Enzymatic Nixtamalization: An Improved Corn Masa Flour Production Process

Deepak Sahai
University of Nebraska - Lincoln

David S. Jackson
University of Nebraska-Lincoln, djackson1@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/foodscirecordspublic

Part of the [Food Science Commons](http://digitalcommons.unl.edu/foodscirecordspublic)

This Article is brought to you for free and open access by the Food Science & Technology Department Records at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Food Science & Technology Department Records--Public Access by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
About the Inventors

Deepak Sahai, Ph.D.

Dr. Sahai is a Research Assistant Professor in the Department of Food Science & Technology, University of Nebraska - Lincoln. This research has been funded by the National Science Foundation and the Environmental Protection Agency (NSF/EPA) for developing environmental friendly nixtamalization technology.

Contact: 251 Food Industry Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0919
Phone: (402) 473-2954
E-Mail: dsahai1@unl.edu

David S. Jackson, Ph.D.

Dr. Jackson, Associate Professor, Department of Food Science & Technology, University of Nebraska-Lincoln has conducted extensive research in the area of corn nixtamalization. He has authored several research publications in the area of corn quality and processing.

Contact: 256 Food Industry Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0919
Phone: (402) 473-2954
E-Mail: djackson@unl.edu

Enzymatic Nixtamalization: An Improved Corn Masa Flour Production Process

Process Developed by
Deepak Sahai & D. S. Jackson
Department of Food Science & Technology

[December 2000]
Enzymatic Nixtamalization eliminates the essential step of cooking whole kernel corn in a solution of lime; there are no alkaline waste streams (nejayote).

The amount of corn solids lost is significantly lower, providing higher masa yields.

Conserves water and energy, hot cooking liquid can be recycled.

Requires significantly lower quantities of lime, as it is need only to achieve an alkaline pH.

Cooking and steeping can be completed in only 3-4 hours.

Hard and soft hybrids, stress-cracked or broken kernels can all be used without adversely influencing corn solids loss.

Superior product quality - extra white masa flour with near neutral pH.

Economically viable - increased product yields alone compensates for enzyme costs. Minimum waste treatment and disposal costs.