
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

U.S. Navy Research U.S. Department of Defense

12-13-2006

Design and Implementation of a Modular Wireless
Sensor Network Sniffer
John C. McEachen
Naval Postgraduate School, Monterey, California, USA

Teo Hong Siang
Naval Postgraduate School, Monterey, California, USA

Georgios Kirykos
Naval Postgraduate School, Monterey, California, USA

Follow this and additional works at: http://digitalcommons.unl.edu/usnavyresearch

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has
been accepted for inclusion in U.S. Navy Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

McEachen, John C.; Siang, Teo Hong; and Kirykos, Georgios, "Design and Implementation of a Modular Wireless Sensor Network
Sniffer" (2006). U.S. Navy Research. 1.
http://digitalcommons.unl.edu/usnavyresearch/1

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usnavyresearch?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usdeptdefense?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usnavyresearch?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/usnavyresearch/1?utm_source=digitalcommons.unl.edu%2Fusnavyresearch%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

Design and Implementation of a Modular Wireless Sensor Network Sniffer

John C. McEachen, Teo Hong Siang, and Georgios Kirykos
Department of Electrical and Computer Engineering

Naval Postgraduate School
Monterey, California, USA

mceachen@nps.edu

ABSTRACT
We present the design and implementation of a wireless
packet sniffing application focused on the communications
of TinyOS-based sensor networks. This modular, multi-
threaded application allows robust analysis of transmitted
frames in an easily understood format similar to tcpdump.
The underlying software framework is presented and
details of the implementation are discussed. Finally,
verification of the application is performed using a basic
TinyOS application.

Index Terms—Sensor networks, IEEE 802.15.4, Zigbee,
wireless networking.

I. INTRODUCTION

sniffer is the quintessential tool for network analysis.
Such a tool is presently lacking in today’s sensor
network development kits. In the paper we will

present the design and implementation of a TinyOS sensor
network sniffer. The current design is based on existing
sensor network hardware and software components to
enable a low-cost sniffer implementation.

To understand how the sniffer works, it is necessary to
first understand how TinyOS handles incoming network
messages, and hence the hardware and software
components necessary to implement such a sniffer.

Dest

(2)

AM

(1)

Grp

(1)

Len

(1)

Data

(0..29)

CRC

(2)

Figure 1. TinyOS packet format. The byte sizes of the fields are indicated
in parentheses. [1].

A. Tinyos Filtering mechanism
A TinyOS packet has the format shown in figure 1. The
fields of interest are the following:
1) Destination Address
The destination address refers to the 16-bit node address of
the mote. It is programmed into the mote along with the
TinyOS application when the following command is
issued:
make <platform> re|install,<n>
<programmer>,<port>
where <n> is the 16-bit node address. The address 0 is
typically reserved for the base station mote.

2) Group ID
The group ID is analogous to the network address for a
group of cooperating motes. It allows multiple distinct
groups of motes to share the same radio channel. The
group ID can be set by defining the preprocessor symbol
DEFAULT_LOCAL_GROUP. For example, this symbol can
be located in the MakeXbowlocal file in the tinyos-
1.x/contrib/xbow/apps directory. This file is
automatically included in the compilation of almost all
TinyOS programs in the tinyos-
1.x/contrib/xbow/apps directory. The default
group ID is 0x7D.
3) AM Type
TinyOS implements the Active Message (AM) system. AM
types are analogous to port numbers in TCP/IP. Different
applications may use different AM types. For example, for
the Surge_Reliable application, the AM type is defined in
the Surge.h header file:

enum {
 AM_SURGEMSG = 17
};

TinyOS automatically filters incoming packets by
matching the destination address in the packet header with
the node address of the mote. If the node address is 0, then
TinyOS skips this step – the mote is effectively operating
in promiscuous mode. If the destination address matches
the node address, then the entire packet, including the
header, is passed on to the application. It is the
application’s responsibility to handle the group ID and AM
fields.

In summary, a TinyOS sniffer can simply be a mote
programmed with a node address of 0, and an application
that ignores the group ID and AM fields (assuming no a-
priori knowledge of either of them).

B. Components of a Rudimentary Sniffer
A simple TinyOS sniffer that generates raw hexadecimal

output can be quickly created based on readily available
hardware and software components. The software consists
of two programs: TOSBase and SerialForwarder. [2]

TOSBase is one of the many example TinyOS
applications that can be found in the tinyos-1.x/apps
directory. It acts as a simple bidirectional bridge between
the serial and radio links. By programming the TelosB
mote with TOSBase and a node address of 0, we have a
promiscuous receiver receiving TinyOS packets from the

A

Published in 5th Workshop on the Internet, Telecommunications and Signal Processing, December 11-13, Hobart, Australia.
Edited by Beata J Wysocki & Tadeusz A Wysocki. ISBN: 0 9756934 2 5

MicaZ sensor network, and forwarding them to the PC via
the serial link. So long as no data is sent to the serial link,
TOSBase will also be a unidirectional passive receiver.

As mentioned earlier, it is the responsibility of the
TinyOS application to handle the filtering of group ID and
AM type. TOSBase performs this function in the following
code segment from the TOSBaseM.nc file:

event TOS_MsgPtr
RadioReceive.receive(TOS_MsgPtr Msg) {
 …
 if ((!Msg->crc) || (Msg->group !=
TOS_AM_GROUP))
 return Msg;
 …
}

Clearly, TOSBase rejects corrupt packets, or packets
with a different group ID. Assuming we have no a-priori
knowledge of the target group ID, we can prevent the
filtering of packets by group ID by simply altering the code
as follows:

event TOS_MsgPtr
RadioReceive.receive(TOS_MsgPtr Msg) {
 …
 if (!Msg->crc)
 return Msg;
 …
}

TOSBase ignores the AM field, so AM filtering is not a
problem.

At this point, we have a rudimentary TinyOS sniffer
mote. Next, we need an application to read the raw data
from the serial port, and interpret it into a more human-
readable format. For this, we use SerialForwarder.

SerialForwarder is a Java applications that can be found
in the tinyos-1.x/tools/java/net/tinyos
directory. SerialForwarder runs on the PC and instantiates
a network server that forwards TinyOS packets read from
the serial port to a network port, and vice versa. Typically,
it is used to allow applications to communicate with the
mote via a network interface instead of a serial interface –
especially useful for distributed network clients, or Java
clients like Surge.

In this case, we use it to interpret the raw data from the
serial port by using the following command:

java
net.tinyos.sf.SerialForwarder -
comm serial@<port> 2>&1 | grep
"Received message"

where <port> is the serial port used by the TelosB
mote.

Unfortunately, this basic sniffer application is not well-
suited for in-depth analysis of large numbers of TinyOS

frames. The remainder of this paper will discuss the design
and implementation of a more robust, user-friendly sniffer
in the vein of tcpdump [3] to allow more advanced analysis
of TinyOS traffic.

C. Components of the sniffer
Our TinyOS sniffer is based on readily available hardware
and software components, and a Java-based application
analogous to tcpdump [3].
1) Software components
The software consists of one TinyOS application,
TransparentBase, and two custom Java applications,
SerialForwarder and Sniffer.

TransparentBase is one of the many examples of
TinyOS applications that can be found in the tinyos-
1.x/apps directory. It acts as a simple bidirectional
bridge between the serial and radio links. TransparentBase
has the additional property that it ignores the Group ID.
Programming the TelosB mote with TransparentBase and a
node address of 0 gives a promiscuous receiver receiving
TinyOS packets from the MicaZ sensor network, and
forwarding them to the PC via the serial link. So long as no
data is sent to the serial link, TransparentBase will also be
a unidirectional passive receiver.

As mentioned earlier, it is the responsibility of the
TinyOS application to handle the filtering of group ID and
AM type. TransparentBase ignores both the group ID and
AM type fields, so Group ID and AM filtering is not a
problem.

At this point, this is a functional TinyOS sniffer mote.
Next, an application is needed to communicate with the
mote via the serial port. In TinyOS world, the standard way
to this is to use SerialForwarder.

SerialForwarder is a Java application that can be found
in the tinyos /tools/java/net/tinyos
directory. SerialForwarder runs on the PC and instantiates
a network server that forwards TinyOS packets read from
the serial port to a network port, and vice versa. Typically,
it is used to allow applications to communicate with the
mote via a network interface instead of a serial interface –
this is especially useful for distributed network clients, or
Java clients like Surge.

Figure 2. Block diagram of TinyOS Sniffer.

The final piece of the puzzle is an application that reads
the packet from Serial Forwarder, extracts the protocol
and application information, and outputs the information in
a usable form. There is no such tool in current TinyOS
development kits. For this reason, the Java application
Sniffer has been developed. Figure 2 illustrates the block
diagram of the sniffer.

At this point, the necessary hardware and software
components of a TinyOS sniffer have been identified.
However, an application, Sniffer.java, is still needed that
reads the packet from Serial Forwarder, extracts the
protocol and application information, and outputs the
information in a usable form. This will be discussed in the
next section.

II. DESIGN AND IMPLEMENTATION OF THE SNIFFER
APPLICATION

In this section we discuss the design of a multi-threaded,
tcpdump-like application that reads raw packets from
Serial Forwarder, extracts the protocol and application
layer information, and outputs it in a usable form.

The developmental paradigm of TinyOS is that mote
applications running on the motes are written in nesC,
while user applications running on the PC are written in
Java. Keeping in line with this paradigm, Sniffer is also
written in Java.

The remainder of this chapter explains the Sniffer
application in more details. To follow the discussion, some
working knowledge of Java is assumed, e.g. how to run
Java programs, what are Java classes etc.

A. Process flow
The process flow of Sniffer is depicted in figure 3. The
program first parses the command line to determine the
user specified options, and exits upon detecting invalid
options, or if “-?” is specified to display the help text. Once
the options are set, the program attempts to instantiate a
PacketServer class and initialize the Writer class with the
registered outputs. If either of these fails, for example due
to a failure to communicate with a SerialForwarder source,
or a file I/O error, the program exits.

At this point, the program is ready to enter into its main
processing loop. First, it requests a packet from
PacketServer. Then it passes the packet to the Protocol and
AM classes in sequence to process the protocol and
application layer information respectively. Finally, the
processed packet is passed to the Writer class for output to
the screen, and is optionally written to file in a variety of
formats if the user so specifies. The process loop continues
indefinitely until the user terminates with Ctrl-C.

B. Description of the major Java Classes
The Java classes that are implemented for Sniffer, and their
relationships to each other, are depicted by the unified
modeling language (UML) diagram in figure 4. Note two
exceptions. Firstly, the Thread super-class is a system
provided class. It is included in the illustration to highlight

the fact that Sniffer is a multi-threaded application.
Secondly, the CLI utility library from the Apache Jakarta
Commons project [4], not shown in the illustration, is used
to provide the API for working with command line
arguments and options. The user has to ensure that the CLI
library is located in the Java CLASSPATH.

The Sniffer class contains the main function of Sniffer.
This is the entry point of the program, and implements the
process flow illustrated in figure 3. In addition, it keeps
track of packets received as well as packets with protocol
processing errors. This information is displayed on the
screen when the user terminates the program with Ctrl-C.

It is useful to look at the UML diagram in the following
way. The leftmost branch consisting of the PacketServer
class and its children comprise the input subsystem. The
middle branches consisting of the Protocol and AM classes
comprise the processing subsystem, while the rightmost
branch consisting of the Writer class and its children
comprise the output subsystem. Underpinning these
subsystems is a collection of data classes called Packet and
Field.

The data classes, and the input, processing and output
subsystems are now discussed in more details.
1) Data Classes
In order to capture the representation of a packet accurately
as it is processed through the program, Sniffer defines a
Field class and a Packet class. A Field is simply some value
with an associated name. A Packet is represented as a
triplet of header, payload data unit (PDU), and trailer. It
may also have a description string. The description is
useful for displaying human-readable packet information
on the screen.

Figure 3. Process flow chart for the Sniffer application

The header and trailer are defined as linked lists of

Fields. Perhaps more intriguingly, the PDU is itself defined
as a Packet. The Packet class is therefore a nested class.

This allows packets to be encapsulated inside another
packet easily.

If the PDU is null, then this Packet is the uppermost
packet, and all the information about the packet is stored in
the header. In OSI parlance, an upper layer payload is
encapsulated inside a lower layer protocol. So uppermost,
in this case, means the higher layer payload. The current
processing system should only concern itself with the
uppermost packet and payload.

In this case, there are two possibilities. On one hand, the
header list may consist of just a single field containing the
data payload waiting to be processed. On the other hand,
the header can be null, indicating that there is no more data
to be process, i.e. this packet has been fully resolved.

Hence, packet protocol processing works as follows:
1. Use the getUppermostPacket method to get

the uppermost packet.
2. Use the getUppermostPayload method to

get the uppermost payload to be processed.
3. Process the payload accordingly to derive

new header, trailer and PDU information.
4. Replace the uppermost packet's header,

PDU and trailer attributes with the new
information. The new PDU will now
become the new uppermost packet to the
next protocol layer.

2) Input Subsystem
The heart of the input subsystem is the ByteServer class. A
ByteServer object is instantiated by PacketServer, when it
is in turn instantiated by the Sniffer class. ByteServer is a
separate thread of execution from the main Sniffer class.
This allows input from the sniffer mote to be received in
the most responsive way, independent from the execution
of the rest of the program.

The ByteServer receives data from the sniffer mote
through objects subclassed from the Source class.
Currently, only the SFSource (or Serial Forwarder Source)
class is implemented. However, it is perfectly possible to
implement other sources if necessary, for example a
SerialSource class that communicates with the mote
directly via serial port communications, or a file source to
read data previously archived in a file. It shall be seen later
that additional sources can be easily created and added to
the system. By default, Serial Forwarder is assumed to be
running on the local host, port 9001. If this is not the case,
then the user can specify a host and port using the “-h” and
“-p” options.

Data read from the source is stored in a First-In-First-
Out (FIFO) buffer. In the current implementation, when the
buffer is full, further packet data are dropped, instead of
overriding the earliest received data.

The Sniffer class does not talk to the ByteServer
directly, instead it instantiates and requests packets from
the PacketServer class. PacketServer provides a packet-
level input abstraction to Sniffer. PacketServer makes
requests for received data from ByteServer, and then

packages the data bytes into a Packet object as its payload.
At the same time, PacketServer adds a timestamp to this
Packet’s header. This timestamp information allows for
temporal analysis of the packets. Strictly speaking, the
timestamp does not represent the time the packet is
received by the sniffer mote, but the time PacketServer
receives the data from ByteServer.
3) Processing Subsystem
Packet objects received from the input subsystem are
passed to the processing subsystem, to extract protocol and
application layer information. Packet objects are passed to
the Protocol class and then the AM class in sequence.

The first thing that the Protocol class does is to see if it
needs to determine the message format. TinyOS messages
can have 4 different formats, depending on the mote used
[2]:

1. The original TOS_Msg format used on
mica,mica2, and mica2dot,

2. the IEEE802.15.4 format used on telos
family motes,

3. the modified TOS_Msg format used on
micaz motes, and

4. the Infineon’s eyesIFX platform [5].
The Packet class has a static attribute, msgFormat, that

is used to identify the format. The Protocol class first
checks if this attribute is set. If it has not been set, the
Protocol class applies some heuristics to try to guess the
message format, and set it to the appropriate value. If the
heuristics fail, then the message format is unknown, and no
further processing will be done on the packet. It is assumed
that a given sensor networks is homogenous, so the
message format should be consistent. So the guessing of
the message format is only done once. However, the
heuristic rules are not foolproof by any means, so the
fallback is for the user to specify the message format on the
command line via the “-m” option. Once the message
format is known, the Protocol class performs the
appropriate protocol processing on the packet.

Once protocol processing is completed, the packet object
is passed to the AM class for application processing. Recall
that the AM type of a TinyOS message is analogous to the
port number in TCP/IP. So it is conceivable that in a given
sensor network, there can be more than one AM type. The
AM class maintains a list of AM handlers. The AM class
iterates through the list, passing the packet object to each
AM handler. Once an AM handler signals that it has
handled the AM type, application processing is complete.

Currently, the only AM handler implemented is the
AMCountMsgHandler class, for the test application
CountRadio. But it is easy to create and add AM handlers.
4) Output Subsystem
The Writer class is responsible for writing the packet
information to a variety of output channels. One of the
features of the output subsystem is that packet information
can be written to more than one channel simultaneously.

Thus the user has the maximum flexibility in storing packet
information.

The Writer class maintains a list of Output objects. The
ScreenOutput object is always available. At the same time,
the user can choose to enable other output channels using
command line options. Currently, the following FileOutput
objects are available: logging the screen output to file (“-
l”), writing to a binary file (“-ob”), and writing to a comma
separated value (CSV) file (“-oc”). The CSV file, for
example, is readily imported into Microsoft Excel for data
analysis purposes. The binary file, on the other hand,
provides a more efficient format to store packet
information.

When an Output object is instantiated, its run method is
also immediately registered with the JVM runtime as a
shutdown hook. This is a little known feature of Java that
was recently added to allow programs to perform last
minute clean-ups before JVM termination. In this case, the
shutdown hooks enable the ScreenOutput object to print
out packet accounting information, and the FileOutput
objects to flush their I/O buffers and close the file properly.

Again, if a particular output channel is not available, it
can be easily created and added to the system.

C. Extending sniffer
The Sniffer program has been designed so that it is easy to
create and add functionalities to the various subsystem,
without affecting how the rest of the system works. Part of
the reason for this capability lies in the object oriented
nature of Java. In general, adding functionality to Sniffer
can be done in two steps: subclassing an existing class,
then making the new class known to the Sniffer at the
appropriate code locations.
1) Adding input sources
New input sources should subclass the Source class, or any
of its subclasses, and override the open, close, and read
methods where necessary.

Within the main Sniffer class, a new command line
option may be specified so that the user can choose this
input source instead of the default SFSource. Then inside
the code that checks for this option in parseArgs, the new
Source object must be instantiated, and assigned it to the
source static variable. ByteServer will automatically
interface with the new input source.
2) Adding AM handlers
Handlers for new AM types should subclass the
AMHandler class, and override the processAM method.

The new AM handler class must then register with the
AM class within the following code static segment of
AM.java:
/*
 * Static code block.
 * This is where new AM handlers are
registered.
 */ �
static {�

appsList.add(new
AMCountMsgHandler ());�
// Add new AM handlers here, like
above.

}
3) Adding output channels
New output channels should subclass the Output class, and
override the open, close, write, and run methods where
necessary.

Similar to the input subsystem, within the main Sniffer
class, a new command line option may be specified so that
the user can choose to enable this new output channel.
Then inside the code that checks for this option in
parseArgs, the new Output object must be instantiated, and
added to Writer’s list of Output objects using the
addOutput method. Packet information will then be
automatically written to the output channel.

D. Test and Evaluation
The sniffing functionality of the TinyOS sniffer was tested
and evaluated using a simple test application. For the
purpose of this study, the target sensor network is a pair of
MicaZ motes running the CountRadio application. The
sniffer consists of a TelosB mote connected to a PC.
1) CountRadio application
CountRadio is an example application that can be found
under the tinyos/apps/ directory. From its
README.CountRadio file;“CountRadio is a simple
led/radio count program. The default application built
from this directory is CountDual. CountDual either sends a
count over the radio if the node address is equal to 1, or
displays a count received over the radio otherwise.”

The transmitting mote broadcasts a packet every 200
milliseconds, or five packets per second. The payload of
the packet has the format defined in the CountMsg.h file:

enum
{
 AM_COUNT_MSG = 4,
};

typedef struct
{
 uint16_t n;
 uint16_t src;
} CountMsg_t;

Hence the payload is of constant four byte length, where

the first two bytes represent a monotonically increasing
sequence number, followed by a constant source address
which should be 1. Therefore, this provides a very
predictable data source to verify the correctness of our
Sniffer program.
2) Output
With the motes up and running, Sniffer is started from the
command line with no additional options. Figure 5 shows
the captured screen output of Sniffer. Each line represents

one packet. The format of the output is designed to mimic
tcpdump to a certain extent. It has the following form:

<Timestamp> <Protocol>
<Grp>.<Dest>.<AM> (<Len>) [<Payload>]
<CRC>

The timestamp is in the 24-hour notation, with up to
millisecond precision. The protocol is denoted as “TOS”,
meaning TinyOS with TinySec disabled. The group ID,
destination address and AM types are grouped into a
“dotted” decimal notation that resembles an IP address
with its port number.

Then using the CSV file output of Sniffer, and importing
into Excel, it can be further verified that the sequence
number N runs in consecutive order, so no packets were
missed.

III. CONCLUSION
The design and implementation of the Sniffer program has
been described in detail, including its usage, process flow,
and the functions of the major Java classes. It has also been
explained how new input sources, application handlers, and
output channels can be easily created and added to the
program in a very modular way.

Figure 4. UML diagram of Sniffer.

Figure 5. Captured screen output of Sniffer sniffing on 2 motes running

the CountRadio application. The sniffer was started after the motes. Hence
the lower packet count.

REFERENCES
[1] Chris Karlof, Naveen Sastry, and David Wagner. “TinySec: A Link

Layer Security Architecture for Wireless Sensor Networks.” In
Second ACM Conference on Embedded Networked Sensor Systems,
pp. 162-175. Baltimore, Maryland, USA. Nov. 2004.

[2] Gilman Tolle. “Serial Forwarder Protocol” [Online]. Available:
http://cents.cs.berkeley.edu/tinywiki/index.php/Serial_Forwarder_Pr
otocol

[3] tcpdump/libpcap. http://www.tcpdump.org
[4] The Apache Jakarta Project, Commons CLI.

http://jakarta.apache.org/commons/cli
[5] “eyesIFX Sensor Network Development Kit- Documentation

(Version 1.0.2)” Infineon Technologies AG, Germany. [Online].
Available:
http://www.infineon.com/upload/Document/Eyes2.1_Doc_102.pdf

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	12-13-2006

	Design and Implementation of a Modular Wireless Sensor Network Sniffer
	John C. McEachen
	Teo Hong Siang
	Georgios Kirykos

	Microsoft Word - sniffer.doc

