Amelioration of Proteolipid Protein 139–151-Induced Encephalomyelitis in SJL Mice by Modified Amino Acid Copolymers and Their Mechanisms

Joel N.H. Stern
Harvard University

Zsolt Illés
Harvard Institute of Medicine

Jay Reddy
University of Nebraska - Lincoln, jayreddy@unl.edu

Derin B. Keskin
Harvard University

Eric Sheu
Harvard University

Follow this and additional works at: http://digitalcommons.unl.edu/vbsjayreddy

Part of the Immune System Diseases Commons, Medical Biochemistry Commons, Medical Immunology Commons, and the Medical Molecular Biology Commons
Amelioration of proteolipid protein 139–151-induced encephalomyelitis in SJL mice by modified amino acid copolymers and their mechanisms

Joel N. H. Stern††, Zsolt Illés§§, Jayagopala Reddy¶, Derin B. Keskin†, Eric Sheu†, Masha Fridkis-Hareli†, Hiroyuki Nishimura†, Celia F. Brosnan¶, Laura Santambrogio†, Vijay K. Kuchroo**, and Jack L. Strominger††††

†Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; ‡Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Boston, MA 02115; ¶Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461

Contributed by Jack L. Strominger, June 21, 2004

Copolymer 1 [Cop1, glatiramer acetate, Copaxone, poly(Y,E,A,X)n] is widely used in the treatment of relapsing/remitting multiple sclerosis in which it reduces the frequency of relapses by ~30%. In the present study, copolymers with modified amino acid compositions (based on the binding motif of myelin basic protein 85–99 to HLA-DR2) have been developed with the aim of suppressing multiple sclerosis more effectively. The enhanced efficacy of these copolymers in experimental autoimmune encephalomyelitis (EAE) induced in SJL/J mice with proteolipid protein 139–151 was demonstrated by using three protocols: (i) simultaneous administration of autoantigen and copolymer (termed prevention), (ii) pretreatment with copolymers (vaccination), or (iii) administration of copolymers after disease onset (treatment). Strikingly, in the treatment protocol administration of soluble VWAK and FYAK after onset of disease led to stasis of its progression and suppression of histopathological evidence of EAE. The mechanisms by which these effects are achieved have been examined in several types of assays: binding of copolymers to I-A in competition with proteolipid protein 139–151 (blocking), cytokine production by T cells (T helper 2 polarization), and transfer of protection by CD3+ splenocytes or, notably, by copolymer-specific T cell lines (induction of regulatory T cells). The generation of these copolymer-specific regulatory T cells that secrete IL-4 and IL-10 and are independent of the immunizing autoantigen is very prominent among the multiple mechanisms that account for the observed suppressive effect of copolymers in EAE.

multiple sclerosis | cytokines | peptides | T cells | autoimmunity

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system affecting young adults. In Northern European Caucasian MS patients, the disease is strongly associated with the HLA-DR2 (DRA*0901/DRB1*1501) haplotype (1–3). Experimental autoimmune encephalomyelitis (EAE), an animal model for MS, can be induced in mice by administration of peptides derived from myelin proteins, i.e., proteolipid protein (PLP) 139–151 (4), myelin oligodendrocyte glycoprotein 35–55 (5), or myelin basic protein (MBP) 85–99 (6–8). In this model, self-reactive CD4+ T cells produce IFN-γ, a T helper (Th)-1 cytokine, that is believed to mediate the disease (9), whereas Th2 cells and cytokines, namely IL-4 and IL-10, have been shown to reduce its severity (10, 11).

Various therapeutic strategies involving agents that compete with the process of recognition of HLA-DR2 (DRA/DRB1*1501)/MBP85–99 complexes by autoreactive T cells have been attempted in MS. Agents such as copolymers, peptides, oligomers, altered peptide ligands, and peptide antigens have been used for this purpose, and of these Copolymer 1 (Cop1) is currently widely used in the treatment of MS (12–21). Cop1 is a random amino acid copolymer of t-tyrosine (Y), l-glutamic acid (E), l-alanine (A), and l-lysine (K), in a molar ratio of ~1:0.1:1:4:2:3:4, synthesized in solution by using N-carboxyamino acid anhydrides (20). Cop1 was originally designed to induce EAE, but instead was found to be effective in suppressing EAE (20–23) and is in current use in the treatment of relapsing-remitting forms of MS (24–26). A recent clinical study demonstrated its sustained efficacy in MS patients over a period of 6 years (27). Nevertheless, Cop1 only has a modest effect on the course of the disease. Much like IFN-β (28), it reduces the relapse rate by ~30% in MS patients. Novel compounds with higher efficacy in the treatment of MS that take into consideration the fact that ~60% of patients with MS are HLA-DR2 positive are needed. Additionally, the mechanism(s) by which Cop1 performs its suppressive function remains incompletely known (29).

Structural studies obtained from HLA-DR2/peptide complexes revealed that the P1 pocket of DRB1*1501 includes β86Val, which results in a small pocket that can accommodate relatively small hydrophobic amino acids such as V or F but not Y or W (30, 31). Additionally, the residues that form the P4 pocket include β71Ala. The resulting large hydrophobic pocket can accommodate F, Y, or W, whereas the P9 pocket is promiscuous. In so far as the binding of MBP 85–99 to HLA-DR2 is concerned, the P1 amino acid is V and the P4 amino acid is F, although Y or W at P4 would provide a tighter fit (30, 31). Judging from the components of Cop1, the amino acids YEAK do not appear to fit HLA-DR2 optimally.

For the present study several random 4-aa copolymers that were designed to bind more tightly in the key binding pockets of HLA-DR2 were generated. Replacing Y and E with a variety of amino acids was found to facilitate the interaction between the resulting copolymer and the DRB1*1501 pockets and improved binding. Among the copolymers generated, both VWAK and FYAK [initial studies of the latter as reported (15)] had a pronounced effect in suppressing the PLP 139–151-specific T cell response and the severity of EAE. These effects are mediated, at least in part, by copolymer-specific, antigen-nonspecific regulatory T cells.

Materials and Methods

Mice. SJL/J female mice (8–10 weeks of age, The Jackson Laboratory) were maintained according to the Guidelines of the Committee on Animals of Harvard University and the Committee on Care and Use of Laboratory Animal Resources, National Research Council (Department of Health and Human Services Publication August 10, 2004 | vol. 101 | no. 32 | 11743–11748

Abbreviations: EAE, experimental autoimmune encephalomyelitis; Cop1, Copolymer 1; MBP, myelin basic protein; MS, multiple sclerosis; PLP, proteolipid protein; Th, T helper; CFA, complete Freund’s adjuvant.

†I.N.H.S. and Z.I. contributed equally to this work.

**To whom correspondence should be addressed. E-mail: vkuchroo@rics.bwh.harvard.edu or jstrom@fas.harvard.edu.

††The development of the copolymers for clinical trial of MS has been licensed by Harvard University to Peptimmune (Boston). J.L.S. is Chairman of the Scientific Advisory Board and has an equity interest in Peptimmune.

© 2004 by The National Academy of Sciences of the USA
using Streptavidin POD reagent (Roche Diagnostics). I-A\(s\) was
mers (VWAK, FYAK, or Cop1) or PLP 139–151 described above was followed.
with PLP 139–151 peptide (50 \(\mu\)g/ml) buffer. MHC
branes were blocked with 5% nonfat dry milk in TBS (0.05% Tween
Schuell) membrane by using transblot apparatus (Bio-Rad). Mem-
The gel was blotted onto poly(vinylidene difluoride) (Schleicher &
us by the spacer SGSG and free acid at the C terminus; and Nase
NTLKLAT, either unlabeled or with biotin linked to the N termi-

Peptide Binding to I-A\(\beta\) Protein. These studies were performed as
described (15) by using mAb Y3P to isolate I-A\(\beta\) from LS 102.9 B
cell lines by affinity chromatography (32). Binding of biotinylated
PLP 139–151 to I-A\(\beta\) was competed by copolymers or PLP 139–151.

Western Blot Analysis. Samples containing MHC or MHC-biotin
labeled copolymer complexes were separated on 15% SDS/PAGE.
The gel was blotted onto poly(vinylidene difluoride) (Schleicher &
Schuell) membrane using transblot apparatus (Bio-Rad). Mem-

Cytokine Measurement by ELISA. Lymphocytes from SJL mice
immunized with PLP 139–151 with or without copolymers (FYAK, VWAK, and Cop1) were restimulated with the corre-
sponding peptides or copolymers in the presence of antigen-

Adoptive Transfer of CD3\(^+\) Spleen Cells. Splenocytes were isolated
from SJL/J mice immunized with either PLP139–151 and copoly-
mers (VWAK, FYAK, or Cop1) or PLP 139–151 alone. After 24
days, a mouse T cell enrichment column (R & D Systems) was used
to isolate CD3\(^+\) cells. T cells (5 \(\times\) 10\(^6\)) were injected i.v. into naive
6- to 8-week-old SJL/J mice. The next day, mice were immunized
with PLP 139–151 peptide (50 \(\mu\)g/mouse) as described (15) and
scored daily for signs of EAE.

Adoptive Transfer of PLP 139–151 and Copolymer-Specific T Cell Lines. Spleen
JL/J mice were immunized with either 50 \(\mu\)g of PLP 139–151 peptide or 500 \(\mu\)g of copolymers (VWAK, FYAK, or Cop1). Stimulator cells were prepared by loading naive SJL/J splenocytes in vitro for 12 h with 10 \(\mu\)g/ml PLP or copolymers (VWAK, FYAK, or Cop1). Ten days postimmunization splenocytes were cocultured with irradiated stimulators (3,000 rad) in 1:1 ratio for 5 days in T 25
flasks (1 \(\times\) 10\(^6\) total cells in media containing 20 units of IL-2) and
restimulated weekly for 3 weeks with fresh antigen-loaded spleno-
cytes to obtain cell lines. T cells (5 \(\times\) 10\(^6\)) from these lines were

Results
Amelioration of EAE by Synthetic Amino Acid Copolymers. Commu-
nization of mice with PLP 139–151 and copolymers protects against EAE.

SJL/J mice were immunized s.c. with 50 \(\mu\)g of PLP 139–151 and/or
500 \(\mu\)g of copolymer in CFA. In the PLP 139–151-immunized
group, the first sign of EAE appeared at day 8 with a mortality of
100% (mean score, 5) by day 16 (Fig. 1A). Mice coimmunized with
Cop1 (YEAK) developed EAE beginning at day 12 with a maximal
mean score of 2.3 around day 23 followed by slow recovery by day
45. On the other hand, in mice injected with two copolymers,
VWAK or FYAK, essentially no disease was evident, with only one
mouse in each treatment group developing a mild disease (score of
1–2) for 10–12 days. However, two of six mice treated with two
other copolymers, FWAK and VYAK, developed severe signs of
EAE (score of 3) with no mortality and the remainder developed
a mild disease (score of 1 or 2) (data not shown); no further

Fig. 1. Suppression of EAE induced with the PLP 139–151 by different
random copolymers. Statistical analysis is shown in Table 1, which is published
as supporting information on the PNAS web site. (A) SJL/J mice were coin-
jected s.c. with 50 \(\mu\)g of PLP 139–151 peptide and 500 \(\mu\)g of FYAK, VWAK, or
Cop1 in CFA, or the PLP 139–151 peptide alone, with six to eight mice in each
group. The progression of clinical signs of the disease was monitored daily.
Results represent the mean daily score. Six to 10 mice per group were used in
each independent experiment. This experiment was carried out three times by
using preimmunization with copolymers in CFA twice and in PBS/mannitol
once, again with similar results in all three experiments. (B) SJL/J mice were immunized
s.c. with 500 \(\mu\)g of copolymers in CFA 2 days before administration of 50 \(\mu\)g of
PLP 139–151 in CFA and were observed daily for the appearance of EAE.
Results represent the mean daily score. Six to 10 mice per group were used in
each independent experiment. This experiment was carried out three times by
using preimmunization with copolymers in CFA twice and in PBS/mannitol
once, again with similar results in all three experiments. (C) Treatment of SJL/J
mice after induction of PLP 139–151-induced EAE. SJL/J mice were injected s.c.
with 50 \(\mu\)g of PLP 139–151 in CFA s.c. After onset of disease at a mean EAE
score of 1, 12 mice in each group (C1) or at a mean score of 1.5, 4 mice in each
group (C2) were injected s.c. on 5 consecutive days with 150 \(\mu\)g of copolymers
in PBS/mannitol and observed daily for the appearance of signs of EAE. Data
shown in C1 represent two separate trials of 12 mice per group. Note that
experiment (C1) was carried out with a second batch of PLP 139–151 that was
less pure and that only 6 of 10 mice in this study died, hence the plateau in EAE
score. All mice died.
experiments have been carried out with these latter two copolymers. All scoring in this and the following experiments was done in a double-blind manner.

Preimmunization with copolymers protects mice against PLP \(\text{A} \)–\(\text{B} \)-induced EAE. SJL/J mice were immunized s.c. with 500 \(\mu \text{g} \) of copolymer either in complete Freund’s adjuvant (CFA) or PBS, 2 days before administration of 50 \(\mu \text{g} \) of PLP \(\text{A} \)–\(\text{B} \) in CFA (Fig. 1B). Copolymer in PBS or CFA yielded essentially identical data. All control mice immunized with PLP \(\text{A} \)–\(\text{B} \) developed severe EAE with a mortality of 100%. On the contrary, preimmunization on day 2 with VWAK, FYAK, or Cop1 reduced the clinical signs of PLP \(\text{A} \)–\(\text{B} \)-induced EAE. VWAK and FYAK reduced the intensity and duration of EAE with maximal mean scores of 1.9 and 2.6 on day 16, respectively, whereas Cop1-treated mice had a maximal mean score of 3.8 (Fig. 1B). Thus, in this assay VWAK was significantly more effective than the other copolymers. Residual disease was also significantly greater at day 64 with Cop1 than with either VWAK or FYAK. Preimmunization with copolymers 4 days before inducing the disease gave similar results (data not shown).

Treatment of PLP \(\text{A} \)–\(\text{B} \)-induced EAE with copolymers ameliorates already established disease. PLP \(\text{A} \)–\(\text{B} \) (50 \(\mu \text{g} \) in CFA) was injected s.c. into SJL/J mice. On day 11, at which time all mice had developed mild EAE (score: 1, limp tail), 150 \(\mu \text{g} \) of VWAK, FYAK, or Cop1 in PBS/mannitol per mouse was administered s.c. for 5 consecutive days. All of the copolymers suppressed further progression of EAE. VWAK- and FYAK-treated mice peaked on days 14 and 18 (maximal mean score 2, including one mortality in each group), whereas Cop1 was less effective (score 2.5 on day 16, including two mortalities) (Fig. 1C). Again residual disease was evident at day 54 after treatment with Cop1 but not with either VWAK or FYAK. Six of nine untreated PLP \(\text{A} \)–\(\text{B} \)-immunized mice died but three survived, resulting in a score of 3.9.

A second treatment using only four animals per group was initiated at a slightly later stage of EAE (score: 1.5 on day 9) (Fig. 1C). In this experiment treatment with VWAK or FYAK (150 \(\mu \text{g} \) per mouse s.c. in PBS/mannitol for 5 successive days) was less effective (score: 2.5 or 3.0, two to three limbs paralyzed at day 14), with only one death in the copolymer-treated group, whereas all of the mice in the PLP \(\text{A} \)–\(\text{B} \)-immunized group died by day 16.

Histology. Histological analysis of tissues from animals sensitized with PLP alone showed perivascular mononuclear infiltrates typical of EAE at all levels of the brain and spinal cord. The appearance of these lesions in white matter tracts of the cerebellum is shown in Fig. 5, which is published as supporting information on the PNAS web site, and demonstrates the extensive infiltration of inflammatory cells into the CNS parenchyma, resulting in disruption of the normal tissue architecture. In animals treated with Cop1, the perivascular cuffs were smaller and infiltration of inflammatory cells into the surrounding parenchyma was less marked. In animals treated with FYAK, the lesions were even smaller, and lesions were detected only rarely at this site in animals treated with VWAK.

Analysis of myelin loss, using immunohistochemical staining for MBP, showed that the extent of demyelination was well correlated with the extent of the inflammatory infiltrates, with large demyelinated plaques centered around blood vessels evident in the PLP controls, medium plaques in Cop1-treated mice, much smaller plaques in animals treated with FYAK, and well-preserved myelin in animals treated with VWAK.

Mechanism of Suppression of PLP \(\text{A} \)–\(\text{B} \)-Induced EAE by Copolymers. Blocking of binding of PLP \(\text{A} \)–\(\text{B} \) to I-A\(^*\) molecules by copolymers. To investigate whether various copolymers inhibited binding of PLP \(\text{A} \)–\(\text{B} \) to purified I-A\(^*\), binding assays and confocal microscopy were performed. With biotinylated PLP \(\text{A} \)–\(\text{B} \) all of the copolymers were shown to compete for its binding to I-A\(^*\) (Fig. 2A). However, VWAK was significantly better than Cop1 or FYAK in competing with the biotinylated peptide (Fig. 2B), particularly at low concentrations. Confocal microscopy was also used to show that I-A\(^*\) and copolymers colocalized on the surface of bone marrow-derived murine dendritic cells (Fig. 6, which is published as supporting information on the PNAS web site).

Suppression by copolymers of PLP-specific T cell proliferation. SJL/J mice were immunized with 50 \(\mu \text{g} \) of PLP \(\text{A} \)–\(\text{B} \) in CFA alone or coimmunized with PLP and 500 \(\mu \text{g} \) of copolymers s.c. On day 10 splenocytes (that contain both T cells and antigen-presenting cells) from mice immunized with PLP \(\text{A} \)–\(\text{B} \) responded vigorously to the antigen in vitro, as expected, whereas little proliferation to PLP \(\text{A} \)–\(\text{B} \) was seen after immunization with the irrelevant peptide Nase (Fig. 3A). However, when splenocytes from mice coimmunized with copolymers were restimulated with PLP \(\text{A} \)–\(\text{B} \), expansion of PLP \(\text{A} \)–\(\text{B} \)-specific T cells was observed while the irrelevant peptide Nase was not. This was most pronounced following treatment with Cop1 and FYAK (Fig. 3B).

Cell lines responsive to either PLP \(\text{A} \)–\(\text{B} \) or individual copolymers were then established by restimulation of splenocytes pulsed with the individual antigens alone over a period of 3 weeks (Fig. 3B). The PLP \(\text{A} \)–\(\text{B} \)-specific cell line did not react to any of the copolymers (Fig. 3B2). Likewise, PLP \(\text{A} \)–\(\text{B} \) did not stimulate any of the copolymer-specific T cell lines (Fig. 3B3), and no cross-stimulation by copolymers was observed (data not shown). Thus, no cross-reactivity between PLP \(\text{A} \)–\(\text{B} \) and copolymer-specific cell lines was observed and each of the copolymer-specific cell lines was specific for the copolymer used in immunization and restimulation.

Blocking by copolymers of PLP-specific T cell expansion in vitro. To determine the frequency of PLP-responsive T cells in spleen, I-A\(^*\)/PLP \(\text{A} \)–\(\text{B} \) tetramers were used. The percent PLP \(\text{A} \)–\(\text{B} \)-reactive CD4 T cells in splenocytes was determined by flow cytometric analysis using Th1 cells (Fig. 3B1). The PLP \(\text{A} \)–\(\text{B} \)-reactive CD4 T cells in splenocytes was determined by flow cytometric analysis using Th1 cells (Fig. 3B1). The PLP \(\text{A} \)–\(\text{B} \)-reactive CD4 T cells in splenocytes was determined by flow cytometric analysis using Th1 cells (Fig. 3B1). The PLP \(\text{A} \)–\(\text{B} \)-specific cell line did not react to any of the copolymers (Fig. 3B2). Likewise, PLP \(\text{A} \)–\(\text{B} \) did not stimulate any of the copolymer-specific T cell lines (Fig. 3B3), and no cross-stimulation by copolymers was observed (data not shown). Thus, no cross-reactivity between PLP \(\text{A} \)–\(\text{B} \) and copolymer-specific cell lines was observed and each of the copolymer-specific cell lines was specific for the copolymer used in immunization and restimulation.
Cytokine production by splenocytes after coimmunization with copolymers and PLP 139–151. Cytokine profiles were determined by ELISA in splenocyte cultures derived from SJL/J mice immunized with PLP 139–151 with or without copolymers and restimulated in vitro with PLP 139–151 or copolymers. CD4 T cells from PLP 139–151-immunized mice produce IFN-γ, but not IL-4 or IL-10, upon in vitro activation with PLP 139–151. Splenocytes from mice coimmunized with PLP 139–151 and copolymers continued to produce INF-γ. In addition, IL-4 and IL-10 both were produced by splenocytes from coimmunized mice on copolymer stimulation (presumably by copolymer-specific T cells, see below) (Fig. 8, which is published as supporting information on the PNAS web site).

Discussion

In this study, the copolymers FYAK and VWAK, which were designed based on the amino acid residues responsible for binding of MBP 85–99 and the peptide binding pockets of HLA-DR2 (30, 31), were used to study the effect of copolymers on the induction of EAE. The results showed that coimmunization with copolymers can significantly reduce the severity of EAE, as measured by a delay in onset and a decrease in disease severity. The mechanism by which copolymers achieve this effect is not fully understood, but it is likely related to their ability to modulate the immune response.

Suppression by adoptive transfer of CD3+ T splenocytes from mice coimmunized with PLP 139–151 and copolymers. SJL/J mice were immunized with PLP 139–151 in CFA alone or coimmunized with Cop1, VWAK, or FYAK together with PLP 139–151. Only mice immunized with PLP 139–151 with or without Cop1 developed mild or severe EAE symptoms with scores of 1.7 and 2.8, respectively on day 24. As expected, no disease appeared in mice coimmunized with PLP 139–151 and either VWAK or FYAK (Fig. 4A). On day 24, CD3+ splenocytes (5 × 10^6) from each of the coimmunized mice were transferred into naive SJL mice. The next day they were immunized s.c. with 50 µg of PLP 139–151 in CFA.

Mice into which CD3+ splenocytes from PLP 139–151-immunized mice had been transferred developed disease with onset on day 8 and a maximal mean score of 4, about the same as PLP 139–151-immunized mice that had not received any adoptive splenocytes. Mice into which splenocytes from VWAK- or FYAK-coimmunized animals were transferred had scores of 1.6 and 2.2, respectively, both with an onset on day 10, and essentially no disease by day 40 (Fig. 4B). By contrast, CD3+ splenocytes from Cop1-treated mice had a score of 3 on day 18 and appeared to stabilize with a score of 1.5 by day 30. Thus, CD3+ splenocytes generated after VWAK or FYAK, and to a lesser extent after Cop1 treatment, had significantly suppressed PLP 139–151-induced EAE. Residual disease at day 58 was present when using CD3+ splenocytes from Cop1-treated mice but not from YFAK- or VWAK-treated mice.

Lack of anergy induction by copolymers. See Fig. 9, which is published as supporting information on the PNAS web site.

Coimmunization with copolymers did not produce the Th1 cytokines IFN-γ and IL-12 upregulated by PLP 139–151, as was previously demonstrated with splenocytes from mice coimmunized with PLP 139–151 and copolymers and restimulated in vitro with the respective antigen. Previously, splenocytes from PLP 139–151-immunized mice produced IFN-γ but not IL-4 or IL-10 upon in vitro activation with PLP 139–151 (Fig. 8). Splenocytes from these mice PLP 139–151-immunized were restimulated three times biweekly with PLP 139–151 or copolymers. The proliferative response was determined as above to each of the four antigens of the homologous cell lines (B1), each of the copolymer/PLP-specific cell line (B2), or PLP 139–151 of each of the copolymer-specific cell lines (B3).
EAE in SJL mice was assessed by the appearance of signs of EAE. This is one of two nearly identical independent comparisons (1). Binding to I-As (Figs. 2 and 6). Previously, aggregates (clusters) of myelinspecific T cells and to cluster with and compete with PLP 139 in SJL J mice (I-As) mice (Fig. 1) that was paralleled by evidence of PLP 139–151-induced EAE in SJL/J mice was examined for cytokine production. The culture supernatants of the above lines were examined for cytokine production. The cytokine secretion of both IFN-γ and IL-4 was assessed by ELISA. (D) Fluorescence-activated cell sorting analysis of copolymer-specific T cell lines. The generation of copolymer-specific T cells, such as T cell antigen receptor competition (43, 44) or induction of anergy (45), may be operative. Induction of hyporesponsive T cells (anergy) in MS patients after continuous administration of Cop1 has been observed (45). The generation of copolymer-specific CD4+ T cells that secrete IL-4 and IL-10 and can adoptively transfer resistance to EAE appears very prominent among these mecha-

Fig. 4. Suppression of EAE upon adoptive transfer of either CD3+ T cells from coimmunized SJL/J mice or copolymer-specific T cell lines from copolymer-immunized SJL/J mice. Statistical analysis is shown in Table 1. (A1) SJL/J mice were injected with 50 μg of PLP 139–151 in CFA with or without 500 μg of copolymer s.c. After disease induction, mice were observed daily for the appearance of signs of EAE. (A2) Splenocytes (5 × 10^6) from mice immunized s.c. with 50 μg of PLP 139–151 in CFA only (●), without prior immunization for comparison (○), or mice coimmunized s.c. with PLP 139–151 and 500 μg of copolymer (VWAK, □; FYAK, □, or Cop1, △) were transferred on day 24 of the experiment in A1 into naive SJL/J mice. The next day, the mice were immunized s.c. with 50 μg of PLP 139–151 in CFA. Mice were observed daily for the appearance of signs of EAE. This is one of two nearly identical independent experiments. (B) Copolymer-specific or PLP 139–151-specific T cells (5 × 10^5) from lines established after immunization with either copolymer or PLP 139–151 were transferred into naive SJL/J mice, and the next day the mice were immunized s.c. with 50 μg of PLP 139–151 in CFA. (C) Cytokine secretion. The culture supernatants of the above lines were examined for cytokine production by ELISA. (D) Fluorescence-activated cell sorting analysis of copolymer-specific T cell lines.

I-A′ molecules after Cop1 binding were detected on the surface of antigen-presenting cells from SJL/J mice (35). FYAK and VWAK were more potent than Cop1 in binding to mouse I-A′ molecules and in competing for PLP 139–151 binding. Their efficacy in vivo in SJL/J mice with PLP 139–151-induced EAE was examined by using three protocols: (i) preimmunization of mice with copolymers before the induction of EAE by PLP 139–151 (vaccination); (ii) coimmunization of mice with copolymers and PLP 139–151 together (prevention); and (iii) treatment of mice with copolymers after onset of EAE induced by PLP 139–151 (therapy). In all of these protocols, the copolymers showed a pronounced suppressive effect on PLP 139–151-induced EAE in the order VWAK > FYAK > Cop1.

The mechanism by which the copolymers exert their effects was examined in several protocols in addition to the binding assay. First, the copolymers were inhibitors of the expansion of PLP 139–151-specific T cells (proliferation assays), both in vitro and in vivo, again in the order VWAK > FYAK > Cop1 (Figs. 3 and 7).

Second, copolymers shifted the T cell immune response from a classical Th1 phenotype toward a Th2 response (immune deviation). EAE induced by myelin antigens such as MBP and PLP 139–151 are regarded as Th1 cell-mediated diseases, although Th2 cells have been shown to induce EAE under certain conditions (36). In SJL/J mice, restimulation of splenocytes from PLP 139–151-immunized animals with PLP 139–151 in vivo induced the production of IFN-γ but not IL-4 or IL-10. However, splenocytes from mice coimmunized with PLP 139–151 and copolymers when restimulated with their corresponding copolymers also produced IL-4 and IL-10 without much alteration in the production of IFN-γ. The Th2 cytokines, IL-4 and IL-10, have antiinflammatory properties (10, 11, 37). Furthermore, B6 mice transgenic for IL-4 or IL-10 are resistant to myelin oligodendrocyte glycoprotein 35–55-induced EAE (10, 11) and hence these cytokines may play a critical role in reducing the severity of inflammatory diseases such as EAE. These cytokines may be produced by copolymer-specific T cells (see below) with a negligible contribution, if any, from PLP 139–151-reactive T cells.

Third, copolymers may mediate their effects by inducing copolymer-specific T cells with the Th2 phenotype (38). The copolymers upon immunization of SJL/J mice induced a copolymer-specific T cell response (Fig. 3), i.e., the copolymers are immunogenic. Moreover, adoptive transfer of copolymer-specific T cells reduced markedly the severity of EAE (Fig. 4), suggesting that they produce Th2 cytokines without copolymer restimulation. How then do the copolymer-specific T cells regulate autoantigen-reactive T cells in vivo? Do the copolymer-specific T cells work in a manner similar to CD4+CD25+ T cells, which have been shown to prevent the occurrence of several autoimmune diseases including EAE (39, 40), or by secretion of Th2 cytokines? Further clarification is required. Moreover, the copolymer-specific T cell lines are antigen nonspecific, i.e., they can be generated and they respond to copolymers in the absence of antigen (Figs. 3 and 4). Thus, they may be useful in the treatment of other autoimmune diseases or in those where several autoantigens are involved, as is likely to be the case in MS.

However, whatever the mechanism, the first step must be binding to a class II MHC protein (41, 42). The copolymers were optimized for binding to HLA-DR2 but they are likely to bind promiscuously to class II MHC proteins with varying affinities (41). They obviously bind to I-A′ with high affinity (Fig. 3B). A number of mechanisms in addition to blocking and immune deviation resulting from the generation of copolymer-specific T cells, such as T cell antigen receptor competition (43, 44) or induction of anergy (45), may be operative. Induction of hyporesponsive T cells (anergy) in MS patients after continuous administration of Cop1 has been observed (45). The generation of copolymer-specific CD4+ T cell lines that secrete IL-4 and IL-10 and can adoptively transfer resistance to EAE appears very prominent among these mecha-
nisms. Copolymers might also suppress disease through modulating CNS antigen-presenting cells i.e., microglia.

Different copolymers may have different mechanisms of suppression. VWAK appears to be less able to generate T cell lines (Fig. 3 B1) and also generates larger amounts of IL-4 and lower amounts of IFN-γ (Fig. 8). Yet it suppresses EAE somewhat more effectively (Fig. 1). However, VWAK binds more tightly to I-A^d and may be a better blocking agent. In an accompanying paper (46), the efficacy of these copolymers has also been tested in a humanized double-transgenic mouse model expressing human HLA-DR2 (DRB1*1501) and a human T cell antigen receptor specific for MBP 85–99 from an MS patient and their mechanisms were compared. Although the mechanisms are similar, some differences were observed.

What accounts for the slightly greater effectiveness of VWAK than FYAK? FYAK is much more effective in stimulating copolymer-specific T cell lines and production of antiinflammatory cytokines IL-4 and IL-10, and thus should be much more effective in disease reduction if immune deviation is the mechanism. On the other hand, in an accompanying paper (48), VWAK is shown to induce T cell anergy much more efficiently than FYAK in the humanized double-transgenic mouse model, although in the present work in H-2^d mice no anergy induction by either copolymer was observed (Fig. 9). Conversely VWAK induces IL-4 and IL-10 production only relatively weakly and, like FYAK, also induces T cell anergy relatively poorly. Thus, a combination of mechanisms may be involved in the reduction of severity of EAE and perhaps a combination of copolymers would be the most effective treatment of EAE and by extension of MS.

We thank P. Klimovitsky for isolation of I-A^d; M. L. Wong for expert technical assistance; N. Reppas, H. Ploegh, J. Orange, and R. Strom for helpful discussions; and T. Aldridge and the Bauer Center for Genomics Research for use of equipment and facilities. This work was supported by National Institutes of Health Grants AI 49524 (to J.L.S.), R01 NS0843 (to V.K.K.), and P01 NS01037 (to H. L. Weiner) and National Multiple Sclerosis Society Grant RG2571-D-9 (to V.K.K.). The National Multiple Sclerosis Society provided funds for the synthesis of amino acid copolymers. J.R. is a recipient of an advanced postdoctoral fellowship award from the National Multiple Sclerosis Society.