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Self-propagating high-temperature synthesis [SHS] is a combustion process involving 

two or more solid reactants. The typical SHS configuration consists of a cylindrical preform 

of mixed powders, placed in an inert gas chamber, and ignited at one end. In past studies, 

interaction between the solid phase and the ambient gas phase has been limited to heat 

losses from the solid; the influence of natural convection on the solid phase has never been 

considered. In this study, computational fluid dynamics [CFD] is used, and it is shown that 

intense convection flow develops in the proximity of the combustion front. Gas flows adja-

cent to reacted solid material, heats up, and when it reaches the unreacted solid heat is 

transferred from the gas to the solid phase, which aids solid phase thermal conduction in 

preheating the material. The effect is stronger than expected, and it could stabilize the com-

bustion of structured reactants like roll-ups of foils and wires. Combustion parallel and anti-

parallel to gravity is investigated for different burning velocities. At low propagation veloci-

ties, the natural convection cell forms a torus that is seated above the combustion front. At 

high propagation velocities, the convection flow cannot track the combustion front, and 

Tollmien-Schlichting waves form. Constant front propagation and planar oscillations of the 

combustion front lead to increasingly complex flows. Finally, the heat exchange between the 

gas and solid for constant front propagation is compared to analytical solutions.  
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 INTRODUCTION 
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Solid cylinders for self-propagating high-temperature synthesis [SHS] applications are pre-

pared in different ways: preforms of mixed powders, foil roll-ups, and wire twists. These cyl-

inders contain two or more reactants that undergo an exothermic synthesis reaction. Exam-

ples include the synthesis of intermetallics, e.g., TiþNi, and carbides like TiþC. One end of 

the cylinder is ignited and the reaction front progresses in the 

axial direction toward the other end. The rate of this propagation depends on the heat trans-

fer to the unburned section—which in turn depends on solid properties [density, thermal 

conductivity, and heat capacity] and on heat exchange with the surroundings. Previous re-

search has often ignored the latter effect. If the thermal conductivity is large or if the cylinder 

radius is large, then the heat transferred to the surroundings is negligible compared to the 

heat conducted to the unreacted solids. Papers that have considered heat exchange with 

the surroundings have focused only on heat losses : radiation from the cylinder and conduc-

tion losses to the 

surroundings. The focus of the gravity-related studies was on intrasample effects [gas-solid 

reactions, where natural convection affects gas flow in the sample], but the conjugate flow 

problem [where natural convection outside the sample affects the combustion] has been 

largely overlooked. The interaction between natural convection and chemical reaction has 

been extensively studied for porous and homogeneous media [Viljoen and Hlavacek, 1988; 

Gatica et al., 1989; Viljoen et al., 1989, 1990], investigating the influence of natural convec-

tion on ignition and induction periods. Matkowsky and coworkers [1997a,b] did a compre-

hensive study of natural convection in the realm of filtration combustion. The role of sur-

rounding fluid on heat losses from gasless combustion synthesis systems has been in-

cluded in previous analysis [Thiart et al., 1992], but feedback of thermal energy to the com-

bustion system has not been considered. The feedback of thermal energy from the gas 

phase to the solid phase becomes particularly important when the solid system is near an 

extinction limit. This is more likely for slender cylinders, found in the synthesis of intermetal-

lic structures. Vadchenko [1987] was one of the first researchers who investigated the com-

bustion of bimetallic samples. One wire was coated with another metal, but the disadvan-

tage of this method was the dramatic change in the geometry caused by melting and the 
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formation of separate drops. Anselmi-Tamburini and Munir [1989] studied a multilayered 

sample consisting of Ni and Al foils. The prominence and influence of natural convection on 

the combustion process is strongly dependent on the propagation velocity of the combustion 

front. In the conjugate problem, they are interdependent. Typical propagation velocities are 

10_12 cm/s. Ma et al. [1990] studied direct combustion of multilayered samples [Ni and Al 

layers 10_20 nm thick], and velocities of 400 cm/s were measured. Dyer et al. [1994], Dyer 

and Munir [1995], and Weihs [1997]  easured velocities of 60_200 cm/s for multilayered 

samples prepared by electron beam evaporation and sputtering. Change in the stoichiome-

try of the layered samples of Ni:Al from 1:1 to 3:1 decreased the velocities. To minimize un-

wanted side reactions, the cylinders are placed in an inert atmosphere such as argon or he-

lium gas. When thermal conductivity of the solids is low or if the cylinder radius is small, a 

large portion of the heat generated from the exothermic reaction is transferred to the gas in-

stead of conducting to the unburned section. This heat does not disappear. Natural convec-

tion will transport the heat, either to the unreacted solids or away from the preform, depend-

ing on the combustion front velocity and orientation with respect to gravity. Under normal 

conditions, the amount of heat transferred to the unreacted zone through natural convection 

may be a significant fraction of the heat transferred by conduction. This energy will preheat 

the solids, hence increasing the combustion front velocity.  

 

 

SYSTEM DESCRIPTION 

 

Mathematical Model of Solid Phase 

 

The system under consideration consists of a solid cylinder, placed vertically on an adia-

batic surface and surrounded by inert gases. Since many different solid materials may be 

reacted and many different size cylinders may be formed, a generic system is selected for 

analysis. The chosen cylinders are _ L = 10 cm long and have a radius of r0 = 1 cm. In a 

section below, analytical solutions are developed; these analytical solutions are used to ex-
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plore the effect of alternative system dimensions. The combustion front in SHS systems can 

propagate in a variety of different modes. The constant velocity propagating combustion 

front becomes unstable for certain conditions, and the combustion front propagates in an 

oscillatory manner. Several oscillatory modes are observed. In this analysis two modes 

have been considered:  

 

1] axisymmetric combustion with a steady combustion front velocity, Vf, and 

2] axisymmetric combustion with a planar oscillating combustion front velocity. 

 

The conjugate problem combines combustion-induced gas flow and the effect of gas flow on 

combustion, solved in a self-consistent manner. We want to focus on the induced gas flow, 

and although the heat transfer from the gas to the solid phase is also calculated, we did not 

model the kinetics. Instead, the temperature profile of the solid is defined a priori as a travel-

ing wave function. Both the propagation modes are described this way. The temperature is 

described by the following equation: 

 

 

 

 

When Va = 0 in Equation [1], constant propagation is modeled [mode 1], otherwise it de-

scribes the planar oscillating mode [mode 2]. This computational fluid dynamics [CFD] re-

search covers the full range of velocities and oscillating frequencies but is limited to the 

case where Tw = 2000K and T0 = 300 K. The values chosen were for a typical SHS reaction 

starting at room temperature and an adiabatic combustion 

temperature of 2000 K. The exponent for temperature decay—500 m in Equation [1]—is 

also a typical value where the majority of preheating occurs in 1 cm. Specific values of the 
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adiabatic combustion temperature and preheating exponent can be calculated with a one-

dimensional kinetic model of the solid reaction. The analytical solutions below can predict 

the effect of using different constants. In  figure 1, the temperature profile is shown when the 

combustion front has reached 5 cm. : 
 
Mathematical Model of Gas Phase: 
The system under consideration consists of a solid cylinder surrounded by inert gases. For 

our simulations, argon gas has been used. All gas properties except density are assumed 

constant at their standard values. For argon these are: 
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Density is modeled as an ideal gas at P0 = 1 atm base pressure. Given the tempera-

ture boundary condition in Figure 1, the time dependent state of the gas has been modeled. 

The commercial CFD program, Fluent 5.4, is used. Fluent solved the governing equations 

for the inert gas surrounding the cylinder. For 2D axisymmetric flow the governing equations 

are:  

 

 

 

Continuity [mass conservation]: 

 

Momentum conservation [axial x direction]: 
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Momentum conservation [radial r direction]: 
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Energy conservation: 

 

 

 

 

 

Where 

 

 
The system is closed by an equation of state, and the ideal gas law 

has been used: 

 

P = ρRT 

 

Fluent solves these governing equations numerically using the finite volume method to find 

the gas flow, gas temperature, and heat flux between the cylinder and the gas. 

 

COMPUTATIONAL FLUID DYNAMICS MODELING 
 

The finite volume method requires a mesh of the solution domain. At the center of each cell 

in the mesh, the governing equations are iterated for a specified time step, Dt. The gas do-
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main is large compared to the size of the cylinder; the gas essentially reaches out toward 

infinity, but the governing equations must be solved on a finite domain. Thus the gas is 

modeled over a domain r=10 cm in the radial direction and x=15 cm in the axial direction 

[see Figure 2]. Outside that domain, pressure is assumed to be equal to P0 [ambient gas 

pressure], and flow entering the domain from beyond that boundary has a temperature of T0 

[ambient gas temperature]. Determination of Cell Size The accuracy of CFD calculations is 

poor when mesh cells are of poor quality—cells that are too large, have distorted shapes, 

step gradients in the cell size, etc. As the number of cells increase, these numerical errors 

asymptotically decrease but the computational expense increases. A trial simulation was 

completed with square cell sizes varying from 5 cells/cm to 20 cells/cm in both the axial and 

radial directions; the results when the reaction front is located at x = 1:5 cm are in Figure 3a.  
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Two parts of the heat transfer curves were considered important: the section over the hot 

burned solids, axial position <1.5 cm, and the section where the gas  

 preheats the unreacted solids, axial position >1.5 cm. As can be discerned 

from Figure 3[a], the profile is flat when the coarse mesh is used. More details appear as the 

mesh is refined. However, the computational time required ranged from hours with the large 

cells to days with the small cells. From these tests it was determined that using 12 cells/cm 

[0.833 mm edges] gave the fastest results without significantly sacrificing accuracy. Within 

the 10 cm by 15 cm gas domain, the inert gas is meshed into 20,160 square cells. For each 

time step there are 80,640  quations and unknowns to solve [20,160 cells _ 4 governing 

equations/cell].  

 

Determination of Time Step Size: 
 

 Each of the CFD calculations is time dependent, so the governing equations are discretized 

in both space and time. The size of the time step, like the cell size, affects the accuracy and 

computer expense of the simulations. Figure 3[b] shows the effect of the time step on the 

heat transfer profile for a combustion front velocity of 10 cm/s. The largest time step, Dt 

=0.04 s, took several hours of computer calculations to complete a simulation, and the 

smallest time step, 0.01 s, took several days. At the moment shown in Figure 3[b], the gas is 

colder than the adjacent cylinder for the entire cylinder length. Thus the negative heat trans-

fer shown for the largest time steps is a numerical inaccuracy that cannot be tolerated. The 

ideal time step size was 0.01 s. For different simulations, the ideal time step size varies. As 

the combustion velocity, Vf, increases the required time step size decreases, roughly follow-

ing the relation Dt _ 1mm=Vf. 

 

 

 

CFD RESULTS: 
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he results will show that some of the cases have a gas preheating effect that is significant; 

atural convection, Pg, to the unreacted zone is signifi-

here qg is the average heat flux by natural convection and L is the remaining length of cyl-

on front. The ratio of preheating by natural convection to solid 

g 

 

The following CFD results show three possibilities: 

In this section the results of the gas flow and heat transfer for the two modes of propagation 

are presented. Of particular interest is the heat exchange between the phases, presented in 

the form of a Nusselt number, Nu = 

T

with others it is negligible. In all cases, the local heat flux by convection, qg, is small com-

pared to the heat flux by conduction, qs. The axial thermal flux in the solid phase is a maxi-

mum at x = 0þ and it is estimated as: 

However, the power transferred by n

cant because the lateral heat transfer area is much larger than the cross-sectional area of 

the cylinder. The total power transferred to the unreacted solids is the heat flux times area: 
 

w

inder ahead of the combusti

conduction is P
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g _ qs, natural convection is significant 

nders is modeled, consideration must be 

g t, thick cylinders. 

> 0, no pr

 

iated with the natural convection. Characteristic lines for 

 convection cell [a torus in this case] may differ from the char-

 the cell rises faster than the combustion 

 that we have termed funnel flow. This is 

the convection cell is still developing. Note the counterclockwise rotation of the flow. In  

 

1. qg < 0, gas preheating is important. Even when q

when L   r0. When combustion of long thin cyli

given to natural convection effects. 

2. q < 0, gas preheating is insignificant; this occurs in shor

3. qg eheating is present. 

 

Constant Combustion Front Velocity
 

There is an induction phase assoc

the rising speed of the natural

acteristic line of combustion front propagation. If

front propagates, an asymptotic flow is approached

a quasi-steady convection flow parallel to the cylinder surface, which could be approximated 

by steady convection. In Figure 4, the velocity vector field is shown at three instances, t=0.5 

s, t=1.0 s, and t=2.0 s. This captures the flow history at the induction stage, intermediate 

stage [combustion front and torus in the same vicinity], and the asymptotic case. In Figure 

4[a], the combustion front has propagated only a short distance from the adiabatic base and 
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Figure 4[b], the convection cell has moved up much faster than the combustion front and the 

flow is quasi-parallel to the cylinder behind the torus. Near the torus, the flow bends away 

from the cylinder. In Figure 4[c], the cell has left the computational domain, and funnel-like 

flow across the cylinder has developed. The torus does not rise at a constant velocity, but it 

appears to oscillate. The oscillatory effect is not unexpected, because two different proc-

esses determine its displacement. The combustion rate of the solid defines a dynamic tem-

perature boundary condition that drives the natural convection, but internal to the fluid exists 

the competition between viscous and buoyancy forces [i.e., Rayleigh number] that deter-

mines another time scale for the displacement of the torus. The center of the torus has been 

mapped as a function of position [Figure 5]. The empirical functions reported in Table I de-

scribe the position of the torus center. Note that increased velocity of combustion increases 

the frequency of oscillation [the disparity between the two time scales increases]. Also the 

amplitude is greatest for moderate combustion front velocities, since the torus is near the 

combustion front position. 

 

 Five trends are observed in the solid/gas heat transfer: 

 

1] combustion in the absence of gravity, 

2] combustion parallel to gravity, Vf < 0 cm/s,  

3] slow combustion front velocity, 0 cm/s < Vf _ 8 cm/s, antiparallel to gravity, 

4] moderate combustion front velocity, 8 cm/s < Vf _ 18 cm/s, anti parallel to gravity,  

5] fast combustion front velocity, Vf  18 cm/s, antiparallel to gravity.  
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Combustion without Gravity: 
 

 In Figure 6[a] the local Nusselt number  along the cylinder wall is plotted at three different 

times for argon gas in the absence of gravity. Combustion front propagation is constant at Vf 

= þ1 cm/s; the positive sign indicates that the propagation is upwards from the cylinder base 

[gravity vector when present is negative]. Fluid motion is induced by pressure gradients due 

to density differences. The flow pattern [stream function contours] is shown in Figure 6[b]. 

The velocities are very small and the maximum velocities are less than 5mms_1. No motion 

exists for a Boussinesq approximated solution in this case. The Nusselt number travels as a 

spike along the cylinder surface. Behind the combustion front location, the heat transfer is 

conduction dominated due to the small flow of gas. Thus, the Nusselt number behind the 

combustion front is small positive. A small amount of hot gas lies just ahead of the combus-

tion front [some heated gas has expanded and some heat has conducted through the gas in 

front of the combustion front]; this temperature profile is shown in Figure 6[c]. Thus, there is 
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a thin negative spike in the Nusselt number just past the combustion front location. Further 

ahead of the combustion front this spike exponentially decays since the gas above the cyl-

inder gets colder. Due to the small area of preheating, natural convection preheating is neg-

ligible without gravity. Combustion Parallel to Gravity. Natural convection preheating is sup-

pressed when the reaction propagates downwards at Vf = _1 cm/s. The results shown in 

Figures 7[a]_[c] support this. Behind the combustion  
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front heat flows from the cylinder into the gas phase, and the flow is directed upwards paral-

lel to the cylinder wall. This flux is greatest at the combustion front location since the gas 

temperature is lowest there; the flux then decays towards the top of the cylinder as the gas 

temperature rises. At the combustion front location, the gas is heated quite rapidly and the 

pressure rises. This induces a localized circulation cell, and over a small distance ahead of 

the combustion front [2_3 mm] the heated gas flows past the preheating zone. Over this re-

gion, heat flows from 

the preheated gas into the solid. The isotherms are quite compressed and the heat flux is 

high, hence the local Nusselt number is large. However, the area for heat transfer is very 

small in this case and the total energy that flows into the solid phase is negligible. Far ahead 

of the combustion front, the Nusselt number is zero since the gas temperature is the same 

as the wall temperature. Slow Combustion Antiparallel to Gravity. In Figure 8[a] the local 

Nusselt number along the cylinder wall is plotted when the combustion front propagation ve-

locity is constant at Vf = þ1 cm/s. The Nusselt number is small positive behind the combus-

tion front, since energy flows from the hot product zone to the gas. Coinciding with the com-

bustion front position, 

the Nusselt number changes sign; ahead of the combustion front a significant amount of 

energy is flowing from the gas phase to the solid phase. This is simple to explain if one con-

siders the streamlines and  temperature fields, shown in Figures 8[b] and 8[c], respectively. 

Near the combustion front the gas flows parallel to the wall, and ahead of the combustion 

front it flows more outward [i.e., a shift from axial to radial flow]. The thermal field associated 

with this flow confirms that the isotherms 

shift from near parallel to near normal as x increases. The gases are heated up behind the 

combustion front and are advected ahead of the combustion front. Hence the temperature in 

the gas phase adjacent to the wall is higher than in the solid phase. Heat flows from the gas 

phase into the solid phase, but as the isotherms bend away from the wall, the flux compo-

nent normal to the wall decreases and the local Nusselt number approaches zero further 

ahead of the combustion front. The torus-shaped natural convection cell center is slightly 

above the combustion front 
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position. As time progresses, the natural convection cell develops stronger, 

and the center of the torus moves up with respect to the combustion front. Therefore the 

flow tends to be more parallel to the cylinder, and the region over which energy flows from 

the gas phase into the solid phase is extended. 

 
Moderate Combustion Antiparallel to Gravity. 
 

 The picture changes when the combustion front velocity is increased to Vf = þ10 cm/s. This 

speed is outside the range of typical SHS values, but it is also well documented that fine 

powders can easily reach velocities of several m/s [Danen and Martin, 1993]. The disparity 

in time scales between combustion front propagation and natural convection becomes more 

pronounced. The natural convection velocities are higher after 0.375 s compared to the 

case of Vf = þ1 cm/s, and the flow continues to develop into a stronger cell. After 1.5 s the 

absolute value of the Nusselt number is larger than in the previous case. The gas velocity 

parallel to the cylinder increases with propagation velocity and the thermal boundary layer is 

steeper. But the center of the torus seats closer to the combustion front, and the streamlines 

change from parallel to normal over shorter distance ahead of the combustion front. This 

means that the region where heat flows from the gas phase into the cylinder is reduced. The 

Nusselt number, stream functions, and temperature fields are shown in Figures 9[a]_[c]. 

Due to the disparity in time scales, the starting vortex is meta-stable. The position of the vor-

tex oscillates around the combustion front location. The vortex initially lags the combustion 

front due to inertia effects. Then it gains energy from the reaction and accelerates away 

from the combustion front. However, it soon loses this energy to the preform, slowing the 

torus down so that it again lags behind the combustion front. Table I shows that these posi-

tion oscillations are greatest with these moderate combustion propagation velocities.  
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In addition to position oscillations, the torus expands and contracts in the axial and radial di-

rections. Fast Combustion Antiparallel to Gravity. When the propagation speed is Vf = þ25 

cm/s the combustion front induces such high velocities adjacent to the wall that the parallel 

flow becomes unstable and oscillations occur. This phenomenon is well known, spelling the 

onset of Tollmien- Schlichting waves [Van Dyke, 1982]. The oscillatory flow creates undula-

tions in the isotherms, and the local Nusselt number oscillates behind the front, as shown in 

Figure 10[a] [t=0.15 s]. A qualitative difference in the heat transfer is observed. Heat flows 

from the cylinder under all circumstances, and the maximum flux is just ahead of the com-

bustion 

front. In this case the center of the torus is always lower than the position of the combustion 

front. Compare this to the previous two cases where the maximum heat transfer into the cyl-

inder occurred just ahead of the combustion front. The heated gas behind the combustion 

front follows the streamlines as shown in Figure 10[b]. The bulk of this flow turns away from 

the wall before the combustion front and very little flows ahead of the combustion front. 

Consequently the temperature of the gas 

adjacent to the preheating zone is not very high, and heat actually flows from the preheating 

zone to the gas phase. Further ahead of the combustion front the two phases are of course 

in thermal equilibrium, and the local Nusselt number becomes zero. It is evident that be-

tween 10 cm/s and 25 cm/s propagation velocities, the rising speed of the natural convec-

tion cell is no longer able to keep up with the combustion front. The rising speed increases 

with increased propagation speed until a limit is reached. The buoyancy, viscous, and inertia 

forces approach an equilibrium for this dynamic boundary condition [i.e., the changing ther-

mal conditions at the wall], and qualitative differences exist in the Nusselt numbers for 

propagation velocities higher and lower than the natural convection limit.  
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Oscillating Combustion Front Velocities 

 

The combustion front was also studied with a sinusoidal velocity, where the 

amplitude of combustion oscillations is smaller than the mean velocity,  

 

Vc = Vf + Va sin(ft) 

 

This sinusoidal velocity occurs when the combustion time scale is small compared to the 

conduction time scale. The combustion slows until enough energy has conducted to preheat 

the adjacent unreacted solids, then the combustion velocity increases and the cycle repeats. 

Sivashinsky [1981] analyzed the stability of steady propagating fronts and found conditions 

where the planar as well as rotating oscillations can occur. As described above, torus oscil-

lations are magnified when the torus is located at the same position as the combustion front; 

thus the effect of 

combustion front oscillations was studied with a mean combustion propagation of 10 cm/s. 

The magnitude of this effect depends on the frequency of combustion front oscillations. At 

high frequencies, the inertia of the torus dampens out any potential effect from the combus-

tion oscillations. At low frequencies, the torus is relatively unaffected by the slow changes in 

the combustion propagation. Therefore, the effect is maximized with moderate combustion 

front frequencies, and f = 10p was studied. For simplicity, only positive values of the velocity 

amplitude, Va, 

are considered. When the combustion front velocity is constant, the torus moves in 

oscillations as shown in Figure 5 and Table I. Let _xc denote the torus axial position from the 

ignited cylinder end for a constant combustion front velocity. When the combustion front has 

a sinusoidal velocity, the torus position [denoted _xs] is affected as additional oscillations 

are superimposed on the gas flow. Figure 11 shows this shift in torus position, xs - xc. The 

shift is zero for t < 0:05 s as the torus still must overcome its inertia. The axial position of the 

sinusoidal combustion front is equal to or greater than the constant combustion front posi-
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tion. Thus for  0:05 s < t < 0:35 s, the sinusoidal torus rises faster than the constant torus 

due to the extra initial energy supplied by the cylinder. A typical combustion front velocity is 

also shown in Figure 11.  Immediately after the velocity reaches its maximum [at t=0.15 s, 

0.35 s, 0.55 s], the position shift grows due to the extra energy supplied. After the combus-

tion front velocity reaches its minimum [at t=0.05 s, 0.25 s, 0.45 s, ], the position shift de-

clines toward zero since relatively less energy has been released by the cylinder. Therefore 

the shift, xs - xc, is sinusoidal for t > 0:35 s with a frequency that is equal to the frequency of 

the sinusoidal combustion front velocity. These effects are directly proportional to the com-

bustion front velocity amplitude. In Figure 11, the position shift is larger for Va = 7:5 cm/s 

than with Va = 5:0 cm/s. These torus shift oscillations are superimposed on the torus oscilla-

tions shown for the constant combustion velocity cases. The two sets of oscillations do not 

appear to interact. Thus the Nusselt number figures above are qualitatively the same with 

sinusoidal combustion. Two quantitative effects are seen: the position of the  maximum 

Nusselt number moves sinusoidally at a frequency, f, and the maximum value of the Nusselt 

number increases sinusoidally at  the frequency, f. There are a few things to note in Figure 

11. At t = 0:7 s in Figure 11, the position shift peak is small due to the torus reaching the end 

of the Figure 11. Difference in torus position between oscillating combustion front velocity and constant 

combustion front velocity at 10 cm/s. Two cases are shown with amplitudes of 5.0 cm/s and 7.5 cm/s. cylin-

der [10 cm]. When CFD calculations were made with longer cylinders 

or with higher frequency oscillations, the position shifts continue to oscillate with equal mag-

nitude. Secondly, the location of the torus center, _xs and _xc, was interpolated from data on 

a finite-sized grid. When these two interpolated locations are subtracted, error builds, result-

ing in the jaggedness of the shift shown in Figure 11. 
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ANALYTICAL COMPARISONS TOCFDRESULTS 

Computational fluid dynamics calculations must be validated. If the governing equa-

tions used were incorrect or if the solution was not grid independent, then the results from 

CFD calculations cannot be trusted. Thus two analytical solutions are developed that de-

scribe the Nusselt number when preheating is observed [slow combustion front velocity]. 

Both analytical solutions closely match the CFD results, thus verifying them. These can also 

be used to extend the CFD results to alternative 

combustion conditions. Self-Similar Flat Plate and Leveque Approximation 

The first analysis treats the cylinder as a flat surface; this is a rather extreme assumption 

because the curvature of the cylinder is not negligible. But the problem lends itself to the 

Leveque approximation for the velocity profile, and the solution of the self-similar problem is 

routine. The steady-state energy equation including convection in x direction [axial] and 

conduction in y direction [radial] is: 
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Assume a velocity profile in the x direction of the form  

u = ayp 

and assume the incoming gas has been heated to the adiabatic combustion  temperature, 

Tw. The Leveque gas velocity was estimated by the velocity near the cylinder calculated by 

Fluent. These velocities were:[a = 0:5m=s; p = 0], theoretically valid for low Prandtl numbers 

with a small velocity boundary layer, Pr_1; [a = 15:54m1=2=s; p = 0:5], the   best fit of the 

Fluent-calculated velocity; and [a = 413:2=s; p = 1], theoretically valid for high Prandtl num-

bers with a small thermal boundary  

layer, Pr 1. 

Thus, the energy balance becomes: 

The boundary conditions are: at y = 0 and as x!1 [thus Z = 0], 

T = To and as y!1 and at x = 0 [thus Z!1], T = Tw. Define a dimensionless temperature that 

ranges from 0 to 1 at these  boundaries: 

 

 

 

 

Dimensionless lengths will be defined with respect to the cylinder radius. While the flat 

Leveque solution doesn’t have a radius, it will be used to compare with the CFD results and 

the cylindrical solution  derived below: 
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And 

 

 

Also define the self-similarity transformation Z, T = T+ZÞ, where Z is 

defined as 

 

Set n = 1 and substitute in Equation [3]: 

 

Where 

It follows that m = _1 pþ2 maintains the self-similarity. Define the constant, 

b, to simplify the equation, b _ +½p þ 2_2kÞ_1 pþ2 and Equation [4] is written as follows:  
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Integrating Equation [5] twice one finds y = RZ 

 

This integral is quite similar to the error function,  

 The integral in the denominator can be solved numerically, defined 

as int. For example, when p = 1, 

 

At small values of Z, the top integral in Equation [6] can be greatly simplified. With less than 

10% error,  

mall values of Z occur in two locations: gas near the surface [small y0] 

 

and 

 

S

and gas far from the combustion front [large x0]. In these regions, the gas

temperature is given by  
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which holds true everywhere near the solid surface except at the singularity 

x0 = 0. As x0 !1, the gas cools back to its original temperature, all the heat removed from the 

hot surface is eventually redeposited onto the cold surface. This analytical solution is com-

pared to the CFD result for heat transfer at the surface, y0 = 0. From Equation [6], the heat 

transfer in the y direction is 

 

 

At the y = 0 boundary, the small Z approximation will hold, thus the  equation above simpli-

fies,  

 

 

The predicted Nusselt number from the Leveque approximation is 
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Figure 12 shows the Nusselt number comparison between the Leveque solutions and a Flu-

ent CFD solution. Two differences can be seen between the CFD and Leveque solutions:  

1. The CFD calculations used a temperature profile with preheating, 

Figure 1. The majority of the preheating was in the first 1 cm ahead of the combustion front. 

Thus as x0 ! 0, Nu ! 0. The Leveque solution assumed a discontinuous temperature at x0 = 

0; thus, the Nusselt number is infinite at the combustion front.  

 

2. The Fluent-calculated Nusselt number is smaller negative than the Leveque solution. The 

Leveque approximation assumed steady-state flow: the hot surface is infinitely long. The 

CFD calculations are with a finite length cylinder; as time progresses, the gas passes over 

extended lengths of the cylinder. Due to this finite length, the CFD calculated Nusselt num-

ber is smaller negative than a full steady-state calculation: Figure 8[a] shows this Nusselt 

number development. The CFD solution in Figure 12 was calculated with 30 cm cylinder 

[much longer than the 10 cm cylinder used above] to reduce this cylinder length effect. 
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Cylindrical Approximation 

 

A second analytical solution for the Nusselt number for slow, constant combustion front ve-

locities is presented here. The Leveque solution is adequate when the wall temperature is 

constant; this solution allows the exponential boundary condition, Equation [1]. Also, the flat 

plate approximation is dropped. Thus the solution will be more accurate, but also more 

complex. The steady-state energy equation, including convection in x direction and conduc-

tion in r direction, for axisymmetric cylindrical flow is: k 

 

 

 

with the boundary conditions 
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as well as a dimensionless radius, 

s velocity, 

u = arp

so, 

be the sum of an infinite series of solutions for the en-

 

 

The second boundary condition is somewhat arbitrary; the distance, 2r0, 

was chosen since it is outside the thermal boundary layer. Define a dimensionless tempera-

ture that ranges from 0 to 1 at these boundaries: 
 

 

 

Define the ga

 

Let the dimensionless temperature 

ergy balance, 
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So, the energy equation for the ith solution becomes: 

 

 

So the energy equationnto the tth solution becomes 

Multiply by  

The function, fi+r0Þ, is an unknown polynomial: 

Substituting this polynomial into the energy Equation [8] and xpanding in powers of r’: 

Grouping like powers of r0, it is seen that the above equation will give nonzero coefficients 

only if p is an integer. If C0;i = 0, then the solution is trivial; every constant would be zero. 

Thus 
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The corresponding Nusselt number at the wall is 

 

 

Figure 13 shows the Nusselt number comparison from cylindrical solutions and the develop-

ing Fluent solutions. The assumed velocity profile, u = arp, does not obey the no-slip condi-

tion at r0 = 1 which affects the Nusselt number. The Nusselt number is larger negative than 

predicted by Fluent and the Leveque solution for identical values of a and p. The cylindrical 

solution with plug flow at u = 0:2 m/s gives a result 

nearly identical to the Leveque solution with plug flow at u = 0:5 m/s. Thus, for the sake of 

comparison, the gas velocities used in Figure 13 are set such that the velocity at the cylin-

der wall is 0.2 m/s: [a = 0:2 μ s , p = 0], [a = 20 1 s, p = 1], and [a = 2000 1 m_s, p = 2]. 

 

Importance of Natural Convection Preheating 

From Equation [2] the fraction of heat transferred from the reacted solids to the unreacted 

solids depends on the average heat flux over the remaining cylinder length. These analytical 

solutions allow a prediction of the importance of including natural convection. Note that 

these results presented here are for developed flow past the combustion front location [see 

Figure 4c].  
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. 

 

The Leveque solution, Equation [7], gives a simple equation for the ratio of heat trans-

ferred by natural convection to the heat transferred by solid conduction. The average heat 

flux is  
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Since the Leveque solution over predicts the preheating near x = 0, Equation [13a] 

should slightly overestimate the effect of natural convection. The cylindrical solution, Equa-

tion [12], does not over predict the preheating near x = 0, but the resulting formula is more 

complicated. The average heat flux is 
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CONCLUSIONS 

 

For combustion antiparallel to gravity, three different outcomes are identified depending on 

the front velocity.  

 

1. Low combustion front velocities, roughly 1 cm/s. A starting vortex is formed as the cylin-

der ignites. This vortex forms a torus around the cylinder that rises against gravity faster 

than the reaction proceeds. As the torus moves further ahead of the combustion front, 

steady cylindrical flow of gas forms, rising up along the preform body. The gas preheats the 

unreacted part of the pre-form.  

 

2. Moderate combustion front velocities, roughly 10 cm/s. The torus initially rises slightly 

faster than the combustion front. A preheating zone develops as the torus gains energy from 

the reaction and deposits this energy on the unburned section of the preform. It is interest-

ing to note that at this combustion front velocity, the torus moves in large oscillations: it 

gains energy from the reaction and accelerates away from the combustion front; however, it 

soon loses this energy to the preform, slowing the torus down so that it lags behind the 

combustion front.   

 

3. High combustion front velocities, 20 cm/s or more. The combustion front moves faster 

than the buoyant torus. Thus the center of the torus is always behind the combustion front 

leading to high heat flux from the reacted zone to the gas. No preheating is observed. The 

combustion front induces such high velocities adjacent to the wall that the parallel flow be-

hind the torus becomes unstable and Tollmien- 

Schlichting waves develop. 

 

 

 When the combustion front propagates in an oscillating mode, the oscillating velocity has a 

small but noticeable effect on the heat transfer to and from the gas phase. The magnitude of 
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this effect depends on the frequency of oscillations. At high frequencies, the inertia of the 

torus dampens out any effects from the oscillations. All of the results presented here as-

sumed a temperature profile on the solid surface [Figure 1]. From this profilz, the heat trans-

ferred to and from the gas was calculated. With this information, a conjugate problem can 

be solved. That is, the heat transferred will effect the reaction in the solids, which alters the 

temperature profile. This coupling of Fluent simulations with SHS simulations is currently be-

ing studied. An interesting development that comes out of this study is to expand convection 

preheating beyond natural convection. Natural convection can be enhanced by operating 

with different gases or at higher pressures.  Forced convection could further enhance and 

stabilize the SHS reactions.  If a reaction is slow and significant heat is lost to the atmos-

phere, forced convection around the cylinder will envelop the cylinder in a gas layer that 

transports heat from reacted to unreacted zones.  
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