave of a certain
amplitude, the maximum energy gain for an electron is lim-
ited by the acceleration distance. Three main factors deter-
mine the acceleration distance. The first one is the dephasing
between the electron and the plasma wave. Electrons are
accelerated when they are in the accelerating region of a
plasma wave. Because of the increase of the electron energy
with propagation distance, the electrons can outrun the
plasma wave after a certain distance, enter the decelerating
region of the plasma wave and start to lose energy. This
maximum acceleration distance is referred to as the electron
detuning length, and is given byLd.gp

2lp in the 1-D case,
wherelp is the plasma-wave wavelength.

FIG. 1. Phase-space trajectories for electrons in a plasma wave. Electrons
above and below the separatrix are untrapped, while electrons within the
separatrix~shaded! are trapped by the wave. The motion of the electrons
relative to the wave is indicated by the arrows. The separatrix is symmetric
with respect togp , when theg axis is in a logarithmic scale. Vertical dashed
lines separate transversely focusing and defocusing regions that result from
the transverse electric field.
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The other two factors that can result in a shorter accel-
eration distance and thus a lower-energy gain are the diffrac-
tion limit and the pump depletion limit. These two limits
determine the actual length of the plasma-wave channel ex-
cited by a laser pulse. In order to drive a large-amplitude
plasma wave, usually the laser pulse has to be focused down
to a small spot in order to achieve a high laser intensity.
However, the natural diffraction of the laser beam results in
a finite length over which the high laser intensity can be
maintained. This length is the Rayleigh length, which, e.g., is
only 220mm for a 10mm focal spot and 1mm wavelength.
This limit can be overcome by guiding of the laser pulse in
the plasma through self-guiding or preformed-plasma-
channel guiding.1,31 The pump depletion limitLpd is usually
less stringent.32–36It is due to the conversion of laser energy
to the plasma wave, and thus can be calculated by equating
the energy in the laser pulse with the energy in the plasma
wave for the case of LWFA, resulting inLpd

5ctgp
2(a0 /e)2, wheret is the laser pulse duration anda0 is

the amplitude of the normalized vector potential of the laser
field. However, such an estimate is inappropriate for SML-
WFA, because, in this case, depletion of the laser energy
might be dominated by other strong loss mechanisms such as
Raman sidescattering and backscattering.37 Another limita-
tion for the maximum electron energy is determined by elec-
tron beam loading, in which the plasma-wave amplitude de-
creases while the electrons gain energy. The latter two
factors determine the conversion efficiency of laser energy to
the total electron energy.

III. CHARACTERISTICS OF THE GENERATED
ELECTRON BEAM

The experiment was performed with a Ti:sapphire/
Nd:glass laser system that produced 400 fs duration laser
pulses at 1.053mm wavelength with a maximum peak power
of 4 TW. The 50 mm diam laser beam was focused with an
f /3.3 parabolic mirror onto the front edge of a supersonic
helium gas jet. The focal spot in vacuum was a 7mm FWHM
~full width at half-maximum! near-Gaussian spot~which
contained 60% of the total pulse energy! and a large dim spot
~100 mm FWHM!. The helium gas was fully ionized by the
foot of the laser pulse. At a laser power of> 2 TW and a
plasma density of>231019cm23, the laser pulse underwent
relativistic-ponderomotive self-channeling,14,31 and the laser
channel extended to be 750mm in length, the length of the
gas jet. The length and the diameter of the laser channel were
monitored by side imaging of Thomson scattering of the la-
ser pulse propagating in the plasma.

Under such conditions, an electron plasma wave was
excited by the laser pulse through stimulated Raman forward
scattering instability, as was evident from the observation of
Raman satellites in the spectrum of the transmitted light.8 An
electron beam was produced, when the laser power or gas
density exceeded a certain threshold, and propagated in the
direction of the laser beam. The spatially averaged time-
resolved plasma-wave amplitude was measured using colin-
ear collective Thomson scattering.38 The peak plasma-wave
amplitude was observed to increase with increase of laser

power or plasma density, and the maximum observed was
aboute50.3. The generated electron beam can be character-
ized by its energy distribution~which determines the longi-
tudinal emittance!, its beam divergence~which determines
the transverse emittance! and its total number of electrons.

A. Diagnosis of the electron beam

The electron energy spectrum in the low-energy range
~,8 MeV! was measured using a dipole permanent magnet
with a KODAK LANEX scintillating screen imaged by a
CCD ~charge-coupled device! camera as the detector. A rect-
angular dipole magnet or a sector dipole magnet was used, as
shown in Fig. 2. The results obtained using these two differ-
ent setups are found to be identical within the error bar. A
collimator with an f /30 cone angle was put in front of the
magnet to select electrons propagating in a specific direction
and to obtain a high momentum resolution. Higher-energy
electron energy spectra were obtained by using dipole elec-
tromagnets, a multiwire proportional chamber~MWPC!, and
a collimator with anf /100 cone angle, as shown in Fig. 3.

The electron-beam spatial profile at 16 cm away from
the gas jet was measured using a LANEX screen imaged by
a CCD camera, as that shown in the upper diagram of Fig. 2
with the collimator and the magnet removed. Because of the
aluminum foil in front of the LANEX, which was used for
blocking the laser light, and the back support of the LANEX,
only electrons with kinetic energies higher than 100 keV
were imaged. Since the source size of the generated electron
beam was small,;10 mm in diameter and,750 mm in
length ~as determined by the diameter and the length of the
laser channel!, the electron beam profile on the LANEX was

FIG. 2. Diagrams of the setups for measuring electron energy spectra in the
low-energy range. In the upper diagram, the dispersion of electrons on the
LANEX plane is nonlinear. In the lower diagram, the dispersion is linear,
and the LANEX is on the point-to-point imaging plane of the sector magnet.
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actually a measurement of the electron beam divergence~an-
gular pattern!.

The total number of electrons in the beam was measured
using two different methods. The first one is by using a Far-
aday cup to directly collect the entire electron beam and
measure the total charge on a storage oscilloscope. The other
measurement of the total electron number was done by using
a collimator and a calibrated scintillator-PMT~photomulti-
plier tube!. This calibrates the relation between the LANEX
emission intensity and the absolute electron flux. By integrat-
ing over the whole electron beam image on the LANEX, the
total number of electrons was obtained. The difference be-
tween these two measurements was within a factor of 2.
Such a difference was actually dominated by fluctuations of
the electron beam itself.

B. Number of electrons

The total number of electrons in the generated electron
beam was measured at various laser powers and plasma
densities.8 Figure 4 shows the total number of electrons in
the beam as a function of laser power. Below a threshold, no
electron is observed. When the laser power exceeds this
threshold, the number of electrons increases exponentially

with an increase of laser power, and then gradually saturates
to a certain level. The threshold of the electron production is
believed to be determined by the electron trapping threshold.
When the laser power is increased, the trapping threshold
becomes lower because of the increase of the plasma-wave
amplitude @see Eq.~1!#. At the same time, the maximum
energy of the preheated electrons also increases because of
an increase of the amplitude of the slow plasma wave excited
through Raman backscattering or because of enhancement of
other heating processes. Therefore, the production threshold
of the electrons occurs when the maximum energy of the
preheated electrons exceeds the trapping threshold. The ex-
ponential growth of the number of electrons with laser power
is expected from the exponential increase of the number of
preheated electrons that are above the trapping threshold.
The saturation of the number of electrons at high laser pow-
ers may result from the beam loading effect, in which the
electrons trapped saturate the plasma wave by removing its
energy. The variation of the number of electrons with change
of plasma density shows the same behavior for basically the
same reasons.

C. Transverse beam profile

The electron beam profile~angular pattern! was ob-
served to contain several concentric Gaussian-like-profile
beams, and the number of beam components depends on
laser power and plasma density. For a plasma density of
2.3– 6.231019cm23, only one beam component~;20°
FWHM! exists in the electron beam at 0.6 TW laser power.
At a laser power larger than 1 TW, a second beam compo-
nent grows up on top of the first beam component, with a
divergence angle of ;7.5° FWHM. For 2.3– 3.4
31019cm23 plasma density, a third beam component with a
divergence angle of 1°–3° FWHM appears when the laser
power is higher than 2 TW. The ratio between the peak of
the third component and that of the second component in-
creases with increasing laser power and reaches as high as a
factor of 10. Figure 5 shows the lineouts of the electron

FIG. 3. Diagram of the setup for measuring electron energy spectra in the
high-energy range. By scanning the strength of the magnetic field of the
magnets while monitoring the MWPC readings, the electron energy spec-
trum is obtained.

FIG. 4. The total number of electrons in the generated electron beam as a
function of laser power at 3.731019 cm23 plasma density. Because of a 25
mm thick aluminum foil used for blocking the laser light~in front of the
Faraday cup or wrapping the PMT!, electrons with an energy below 60 keV
was not measured.

FIG. 5. Lineouts of the electron beam profiles for various laser powers at
2.331019 cm23 plasma density:~a! 0.6 TW,~b! 1.1 TW,~c! 2.0 TW, and~d!
2.9 TW.
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beam profiles for various laser powers at 2.331019-cm23

plasma density.
The divergence angles of the first~widest!, second, and

third beam components are about 20°–25°, 5°–10°, and
1°–3° FWHM, respectively. Basically, for the second beam
component, its divergence angle increases with an increase
of laser power. For the third beam component, the diver-
gence angle decreases and its relative intensity~with respect
to the first and second beam components! increases with an
increase of laser power. However, the divergence angle of
the first beam component is roughly invariant with variation
of laser power and plasma density. This indicates that the
effect of change of plasma-wave amplitude and plasma fre-
quency on the beam divergence angle of the first beam com-
ponent is negligible. In addition, it implies that the nonlin-
earity of the plasma wave and the self-generated magnetic
field have no effect on the beam divergence angle, because
the results are roughly the same for very small and very large
plasma-wave amplitudes. Furthermore, it shows that the
space charge effect~occurring during and after the accelera-
tion! on the beam divergence is insignificant, because no
significant change in the divergence angle is observed even
when the number of accelerated electrons varies by several
orders of magnitude~note that the divergence resulting from
the space charge effect should be roughly proportional to
r1/2, wherer is the charge density of the electron beam!.
Therefore, it seems that the multicomponent beam profile
and its divergence angle are just simply intrinsic properties
of electron acceleration in self-consistent longitudinal and
transverse electric fields of a plasma wave.

The appearance of the second beam component was ob-
served to roughly coincide with the sudden extension of the
plasma-wave channel~which is determined by the laser
channel! caused by laser self-guiding. In addition, when the
second beam component appears, there are usually some
holes appearing in the first beam component, as shown in

Fig. 6. These holes form regular patterns that are similar to
TM12, TM22, and TM32 electromagnetic modes in a circular
waveguide, or to~1,0!, ~1,1!, and ~1,2! Hermite–Gaussian
modes of a laser beam. Furthermore, under the highest laser
power and plasma density achievable in this experiment, a
density depression at the center of the accelerated electron
beam was observed occasionally, as shown in Fig. 7.

D. Electron energy spectrum

Figure 8 shows the normalized electron energy spectra in
the low-energy range for various laser powers and plasma
densities. Figure 9 shows the results taken under a different
laser focus condition14 ~for these data, the gas density is
1.831019cm23 at 1000 psi backing pressure! and Fig. 10
shows the corresponding side images of the laser channel.
The spectra were found to have Maxwellian-like distribu-
tions, i.e., exp(2ag), where g is the relativistic factor of
electron energy anda is a fitting parameter@~511 keV!/a is
the temperature#. The slope,a, of the spectrum was found to
change discretely with variation of laser power and plasma
density. For instance, at a fixed plasma density, the slope
remains the same with increasing laser power until a certain
threshold is reached. Then the slopea changes to a lower
value, and stays the same with a further increase of laser
power until the next jump. The same behavior occurs for
varying plasma density at a fixed laser power. Threea values

FIG. 6. Images of the transverse electron beam profiles at various laser
powers and plasma densities:~a! 1.1 TW, 3.431019 cm23; ~b! 3.5 TW,
6.231019 cm23; and ~c! 2.0 TW, 2.331019 cm23.

FIG. 7. Image and vertical lineout of the transverse electron beam profile at
3.5 TW laser power and 6.231019 cm23 plasma density.

FIG. 8. Electron energy spectra for various laser powers and plasma densi-
ties: ~a! 2.6 TW, 3.431019 cm23; ~b! 2.9 TW, 3.531019 cm23; ~c! 3.3 TW,
4.831019 cm23; ~d! 3.9 TW, 4.831019 cm23; ~e! 1.7 TW, 6.2
31019 cm23; ~f! 2.7 TW, 6.231019 cm23; and ~g! 3.5 TW, 6.2
31019 cm23.

FIG. 9. Electron energy spectra for various gas-jet backing pressures at a
fixed laser power of 3 TW~left!, and for various laser powers at a fixed
plasma density of 3.631019 cm23 ~right!.
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~two jumps! were observed in this experiment: 1.0, 0.6, and
0.3. The occurrence of the first jump roughly coincides with
the extension of the laser channel from,400 to 750mm.
However, when the second jump occurs, there is no change
in the laser channel length~it already reaches the maximum
length limited by the gas jet!. Following this trend, further
jumps may be possible if the laser power or plasma density
can be increased further. For some rare conditions, the en-
ergy spectrum seems to be a mixture of two different slopes,
such as line~c! in Fig. 8. By changing the positions of the
collimator and the magnet to look at the spectra of electrons
ejected in different angles, the slopes of the electron energy
spectra in the low energy range were found to be the same
for all three beam components, and thus the discrete changes
of slopes occur simultaneously for all of them.

Another important observation in this experiment is a
two-temperature distribution in the electron energy spectrum.
As shown in Fig. 11, which was obtained using both the
low-energy and high-energy electron spectrometers, the
slope of electron energy distribution in the low-energy range
~<5 MeV! is steep, while the slope in the high-energy range
is much less steep~almost flat!. Such a two-temperature dis-
tribution was also observed in Fig. 8 and further verified by
using aluminum absorbers of various thicknesses in front of

an electron detector. We cannot identify the high-energy cut-
off of the spectrum because of the low signal-to-noise ratio
in the high-energy end. However, electrons with energies
higher than 40 MeV were observed.

E. Other parameters

The other two parameters of the electron beam, which
are required in order to fully characterize the beam, are the
temporal duration of the electron bunch and the transverse
cross section of the beam at the source. The temporal dura-
tion of the electron pulse should be roughly equal to that of
the plasma wave, since the former is generated from the
latter. Therefore, the temporal duration of a macrobunch
should be about 2 ps, equal to the measured duration of the
plasma wave, as discussed in Ref. 38. The separation be-
tween adjacent microbunches is equal to the plasma-wave
period, which is 18 fs for a plasma density of 3.4
31019cm23. The duration of a microbunch should be less
than that. Therefore, the maximum peak current is estimated
to be about 1 kA or higher. However, this estimation is cor-
rect only when the electron pulse is at or near the source. As
the electron pulse propagates, its duration becomes larger
and larger because of its 100% energy spread. The large
energy spread, the changing duration, and the low repetition
rate make a direct measurement of the electron pulse dura-
tion difficult.

The transverse cross section of the electron source
should be roughly equal to the cross section of the plasma
wave, which roughly equals that of the laser beam. It is es-
timated to be about 10mm. In the best cases, the angular
divergence of the electron beam was measured to be;1°,
which leads to a normalized transverse emittance of 0.06
p mm mrad for 2 MeV electrons and a brightness (B
5I /@(p Dr 2)(p Du2)#, whereI is the beam current,Dr is
the beam radius, andDu is the beam divergence angle! of
83104 A/mm2 mrad2. This shows a promising advantage
over a conventional rf linac, which has a normalized trans-
verse emittance of;1 p mm mrad at best.39–41

IV. DYNAMICS OF ACCELERATION OF ELECTRONS
BY A 3-D PLASMA WAVE

A. Model and basic kinetics

To understand the physical origin of these phenomena, a
simple 3-D test particle simulation code was run and its re-
sults were compared with the experimental observations. In
this simulation, monoenergetic electrons~with a longitudinal
kinetic energyTez in the direction of the phase velocity of
the plasma wave! are injected into predefined and self-
consistent longitudinal and transverse electric fields of an
electron plasma wave. The injected electrons also have small
~e.g., 400 eV! transverse momenta initially with random ori-
entations.~The value of the initial transverse momentum
does not affect the results in any obvious way as long as it is
much smaller than the longitudinal momentum.! The mag-
netic field is neglected in this simulation and the transverse
electric field is derived from the longitudinal field by
]Er /]z5]Ez /]r , which results from Maxwell’s equations

FIG. 10. Side images of the laser channel for various laser powers at a fixed
plasma density of 3.631019 cm23: ~a! 1.5 TW, ~b! 2.4 TW, ~c! 3 TW, ~d! 4
TW. The arrow indicates the direction of laser propagation.

FIG. 11. Electron energy spectrum for 3 TW laser power and 3
31019 cm23 plasma density. The solid lines represent exponential fits.
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with B equaling zero or a constant.~In fact, from the
Panofsky–Wenzel theorem,42 even when a consistent mag-
netic field is taken into account, such a relation still holds for
a relativistic particle except thatEr andEz are then effective
electric fields that take into account the effect of the mag-
netic field as well.! The electric field that is assumed is

EW ~r ,f,z!5 ẑE0 exp~2r 2/r 0
2!cos~kpz2vpt !

1 r̂ E0kp
21~22r /r 0

2!exp~2r 2/r 0
2!

•cos~kpz2vpt2p/2!, ~6!

where r 0 is the radius of the plasma wave,E0 is the peak
longitudinal electric field,kp is the wave number of the
plasma wave, andvp is the plasma frequency. At first, 1800
electrons are injected uniformly into a region ofr 0(x)
3r 0(y)3lp(z) at the beginning of the plasma-wave channel
to study the trajectories of the electrons in the 3-D phase
space. The space-charge forces between the injected elec-
trons and the effects of these electrons on the plasma wave
~the beam loading effect! are neglected.

Figure 12 shows the evolution of the momentum distri-
bution of electrons injected in one plasma-wave bucket for
e50.3, r 055 mm, vp53.431014rad/s, andTez5200 keV.
After the injection, electrons that are not trapped inside the
separatrix are expelled by the transverse field outward and
their momenta fall onto an ellipsoidal contour. The trapped
electrons are mainly confined nearpr50 and move toward
higher pz ~higher energy! with time. When they reach the
maximum energy~the upper limit of the separatrix! after
propagating one electron-detuning-length,Ld. f gp

2lp ,
where f (5 1

221) depends onr 0 /lp , the electrons turn back
and move toward the decreasingpz direction~lower energy!.

After the electrons reach the lower limit of the separatrix~the
trapping threshold!, they turn again and move toward higher
pz , and so on.

While the trapped electrons move in an oscillatory tra-
jectory inside the separatrix~with a bounce period of
2Ld /c!, they also drag a tail that spreads in the region con-
fined by the ellipsoidal contour, as a result of the transverse
defocusing field of the plasma wave. When the electrons fall
onto the contour surface, it means that they have exited the
region of the plasma wave transversely. The main process for
loss ~detrapping! of electrons occurs whenever electrons
slow down to enter the defocusing region after passing
through the top of the separatrix~a focusing region!, as a
result of the excessive transverse momenta they obtained in
the top focusing region. Therefore, fewer and fewer electrons
are left inside the plasma-wave channel, as they oscillate
inside the separatrix. The propagating distance required for
any specific electron to lose its confinement is about a little
longer than 0, 2Ld , 4Ld , etc., depending on its initial spatial
position in the plasma wave~i.e., its position in the 3-D
phase space!, the plasma-wave amplitude, and the injection
energy. The confinement time is longer if the electron is at a
position of stronger acceleration and smallerr initially. Ac-
cording to thepr /pz of every electron at any time, the elec-
trons can be divided into three groups. The first group of
electrons is distributed over the whole region confined by the
ellipsoidal contour. The second group is confined along the
pz axis ~that is,pr /pz is small!. The third group is the elec-
trons that obtain large transverse momenta when they transit
from the defocusing region to the focusing region during the
acceleration phase. Such momentum blowup is accompanied
by shrinkage of the transverse spatial spread of the electrons,

FIG. 12. Simulations of the momentum distributions of electrons injected in one plasma period after propagating various distances fore50.3, r 055 mm,
vp53.431014 rad/s, andTez5200 keV: ~a! 22, ~b! 44, ~c! 65, ~d! 87, ~e! 109, ~f! 131, ~g! 152, ~h! 174, ~i! 196, ~j! 218, ~k! 240, and~l! 261 mm.
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as a result of the conservation of normalized transverse emit-
tance.

The contour observed in the simulation results from the
conservation of energy and momentum for the acceleration
of an electron by a plasma wave. Starting from the force
equation and the energy equation, after simple algebra, a
constant of motion is derived, i.e.,

g2bpuz1f5h ~a constant!, ~7!

whereg is the relativistic factor of electron energy,bp is the
normalized phase velocity of the plasma wave,uz5pz /mc is
the normalized longitudinal momentum of the electron, and
f5qF/mc2 is the normalized potential of the electron in the
plasma wave. For an electron that is at rest~g51, uz50!
before arrival of the plasma wave (f50), h51. Otherwise,
h5(g2bpuz1f) t50 , which depends on the potential and
the momentum of the electron at the time of injection. After
the electron exits the plasma wave,f50; so the electron
must have a longitudinal momentum and a transverse mo-
mentum that satisfy an ellipsoidal equation,

ur
2

a2 1
~uz2d!2

b2 51, ~8!

where

a5Agp
2h221,

b5gpAgp
2h221,

d5gp
2bph.

This equation explains the ellipsoidal contour observed in
the simulations. Note that for an electron that is at rest before
arrival of the plasma wave withgp

2@1 and that satisfiesuz

!gp
2bp , the contour can be simplified to a paraboloidal

function, ur
2/2uz51. This paraboloidal contour is identical

to the pr2pz relation of electrons accelerated by laser pon-
deromotive force~direct laser acceleration!.43,44 Therefore,
the appearance of electrons that satisfy the relation
(pr /mc)2/2(pz /mc)51 in laser–plasma interactions~e.g.,
in the simulation of Ref. 19 and the experiment of Ref. 44!
does not guarantee that it is a result of direct laser accelera-
tion. It may come from acceleration by plasma waves excited
through Raman instability or other mechanisms.

These results can also be applied to the accelerated elec-
trons after they come out of the plasma wave. If the electrons
exit the plasma-wave column adiabatically~e.g., when they
drift out of the column in the transverse direction slowly!,
they all fall on the ellipsoidal contour derived from the use of
f50. If the electrons exit the plasma-wave column nonadia-
batically ~e.g., when they leave at the end of the column!,
they fill in this ellipsoid. Therefore, the contour derived with
the use off50 gives the boundary of the distribution of
accelerated electrons in the phase space, and thus allows us
to estimate the maximum divergence angle of the electron
beam.

For the case of a self-modulated laser wakefield with
self-trapping of electrons, the electrons are expected to be
injected~self-trapped! over the entire plasma-wave channel.
If, in the preceding simulation~injecting electrons in a single

bucket!, the momentum of each electron is saved at every
integer multiple of the plasma-wave period, then a very good
approximation of the result for uniform injection over the
entire channel can be obtained as a summation of all elec-
trons saved. The results are discussed as follows.

B. Momentum distribution and beam divergence

The momentum distributions of electrons injected over a
plasma-wave channel of 400mm in length are shown in Fig.
13 for various plasma-wave amplitudes. Lineouts of the pro-
files of the electron beams that correspond to Fig. 13 are
shown in Fig. 14. As can be seen clearly, generally three
concentric beam components are observed in the electron
beam. The first~widest! beam component results from elec-
trons that spread in the whole region confined by the contour.
The second and third beam components are composed of
electrons distributed in the region nearpr50. A ring-like
electron beam component may show up under certain condi-
tions, which is a result of a large number of electrons falling
onto the contour.

The three beam components observed in the simulations
may explain the three-beam-component profile of the experi-
mentally observed electron beam. However, the absolute di-
vergence angles of the three components are not consistent

FIG. 13. Simulations of the momentum distributions of electrons injected
over the entire 400mm long channel for various plasma-wave amplitudes at
r 055 mm, vp53.431014 rad/s, andTez5200 keV: ~a! e50.15, and~b! e
50.3. Only the electrons with an energy higher than the injection energy are
shown.

FIG. 14. Simulations of the angular profiles of the electron beams for vari-
ous plasma-wave amplitudes atr 055 mm, vp53.431014 rad/s, Tez

5200 keV, andL5400mm: ~a! e50.15, and~b! e50.3.
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with the experimental results. For the cases shown in Fig. 14,
the divergence angle for the first beam component is 12°
FWHM for e50.15, and 16° fore50.3. On the other hand,
the experimental result is;20° and is roughly invariant with
respect to variation of the plasma-wave amplitude or other
parameters. This discrepancy is believed to be a result of an
inappropriate initial conditionh used in the simulation. In
the simulation, the divergence angle of the first beam com-
ponent was observed to be roughly proportional toh, which
has a maximum value of 0.59~0.74! for the case ofe
50.15 ~0.3!. However, in realistic cases,h should be unity
for all the electrons because the electrons are initially at rest
and the acceleration by a slow plasma wave~for preaccelera-
tion! and/or a fast plasma wave should not changeh. There-
fore, the divergence angle should be around 21° by extrapo-
lation and should be invariant with variation of plasma-wave
amplitude and plasma frequency. This is quite consistent
with the experimental observations.

The results shown in Fig. 13 are very similar to the
results of 2-D PIC simulations for self-modulated laser
wakefields run by Tzenget al.19 They believed that the elec-
trons that distribute on theur

2/2uz51 contour is a result of
direct laser acceleration. Nevertheless, our results of the
simulations and analyses indicate that the acceleration of
electrons by a plasma wave can also lead to such a distribu-
tion without considering the effect of the laser field. There-
fore, more experimentation is needed in order to discriminate
between these two mechanisms.

C. Energy spectrum

The electron energy spectra obtained from the simula-
tions show a Maxwellian distribution in the low-energy
range, a flat-topped distribution in the high-energy range,
and a high-energy cutoff, as shown in Fig. 15. This is con-
sistent with the experimental result. Such a two-temperature
distribution also appears in the 1-D simulation, as shown in
Fig. 15 by settingr 0 /lp.100. The exponential distribution
in the low-energy range is found to be composed of the un-
trapped but accelerated electrons~those outside the separa-

trix!, and electrons that are newly trapped at the end of the
channel.~In realistic cases, another contribution for the low-
energy electrons may come from the electrons that are accel-
erated by a slow plasma wave excited through Raman back-
scattering or sidescattering.! The energy distribution of the
trapped electrons injected in a single bucket is a narrow band
with its central energy moving up and down inside the sepa-
ratrix. In addition, the speed of energy increase with respect
to propagating distance is roughly constant, as seen in Fig.
12. In the case of a SMLWFA discussed here, the electrons
are injected over the entire channel, and thus the spectrum of
the electrons is a summation of all these narrow bands, lead-
ing to a flat-topped distribution in the high-energy range.

The high-energy cutoff in the 1-D limit has the same
value as in the 1-D analytic result derived by Esareyet al.23

for any e, regardless of the sinusoidal wave used in this
simulation. However, the high-energy cutoff in the 3-D re-
gime ~small r 0! is lower compared to the 1-D result. This is
due to the lowerEz seen by the electron when it moves to an
off-axis position, and this effect is more significant for a
larger e. On the other hand, actual experimental measure-
ment might show a cutoff significantly higher than the 1-D
theoretical prediction, as a result of the nonlinear correction
of the laser group velocity in the plasma~increased by a
factor of A(g'11)/2,45 where g' is the relativistic factor
associated with laser intensity! and/or the excitation of a
larger-phase-velocity plasma wave driven by the accelerated
electron beam~both are not considered in this model!.16 For
instance, under the conditions of Fig. 11 and the measured
plasma-wave amplitude ofe50.3, the theoretical high-
energy cutoff is calculated to be 32 MeV when Eq.~2! and
the nonlinear correction of the laser group velocity are used.
This is somewhat lower than the experimental result~40
MeV or higher!. The difference may come from the errors in
the measurement of the plasma-wave amplitude or the exci-
tation of plasma waves driven by the accelerated electrons.

Change of injection energy spectrum, plasma wave am-
plitude, and plasma frequency do not affect the features ob-
served in Fig. 14 and Fig. 15, i.e., the three-component beam
profile and the two-slope energy spectrum, except for the
ratio between different components.

D. Transition of the slope of electron energy
spectrum

Prompted by the observation of the simulational results,
a possible explanation for the transition of the slope of the
electron energy spectrum is given as follows. When the
channel length is very short, the energy spectrum is an ex-
ponential distribution in the low-energy range. With an in-
creasing channel length, while the slope of energy distribu-
tion in the low-energy range remains the same, the energy
distribution in the high-energy range becomes a flat-top with
its maximum energy extending to a higher energy. The flat-
topped region reaches an upper limit~the top of the separa-
trix! when the channel length reaches one electron-detuning
length, and then more electrons are added into the flat-topped
region toward the lower-energy direction with increasing
channel length. At two electron-detuning lengths, as the

FIG. 15. Simulations of the electron energy spectra for channel radii ofr 0

5500mm ~dashed line! and r 055 mm ~solid line! at e50.15, vp53.4
31014 rad/s, andL5400mm. The initial energyTez is distributed randomly
between 0 and 300 keV. Only the electrons ejected with an angle less than
the laser cone angle are counted.
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earliest-injected electrons travel back to the bottom~the low-
energy region! of the separatrix, the addition of these elec-
trons to the low-energy spectrum leads to a change in the
slope of the exponential distribution. After the channel
length is larger than two electron-detuning lengths, the in-
crease of channel length results in an increase of the electron
number in the high-energy region once again, and the slope
of the energy distribution in the low-energy range stays the
same until the next jump, which occurs at four electron de-
tuning lengths.

To compare this with the experimental results, we plot
the experimental data on aa2(L/2Ld) diagram, as shown in
Fig. 16, in whichL is the channel length, andLd ~gp

2lp here!
is determined from the plasma density. The results show that
jumps occur whenL/2Ld is roughly equal to an integer, as
expected from above. Qualitatively, an increase of channel
length~increasingL! or increase of plasma density~decreas-
ing Ld! changesL/2Ld to a larger value, and abrupt changes
of the slope are expected to occur at the integer values of
L/2Ld . For the cases in which the laser power is increased at
a fixed plasma density and a fixed channel length~the length
of the gas jet!, i.e., fixedL/2Ld , the jumps of the slope can
still occur because the confinement time of injected electrons
depends on the plasma-wave amplitude. For these cases,L
should be replaced by the confinement length, which in-
creases with an increase of the amplitude of the plasma wave
~with increasing laser power or plasma density!.

E. Dark modes in the beam profile

There are at least two possible mechanisms that could
cause the observed dark-mode structures in the first beam
component. The mode structure could be a result of the com-
plicated transverse structure of the plasma wave induced by
its nonlinearity at large amplitudes or by self-channeling of
the laser pulse. For instance, when self-channeling occurs,
the transverse mode of the laser beam might be a higher-
order Hermite–Gaussian mode, leading to excitation of an
electron plasma wave with a corresponding transverse mode.
In simulations for plasma waves assuming such transverse
structures, similar mode structures do appear in the first

beam component, while the electron beam profile and the
energy spectrum still show the same features as in the case
for a fundamental Gaussian mode used in Sec. IV. On the
other hand, the depression of electron density at the positions
of peaks of the transverse laser intensity distribution may
lead to a reduction of the plasma wave amplitude at these
positions, resulting in dark spots at the corresponding posi-
tions in the accelerated electron beam. This may be the cause
for the central dark spot shown in Fig. 7.

Other possible causes for the appearance of these dark
spots are electron beam instabilities induced by magnetic
fields, such as Weibel instability46 and Kelvin–Helmholtz
instability.47 However, these processes cannot be verified in
this simulation because space charge forces between the ac-
celerated electrons are not considered.

V. SUMMARY

In summary, the characteristics of the electron beam
generated from a self-modulated laser wakefield accelerator
injected with self-trapping of electrons were measured ex-
perimentally, and the main features in the beam profile and
the energy spectrum are understood better with the help of
simple 3-D test particle simulations that take into account
only the longitudinal and transverse electric fields of an elec-
tron plasma wave. The multiple-component electron beam
profile is believed to be a result of the transverse electric
field in a plasma wave. The two-slope electron energy spec-
trum is found to be a result of electron motion inside and
outside the separatrix. The transition of the slope of electron
energy spectrum in the low-energy range could be related to
the electron detuning length. The dark modes appearing in
the electron beam profile may be caused by the excitation of
electron plasma waves with higher-order Hermite–Gaussian
modes or by density depressions. Furthermore, the results of
the simulations and analyses show that electrons that satisfy
the relation (pr /mc)2/2(pz /mc)51 may come from ejec-
tion by a plasma wave, instead of direct laser acceleration
through the laser ponderomotive force.

The experimental observation that there is no obvious
dependence of the characteristics of the electron beam on the
number of electrons indicates that the space-charge forces
between accelerated electrons do not affect the main features
of the electron beam. Other factors that could affect the ac-
celeration of electrons in an electron plasma wave include
the nonlinearity of the plasma wave and the magnetic field
associated with the plasma wave. Since the nonlinear correc-
tion of the electric field and the magnitude of the magnetic
field48 are, in the leading terms, proportional toe2, while the
magnitude of the longitudinal and transverse electric fields
are proportional toe, these effects can be neglected for small
plasma-wave amplitudes (e,0.3). This is why the qualita-
tive features of the electron beam observed in the experiment
can be reproduced in this simplified simulation. For a large
plasma-wave amplitude~up to the wave-breaking limit!, the
nonlinearity and the magnetic field are strong enough to af-
fect the details of the electron acceleration. However, the
main features of the electron beam are expected to be about

FIG. 16. Slope of the electron energy spectrum in the low-energy range as
a function ofL/2Ld .
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the same, because they are simply a result of the conserva-
tion of momentum and energy for the acceleration of elec-
trons in a self-consistent plasma wave.
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