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ABSTRACT:  
 

Biodegradable polymers were formed from N-benzyloxycarbonyl-L-glutamic acid with the 
comonomers ethylene glycol, diglycidyl ether of 1,4-butanediol, and diglycidyl ether of bisphenol A. The 
three polymers were a linear and a  rosslinked heterochain polyester and a crosslinked polyester that 
contained aromatic units within its network chains. The thermoplastic resin and the soluble fractions for the 
thermosetting resins were characterized by gel permeation chromatography. Conversions for carboxylic 
acid were determined by titrations. A quality, 22,000 molecular weight thermoplastic resin was formed. The 
two thermosets were cured past their gel points. Gelation analysis revealed that the relative rate constants 
for the sequential oxirane/ acid and alcohol/acid reactions were distinct. With diglycidyl ether of 1,4-
butanediol, the ratio of the respective rate constants was 3; with diglycidyl ether of bisphenol A, the ratio 
approached 200. The resins hydrolyzed to monomers in the presence of lipase, but in the presence of a 
mixed microbial culture, only the first two resins decayed to biomass, respiratory gases, and water. The 
third resin was inert during the period of observation.  
 
Key words:  amino-protected glutamic acid; biodegradable polymers; gelation; polymer networks;           

polyesters 
 
INTRODUCTION 
 

The development of biodegradable polymers using value-added, renewable agricultural resources 
was a prime motivation for this research. Annually, an enormous tonnage of plastics is sent to waste-
disposal systems, such as landfills. Synthetic, organic polymers resist natural degradation 
due to variables that include a low surface area per unit mass, chemical structure, and high molecular 
weight. Degradation may be initiated through environmentally induced changes which transform the 
polymer into smaller segments. To  be classified as biodegradable, these fragments should decay via 
microorganisms into biomass, respiratory gases, and water. In tertiary recycling, polymers decay to 
monomers.1 Potential uses of biodegradable polymers include controlled release formulations for drugs, 
the preparation of surgical implants, agricultural chemicals, and agricultural mulch. In this article, the 
synthesis and characterization of three quality polymers with distinct chain configurations is addressed. 
Companion articles discuss the results of biodegradation studies. Soybean protein and its derivatives were 
a focus of polymer research in the 1930s and 1940s. Today, proteins are used to form grafted, synthetic 
copolymers as well as protein-based biodegradable plastics.2 In general, mixed monomers reduce a 
plastic’s physical properties. Therefore, instead of using complex protein molecules, glutamic acid was 
selected to produce resins with regular chain configurations. Glutamic acid is a major component of oil-
seed proteins, representing the order of 20% of their amino acid content. Several methods are available for 
separating glutamic acid from hydrolyzed amino acids.3–5 It is also produced by fermentation. In addition, 
poly(L-glutamic acid) is a biodegradable material6 and a block copolymer between poly(g-ethyl-L- 
lutamate) and polybutadiene is biocompatible as well as biodegradable.7 A review of the literature 
regarding biodegradability further directed the research toward the chemical design and synthesis of 
polyesters.8 Glutamic acid is an a-amino acid containing two carboxylic acids and one amino group. 
Heating glutamic acid with a diol can result in the formation of a cyclic amide, a five-member lactam. In 
addition, dipeptides easily cycle to sixmember diketopiperazines. These are major side reactions 
encountered in peptide synthesis.9,10 In 
our work, oligomeric-forming side reactions were observed to occur in abundance. Cyclization was 
controlled through protection of the a-amino group using benzyloxycarbonyl (Z) (see Fig. 1). Different 
amino-protecting groups were discussed by Jones.9 Since polyesterifications are acid-catalyzed reactions, 
the benzyloxycarbonyl group (ArOCH2OOOCOO) was selected due to its stability under acidic 
conditions.11 Comonomerstructures also appear in Figure 1.  as an acid or as a base in an aqueous 
medium of different pH. The suitable pH for activating the acid form of the amino acid is lower than the 
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isoionic point for each ionization group. In acidic aqueous media, the amino acid is an active acid and thus 
directs a synthesis to 
 

ward forming polyesters with dioles. Pramanick and Rey12 reported the formation of a 4000 molecular 
weight polymer with ethylene glycol in an aqueous acidic medium. Since our goal was to synthesize higher 
molecular weight resins, we did not explore this avenue. Bulk polymerizations with protected amino acids 
were selected. For the second monomers, a diol and diepoxies were chosen. The diol yields a 
thermoplastic; diepoxies yield thermosets. An epoxy moiety initially opens during the polymerization, 
forming a hydroxyl group and an ester linkage. The hydroxyl site then couples with a second carboxyl 
group, forming a second ester bond and water. The functionality for a diepoxy monomer is four, and 
networks form (see Fig. 2). In this sketch, functionality is emphasized. The diepoxy branch node is 
represented by a tetrafunctional chain link. The amino acid is expressed by a bifunctional chain link. The 
order for reactions is labeled 1st and 2nd, arbitrarily, for discussion. On the upper right, an unreacted epoxy 
is represented by two unreacted branches; at the lower right, an unreacted alcohol is indicated by one 
unreacted branch. In the interior of the sketch, both the oxirane and formed alcohol have reacted. Variables 
appearing on the sketch will be discussed in the section on gelation. The Z-protecting group is not 
indicated but is pendent to the bifunctional chain links. 
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EXPERIMENTAL 
 
Materials 
 

Benzyloxycarbonyl-L-glutamic acid (ZGluOH) and L-glutamic acid (HGluOH) (Aldrich), ethylene 
glycol 
(EG; Fisher), diglycidyl ether of 1,4-butanediol (DGEB; Ciba Chemical), and diglycidyl ether of bisphenol A 
(DGEBA; Shell Chemical) were used as received. Tetrahydrofuran (THF; Quaker Oats) was the mobil 
phase during GPC fractionations. In studies designed to address the thermal stability of the Z protection, 
the monofunctional 1-nonanol (Aldrich) was reacted with ZGluOH. Fractionations used reversed-phase 
high-performance chromatography (HPLC). The mobil phase was a gradient of acetonitrile (Aldrich) and 
water. The catalyst was p-toluene sulfonic acid (PTS). 
 

Thermal Stability of the Amino Protection 
 

In discussing the thermal stability of urethanes, Stevens13 stated that a polycarbamate derived 
from aliphatic-based monomers can be melt-processed at 180°C, but warns that the higher temperatures 
needed for melt polymerization of resins formulated with aromatic diisocyanates tend to cause dissociation 
into alcohol and isocyanate or degradation into amines, olefins, and carbon dioxide. In our formulations, 
alcoholysis was of concern. To examine the stability of the Z-protecting group, a carbamate, the reaction 
between ZGluOH and the monofunctional alcohol 1-nonanol was studied using HPLC. Batch reactions with 
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formulations based on stoichiometry ratios of acids/alcohols at 170°C and atmospheric pressure were 
conducted. The condensation product water was allowed to escape from the reactor. If appreciable levels 
of alcoholysis occurred, esters of varying chemical composition would be observed through fractionations. 
In  

 

a 2-h interval, the formation of mono- and diesters was readily observed. Similar compounds 
formed in the presence of alcoholysis were not observed. Therefore, we concluded that the major 
polymerization site would be the carboxylic acid moiety. A Waters chromatograph was used with a m-
bondapak C18 column, 3.9 3 300 mm. The gradient of 40–90% acetonitrile/water was conducted over 1 h. 
An ultraviolet detector at 280 nm was used. The reaction 
was catalyzed with PTS. 
 

Polymerization Procedures Thermoplastic Resin 
 

In an initial polymerization, HGluOH/EG/PTS was melt-mixed with a molar ratio of 1/1/0.01. The 
polymerization proceeded by amidization/esterification reactions. Water was stripped under a  vacuum 
(400 mmHg) from a batch reactor to shift the chemical equilibrium toward higher conversions. 1,14 A slow 
stream of inert gas (N2) was bubbled through the molten mix to assist with moisture removal and to limit 
resin oxidation. 

 

The reaction temperature was maintained within1°C of the set point, 170°C. This procedure was 
then modified by melt-mixing ZGluOH/EG/PTS with a stoichiometric ratio of 1/1.08/0.01. In latter stages of 
the cure, excess ethylene glycol was stripped from the reactor during transesterification reactions.1 
Isothermal cure temperatures were 110 and 170°C. Samples (.0.1 g) were analyzed through end-group 
analysis and gel permeation chromatography (GPC).15,16 The reactor apparatus consisted of a 100-cc 
round, Pyrex glass flask. A glass tube about 10 cm long was used to admit a stream of nitrogen to bubble 
through the molten resin. Another tube was used for removing samples. A type-K thermocouple allowed 
temperatures to be observed. The apparatus was heated in a temperature-regulated  liquid bath. 
 

Thermoset Resins 
 

ZGluOH/diepoxy/PTS polyesters were prepared by melt-mixing the molar ratios of 1.0/1.0/0.02. To 
limit the extent of crosslinking, the acid group  was selected as the limiting reactive site. The polymer mix 
was initially placed into a 50-mL forcedair, electric oven. The chosen, set-point temperatures ranged 
between 110 and 130°C, 60.5°C. After 15 min of preheating, approximately 5 mL of the molten mixture was 
poured into each 10-mL glass tube. The tubes were placed in the oven at the same initial temperature. At 
different time intervals, a polymerization sample was withdrawn and thermally quenched. The oven was 
blanketed with nitrogen.  
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Characterization 
 
Gel Permeation Chromatography 
 

A Waters GPC was equipped with five Ultrastyragel columns of 2 3 100, 500, and 2 3 1000 Å and a 
differential refractometer. The mobil THF phase was at 0.5 mL/min. Fractionations were at ambient 
temperature. For miscible materials, 75 mg was dissolved in 50 mL of THF and 0.5 mL of this solution was 
injected. For thermosets, between 0.2 and 0.3 g was placed with 20 mL of THF in a cylindrical, thick-walled 
brass container and extracted at a temperature in excess of the specimen’s  glass transition temperature 
(Tg). The insoluble gel fraction was dried at 70°C under a vacuum and weighed. The soluble sol fraction 
was diluted to approximately 75 mg in 50 mL of THF for analysis. The average molecular weight of the 
oligomeric fraction was compared to a polystyrene semilogarithmic correlation of the standard’s molecular 
weight as a function of its peak elution volume. 
 
End-Group Analysis 
 

On average, a linear polymeric chain has a single carboxylic group. The carboxylic groups in the 
resin were titrated against KOH using phenolphthalein as an indicator. The polymer samples were 
dissolved in 50 mL of chloroform. The KOH was dissolved in methyl alcohol to form a 0.01N KOH solution. 
A clear, sharp, color change occurred at the end point. To measure conversion, a similar procedure was 
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followed for the thermosets. Samples were initially finely ground and allowed to swell in the solvent before 
titration. Titrations were conducted over an interval of time under nitrogen until the end point became stable 
for at least 24 h. 
 
DATA ANALYSES 
 
Linear Resins 
 
Reaction Dynamics 

 
For the HGluOH/EG/PTS resin, samples collected at different times were screened by GPC. Samples 
cured for 2 and 9 h indicated a minimal change in molecular weight (see Fig. 3). Molecular weights were 
close to that for the monomers. Cyclic structures likely formed.9,10 ZGluOH/EG/PTS was polymerized 
under the same conditions. With the protected amine group, molecular weight advanced. A quality resin 
formed. In Figure 4, shifts in chromatograms reveal the development of polymeric materials with advancing 
cure time. 
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End-Group Analysis 
 

The conversion of acid sites r may be expressed in terms of the cumulative molar concentration of 
molecules within the resin: 
 

The molar concentration of all molecules that contain i monomeric links is Pi. If i is even, the molecule 
contains one unreacted carboxylic group and one unreacted alcohol group. When i is odd, half of these 
molecules contain two acid sites or two alcohol moieties. Subject to a balanced stoichiometry, their molar 
concentrations are equal. On average, each molecule of degree of polymerization i contains one acid 
group. 
The number-average molecular weight is  
 

where the average molecular weight of the chain link is MW. The data tabulated in Tables I and II 
summarize the end-group dynamics, the calculated extents of reaction [eq. (1)], and the resins’ 
numberaverage molecular weights [eq. (2)] for cures at 110 and 170°C as functions of time. After 16 h at 
170°C, a quality polymer with a molecular weight  of 22,000 had formed. Polymerization dynamics did not 
yield expected second-order responses.17 Conversion data correlate as a semilogarithmic function of time 
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(see Fig. 5), with correlation coefficients of 0.97 at 110°C and 0.94 at 170°C. Several factors could 
contribute to a pseudo-, first-order reaction. Initially, reaction rate constants were considered. Flory17 
observed that rate constants for esterification reactions are dependent on the number of atoms separating 
carboxyl groups when these atoms are few in number. For the current resin, only three carbon atoms 
separate the functional groups. Due to electron shielding and steric factors, the first reacting chemical 
moiety could experience a distinct rate constant.18 A second consideration is attributed to rate constants 
becoming conversion-dependent. At higher conversions, reaction rates, change for example, due to 
vitrification19 and to changing dielectric constants.20 Finally, chemical equilibrium was addressed. 
Physical operating conditions can affect observations. In our research, the concentration of the 
condensation product C was not controlled or observed. But with increasing reaction times and diminishing 
rates of formation, its concentration could have varied.  
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To illustrate the consequences of a variable  concentration C, equilibrium reactions Pi 1 Pj º Pi1j 1 C
are addressed. Stockmayer21 and Blatz and Tobolsky22 showed that the most probable distribution is 
appropriate for both equilibrium and for kinetically controlled, irreversible reactions. The equilibrium 
population of molecules may be expressed as a function of monomer concentration  P1, the ratio of the 
equilibrium constant and the by-product concentration K/C, and conversion peq:

If equilibrium reactions between oligomers are initially considered, the resulting relationship also fits the 
above, arbitrary bimolecular reaction. The relationships MWn / MW =5 ∑iPi / ∑ Pi = 1/(1 - KP1/C) and eq. 
(2) were utilized in deriving the second result above. One can see that if the ratio K/C varied during an 
experiment experimental observations will deviate from the most probable distribution. We believe this 
could be a major contributor to our observations.  
 
Network Resins 
 

With epoxy monomers, the two oxiranes are separated by a sufficient number of atoms so that their 
reactivities are independent of oxirane reaction states. This has been confirmed with DGEBA.18 For 
mathematical simplicity23–25 and due to limited data, the chemical reactivities of the two acid groups on 
ZGluOH were also assumed to be independent of their reaction states. Flory’s data indicate that rate 
constants gradually change with the number of carbon atoms  separating the functional groups. As will be 
discussed, our results indicate substantial changes. Our analysis was constrained to distinct reactivities for 
oxiranes and alcohols only. Derivations implicitly incorporate vitrification constraints on kinetic constants as 
reported by Cole19: 
 

This function of conversion indicates that the reaction constant K(r) is nearly constant at K0 for r , 
rc, but rapidly decreases at high conversions. The constant a is a data-fitting parameter. Cole assumed 
reactions to be second-order and irreversible. 
 
Crosslinked Polyesters 
 

ZGluOH/BDE/PTS produced a ductile resin at room temperature with soluble sol and insoluble gel 
fractions. The chromatograms appearing in Figure 6 show an increasing molecular weight with time of cure 
at 110°C for a resin before its gel point. Resins cured at 130°C for 5 h resulted in a 12% gel fraction, and 
for 11.5 h, in a 20% gel fraction. The crosslinked aromatic polyester, ZGluOH/DGEBA/PTS, was cured at 
110, 120, and 
130°C. Chromatograms appearing in Figure 7 show a gradual increase in the molecular weight of the sol 
with time of cure at 110°C. Lower molecular weight materials in the elution time interval 1000–1300 s 
diminish in concentration; higher molecular weight materials appear prior to 1000 s. The resin cured at 
130°C for 5 h 40 µ yielded a 50% gel fraction. At ambient conditions, the material is hard and brittle. 
 

Reaction Kinetics 
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A combined kinetic and statistical model was used in the analyses of the thermosetting resins. 
Distinct rate constants kOX and kOH were assigned to reactions between an epoxy or oxirane and a 
carboxylic acid and between an alcohol and an acid. These rate constants were assumed to be 
independent of the degree of polymerization. In addition, the isothermal reactions were assumed to be void 
of intermolecular cyclization reactions. Previous work by Bokar and Gandhi,23 Gupta and Macosko,24 and 
Sarmoria and Miller25 addressed an amine-cured epoxy when rate constants for primary and secondary 
amines are distinct with a competing etherification of epoxy groups. Our description26 is a simplification, in 
that this minor competing reaction is neglected. Dusˇek et al.27 also considered these reactions and 
formulated a solution using probability-generating functions.  

 

Hydroxyl groups originate from the initial reaction between the carboxylic acid and oxirane moieties. 
Their reactions produce branch nodes and, ultimately, chain networks. The concentrations of the reactive 
groups (oxiranes, hydroxyls, and carboxylic acids) are represented by [OX], [OH], and [A]. The differential 
equation describing the molar concentration of oxiranes is  
 

D[OX]/dt = - kOX[A][OX]  
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The time t was transformed to the dimensionless time t by 

dT = kOX[A]dt 
 
The solution, subject to the initial condition [OX]0, is 
 

[OX]=[OX]0exp(-T)
Therefore, the conversion of oxiranes equals 
 

Differentiation plus algebra yield a time-conversion transformation: 
 

The concentration of hydroxyl moieties was expressed in terms of a relative rate constant C, formulation 
parameter a, and conversion: 
 

For a balanced stoichiometry, a 5 1 2. In our polymerizations, carboxylic acid sites were limiting, a 5 1. The 
differential equation describing the molar concentration of hydroxyl sites is 
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In the first rate term, the consumption of the hydroxyl groups by reactions with carboxylic groups is 
addressed. The second rate expression describes the formation of hydroxyls by reactions between 
carboxylic acids and oxiranes. The total number of hydroxyl sites formed at any time equals the number of 
oxiranes reacted [OX]0rOX. The solution incorporated an integration factor and is expressed in terms of the 
hydroxyl conversion 
 

The differential equation describing the molar concentration of carboxylic acids is 
 

The rate expressions describe the consumption of carboxylic groups by reactions with hydroxyl groups and 
oxiranes, respectively. The solution expressed in conversion rA is 
 

Expectation Theory 
 

Probability functions express the expectation that a reactive site is attached to chain segments of 
finite dimension, given all possible events. The sketch of a chain segment appearing in Figure 2 is 
referenced in the following derivation: Chain functionality is emphasized. The epoxy monomer is described 
as the tetrafunctional link and the bifunctional ZGluOH is described as the linear connector. An oxirane site 
on a branch node at a is considered. The probability that it is attached to chains of finite dimension looking 
out of the 
branch node is represented by P(FOX out). If the oxirane originally at a is unreacted (probability of 1 2 
rOX), the chain terminates. Alternately, the oxirane is reacted (probability of rOX). The probability function 
looking into the ester bond formed (labeled 1st in Fig. 2) is indicated as P(FA in). The likelihood that the 
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formed hydroxyl is also part of a finite chain extension P(FOH out ) must also be addressed. Therefore, the 
expectation that a randomly selected oxirane leads to two finite chain segments at this branch point is 
 

The expectation that a hydroxyl site is connected to a finite chain extension P(FOH out) at b depends on its 
reaction state. The probability that this group is unreacted equals 1 2 rOH. If it is reacted, the probability is 
rOH. In Figure 2, this site is labeled b. Therefore, 
 

When looking into a bifunctional connecting link, the likelihood that this reacted site is part of a 
finite chain segment P(FA in) equals the probability P(FA out) that its second acid site is attached to 
finite structures:  
 

The reaction state of this second acid site is a function of three independent events: (1) The carboxylic acid 
may be unreacted (probability of 1 2 ra). (2) The acid group may have reacted with an oxirane. This event 
is labeled 1st at location c in Figure 2. The quantity arOX equals the number of reacted oxiranes per 
carboxylic acids initially present. The fraction of reacted acid sites is rA. This yields the second term in eq. 
(9). (3) The acid site reacted with a hydroxyl group. This event is represented by point c, 2nd. The quantity 
arOX also equals the number of hydroxyl sites that have formed at the time of observation, relative to the 
initial concentration of acid groups. The fraction of hydroxyl sites reacted is rOH. This event contributes the 
last expression in the conditionalprobability function P(FA out): 
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When a branch node is entered from a reacted hydroxyl as at point c, 2nd, the likelihood that the exiting 
two chain segments are finite is labeled P(FOH in ). The probability that finite structures are attached at the 
second oxirane of the tetrafunctional link is P(Fout

OXA
). The probability of a finite chain extension at the 

reacted oxirane branch point is P(FA
OH

) = P(Fout
OX

) P(Fout
A

)

Alternately, a branch node is entered from a reacted acid site through the bond that formed when the 
oxirane reacted (see point c, 1st). The resulting branch point leads to conditional probability functions 
P(FOXout) at the second oxirane and P(FOH out ) at the formed hydroxyl. Point e may be referenced. For 
these independent events,  
 

Equations (6)–(11) yield a cubic equation with roots P(FA out) = 1 and  
 

when p> pc, P(Fout
A

) < 1, and when p ≤pc, P(Fout
A

) = 1, since all chains are finite. Therefore, eq. (12) may be 
evaluated for the critical conversion rc for gelation. For example, if C = 2.0 and P(Fout

A
) = 1, pA = 0.75 = pc.

Recall that eqs. (4) and (5) correlate the conversion of hydroxyl and acid moieties as functions of oxirane 
conversion.  
 
Sol Fraction 
 

Relationships partitioning a monomeric link between the sol and gel are now derived. The mol 
fraction of branch nodes in the sol is labeled vOX. The fraction of branch nodes in the gel equals 1 2 vOX.
For a chain link to be in the sol, each of its reactive sites must be part of finite chains. Therefore, the 
fraction of epoxy units including the monomer in the sol equals 
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The mol fraction of connecting links in the sol equals  
 

The mass fraction of the resin that is soluble is  
 

where the molecular weights of the epoxy monomer and ZGluOH are MWOX and MWA.

Branch Node Distributions 
 

In the theory of rubber elasticity, the modulus of elasticity is a function of the number of elastically 
active junctions that contain three or more chain extensions to the gel.28,29 Thermoset resins become 
elastomeric at temperatures exceeding their glass transition temperature Tg. For our resin systems, branch 
nodes evolve from the diepoxy monomers and are labeled nROX,ROH. The initial index 0 ≤ ROX ≤ 2 indicates 
the number of oxiranes reacted and the second index 0 ≤ ROH ≤ ROX indicates the number of hydroxyls 
formed that have reacted. In conversion space, a series of  first-order reactions associated with the 
formation and consumption of nodes yields their mol fractions: 
 

where the coefficient CROX,ROH  = 1 unless ROX and/or ROH = 1, then CROX,ROH = 2. Kernels address the 
reaction states of the two functional groups, and, as appropriate, their powers equal the number of these 
sites reacted or unreacted. Subject to reaction constraints and normalization, the coefficient correlates 
permutations. Crosslinks Xm,0 that contribute to the modulus are nodes that contain a minimum of three 
chain 
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extensions to the gel or network. Such chains are considered to be infinite.28,29 The initial subscript is the 
number of reacted sites, and looking out of the node, the second subscript is the number of these sites 
attached to the network. Since each  reacted site is attached to a bifunctional link, the probability that it 
extends to the gel is 1 2 P(FA out). The normalized molar concentration of elastically active nodes 
equals26: 
 

Analysis of Relative Rate Constant 
 

The conversion of carboxylic acid and the sol fraction for the crosslinked ZGluOH/BDE/PTS sample 
cured for 11 1 2 h at 130°C was 76 and 80%, respectively. Subject to model constraints and assumptions, 
eqs. (6)–(15) were solved with eqs. (4) and (5) to determine the value for the relative rate constant C.
When C 5 3.0, the calculated sol mass fraction is 81%, and conversions rOX and rOH equal 0.47 and 0.60 
when rA is 0.76. The rate constant for carboxylic acid reactions with oxiranes is smaller than that with hy 

 

droxyl moieties; tetrafunctional chain segments have a preference for branching. The molecular 
theory of rubber elasticity28,29 predicts that a resin with  more elastically active junctions will have a higher 
modulus at temperatures above Tg. The resin produced was rubbery, indicating a relatively low level of 
crosslinking. For the crosslinked ZGluOH/DGEBA/PTS polymer sample cured for 5 h 40min at 130°C, the 
average value for the acid’s conversion was 68% and the sol fraction was 0.50. For a solution with C 5 200, 
a sol fraction of 0.51 subject to conversions rA 5 0.68, rOH 5 0.99, and rOX 5 0.36 was calculated. Not only 
did this resin contain a chain-stiffening, aromatic component within its chain links, but the conversion of 
hydroxyls to esters also was nearly complete. A high degree of branching and crosslinking occurred. The 
resin  was brittle at ambient temperature.  
 
Crosslink Distributions 
 

To further characterize the network structure, the relative distribution of nodes that contribute 
to the modulus and other physical properties was calculated. Subject to experimental measurements 
of conversion and regression estimates of C, the fraction of tetrafunctional branch nodes with three or four 
extensions to the gel for the resin ZGluOH/BDE/PTS is X3,3 5 7.1 3 1025, X4,3 5 9.3 3 1025, and X4,4 5 
1.1 3 1025, and for the resin ZGluOH/DGEBA/PTS, X3,3 5 4.1 3 1025, X4,3 5 3.1 3 1023, and X4,4 5 1.5 3 
1023. Although both resins contain a relatively large sol fraction due to an imbalanced stoichiometry and 
low extent of conversion, the results clearly demonstrate the increased level of network branching in the 
latter resin. The large value for the relative rate constant C results in a ratio of X4,4/X4,3 5 0.5 in the resin 
composed of aromatic chain links (compared to 0.1 for the first thermoset). These numbers show that when 
an oxirane reacts the formed hydroxyl group is converted to an ester bond at once, forming a branch point 
in the chain. This chemistry leads to network configurations. 
 
DISCUSSION 
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A major research objective was to produce quality thermoplastic and thermoset resins from an 
amino acid. The results of our studies indicate that the thermoplastic resin formulated from 
ZGluOH/EG/PTS had an average molecular weight of 22,000. Many commercial step-growth resins have 
similar average molecular weights. Analysis of the thermosetting resins identified their respective gel 
fractions at a final conversion. 
These data were incorporated into gelation theory to calculate the relative rate constants for reactions 
involving oxiranes and alcohols with carboxylic acids. Results indicate that the two rate constants are not 
equal and that their relative magnitudes are influenced by the chain structure. These observations are 
consistent with observations for amine-cured epoxies. Aliphatic or aromatic segments significantly alter the 
reactivities of primary and secondary amines.18 Furthermore, chemical analysis of chemical intermediates 
in a curing anhydride/epoxy resin20 revealed that the alcohol moiety is many times more reactive than is 
the acid group. Our results are also consistent with their observations. For resin systems described by 
Cole’s model for diminishing reaction rates at higher conversions, the relative rate constant C incorporates 
these effects when the constants a for the oxirane and alcohol reactions are equal. The network chemical 
structure that contributes to the rubbery modulus of elasticity was estimated through branch-node 
distributions. The results reveal the effects of the conversion and the relative magnitudes for the distinct 
rate constants. 
In the ZGluOH/EG/PTS resin, branch points tend to be farther apart. The crosslink average molecular 
weight of elastically active strands is greater than that for the ZGluOH/ DGEBA/PTS resin. Increased chain 
flexibility caused by the chemical structure within the chains and the higher crosslink average molecular  
 

weight yield a ductile resin at room temperature. The increased chain stiffness caused by aromatic 
components within the chain links and the lower crosslink average molecular weight contributed to a brittle 
resin in  
 

the second case. In companion articles, the biodegradability of these three resins is reported. In summary, 
lipase  hydrolized all three resins to the monomers, but in the presence of a mixed microbial culture, only 
the resins ZGluOH/EG/PTS and ZGluOH/BDE/ PTS were reduced to biomass and respiratory gases.  
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