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Candide's Practical Principles of Experimental
Pattern Recognition

GEORGE NAGY

Abstract-This correspondence calls attention to several frequently
used assumptions and techniques culled from the pattern recognition
literature.

Index Terns-Classification, feature extraction, image processing,
machine intelligence, pattern analysis, pattern recognition.

The following items, which may be helpful to recently ini-
tiated acolytes of the art and science of pattern recognition,
have been derived from an exhausting study of the pertinent
literature of the past two decades. Specific references are
omitted to avoid counterproductive arguments over priority,
but the author waives any claim to originality of the following
ideas.

I. GAUSSIAN PDF's
According to the Central Limit Theorem, any feature may

be presumed to be normally distributed if its mean and variance
can be estimated from its empirically observed distribution.

Manuscript received June 17, 1982; revised August 9, 1982.
The author is with the Department of Computer Science, University

of Nebraska, Lincoln, NE 68588.

Corollary: Noise is always additive, Gaussian, independent,
and identically distributed. Variations in the patterns that do
not fit this model, such as unwelcome data from a foreign pop-
ulation contaminating the pure Gaussian population, are acts
of fate and can be ignored. Likewise, nonstationary phenom-
ena should be attributed to transducer artifacts and may be
ignored.

II. STATISTICAL DEPENDENCE
Assume class-conditional independence between features.

Generally this will minimize the predicted error rate. In image
data, texture is the name of a defect in the samples which
interferes with the assumption of statistical independence
among neighboring pixels. Models of statistical dependence
stronger than those required for texture are called structural or
syntactic.

III. CLASSIFICATION ERRORS
Sampling, quantization, segmentation, and registration er-

rors have no bearing on classification performance. Therefore,
subtract their effect from the observed error rate to obtain the
number of real errors.
Corollary: A recognition algorithm is considered successful

if it demonstrates, by means of highly promising classification
results (>50 percent), that the system would be practical pro-
vided only that the data acquisition method can be improved
sufficiently. Such improvements fall, however, in the realm of
engineering and are below the dignity of the dedicated practi-
tioner of pattern recognition.
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IV. COMPARISON OF CLASSIFICATION ACCURACIES
Comparisons against algorithms proposed by others are dis-

tasteful and should be avoided. When this is not possible, the
following Theorem of Ethical Data Selection may prove useful.
Theorem: There exists a set of data for which a candidate

algorithm is superior to any given rival algorithm. This set
may be constructed by omitting from the test set any pattern
which is misclassified by the candidate algorithm.

Toussaint's Corollary: For every classification algorithm,
there exists an optimal probability distribution function for
generating the data to be classified.

V. REPLICATION OF EXPERIMENTS
Since pattern recognition is a mature discipline, the replica-

tion of experiments on new data by independent research
groups, a fetish in the physical and biological sciences, is un-
necessary. Concentrate instead on the accumulation of novel,
universally applicable algorithms.
Casey's Caution: Do not ever make your experimental data

available to others; someone may find an obvious solution that
you missed.

VI. REPRESENTATIVE TRAINING/TEST SETS
To estimate the expected classification accuracy in the field,

construct an appropriate training set by extracting random
samples from a suitably selected homogeneous test set. In re-
mote sensing classification problems, systematically eliminate
artifacts such as border pixels from both the training set and
the test set. If small-sample estimation gives rise to problems,
use the same samples for training and testing.

VII. ASYMPTOTIC ERROR RATE
The asymptotic error rate provides a firm upper bound on

the experimentally observed error rate. In real problems the
empirically estimated Bayes risk is zero unless identical sam-
ples are sometimes labeled A and sometimes B. Therefore,
nearest neighbor algorithms, which have a lower bound on the
asymptotic error rate proportional to the Bayes risk, are opti-
mal. Upper bounds on error probabilities, even with values
greatly exceeding unity, may be readily constructed by multi-
ple applications of standard inequalities.

VIII. COMPUTATIONAL COMPLEXITY
OF CLASSIFICATION

1) The only acceptable criteria for concrete computational
complexity are the wall-clocktime and the number of state-
ments in your program.
2) To a first approximation, all classification algorithms run

at a speed proportional to N, the number of patterns to be
classified. Therefore, to increase the speed, reduce the experi-
mental sample size.
3) Estimate the speed of the candidate algorithm under the

assumption that it will be reprogrammed in language X on
parallel processor Y. Assume that rival algorithms have been
fully optimized already.
Corollary: The rival algorithms may be reprogrammed, if

necessary, to run slower.

IX. MULTICLASS GENERALIZATION
Since all multiclass tasks consist of a set of pairwise deci-

sions, arbitrary dichotomies may be used to estimate the over-
all error rate. To do so, always use the most easily separable
class pair: in OCR, "A" versus "B"; in remote sensing, "emerg-
ing corn" versus "sea ice." It is also helpful to collapse similar
categories, such as "O" and "Q" in OCR.

X. CLUSTERING
Clustering the training patterns guarantees significant perfor-

mance improvement without additional cost. Choose the cri-
terion and algorithm for clustering completely independently
from the method used in subsequent classification. Omit re-
porting unnecessary details, such as initial conditions.

XI. ADAPTIVE CLASSIFICATION
For proper statistical design, do not alter the training set and

the test set between experiments. Feedback from the errors
on the test set may be used to adjust higher order parameters
of both training and classification algorithms. This technique
of adapting the classifier to the test set is superior to adaptation
on the training set, particularly with small test sets. "Throw-
away" test sets are an affectation of statistical sophisticates.
Corollary: Report the improvements resulting from intro-

ducing specialized procedures for coping with significant mis-
classifications observed on the test set by considering the ear-
lier results as due to a rival (inferior) algorithm.
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A Step Towards Unification of Syntactic and
Statistical Pattern Recognition

K. S. FU

Abstract-The problem of pattern recognition is discussed in terms of
single-entity representation versus multiple-entity representation. A
combined syntactic-semantic approach based on attributed grammars is
suggested. Syntax-semantics tradeoff in pattern representation is dem-
onstrated. This approach is intended to be an initial step toward unifi-
cation of syntactic and statistical approaches to pattern recognition.
Index Terms-Attributed grammar, control diagram, semantics, sta-

tistical pattern recognition, syntactic pattern recognition, syntax-
semantics tradeoff.

I. INTRODUCTION
Many mathematical methods have been proposed for solving

pattern recognition problems [1 ]. They can be grouped into
two major approaches, the decision-theoretic or statistical
approach and the structural or syntactic approach [1] - [61.
From the point of view of pattern representation or descrip-
tion, we can discuss pattern recognition in terms of single-
entity representation versus multiple-entity representation,
and suggest a combined syntactic-semantic approach on the
basis of using attributed languages.
Consider an m-class pattern recognition problem. When we

consider each pattern as a single entity we can use a set of n
characteristic measurements (features) to represent each
pattern under study. In such a case, each pattern is repre-
sented by an n-dimensional feature vector and the recognition
of patterns can be accomplished by applying various tech-
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