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Rice flour and rice starch were single-screw extruded and selected 
product properties were determined. Neural network (NN) models were 
developed for prediction of individual product properties, which per-
formed better than the regression models. Multiple input and multiple 
output (MIMO) models were developed to simultaneously predict five 
product properties or three product properties from three input parameters; 
they were extremely efficient in predictions with values of R2 > 0.95. All 

models were feedforward backpropagation NN with three-layered net-
works with logistic activation function for the hidden layer and the output 
layers. Also, model parameters were very similar except for the number 
of neurons in the hidden layer. MIMO models for predicting product  
properties from three input parameters had the same architecture and 
parameters for both rice starch and rice flour. 

 
Food extrusion process modeling has been a difficult task due 

to its complexities. Various research efforts intended to model the 
process have been more machine- and product-specific. The whole 
process can be viewed as consisting of a set of input parameters 
such as raw material characteristics, moisture content, feed rate, 
screw speed, screw configuration, and barrel temperature; system 
parameters such as residence time, specific mechanical energy, and 
pressure build up; and product properties such as radial expan-
sion, mechanical properties, and chemical properties. These parame-
ters are interdependent. Many researchers have tried to relate 
input parameters and output parameters, mainly using regression 
models to fit the experimental data. Some research efforts have 
concentrated on using regression analysis to predict system 
parameters from input parameters. 

Two approaches have been followed in modeling extrusion oper-
ations: dynamic modeling and steady state modeling. Dynamic 
modeling (Levine et al 1986, 1987) describes the reaction of a 
process immediately after a perturbation (10–15 sec) and is 
particularly useful for control and automation, while steady state 
modeling describes the state of the process after a period long 
enough for machine stabilization. Between dynamic and steady 
state models lies the domain of long period (a few minutes) insta-
bilities and metastable states (Roberts and Guy 1986, 1987) that 
probably can be explained by qualitative models. 

Most studies directed toward understanding transformations in 
extruders have been empirical in nature. The most widely used 
approach is response surface methodology. This approach allows 
one to establish mathematical relationships between input variables 
and product properties (Olkku and Vainionpaa 1980; Antila et al 
1983; Frazier et al 1983; Olkku et al 1984; Fletcher et al 1985). 
These results are clearly product- and machine-specific, and the 
conclusions are limited to the scope of the investigations. 

Other approaches have been proposed. Mueser et al (1987) and 
Mueser and Van Langerich (1984) proposed a system analytical 

model for extrusion cooking of starch. Their model distinguished 
between process and system parameters that influenced target 
product properties (output parameters). Process parameters are 
the operating conditions that can be controlled and manipulated 
directly. System parameters are the properties that are influenced 
by the process parameters and subsequently affect the product char-
acteristics (target parameters). It is believed that there is an appro-
priate function to describe the relationship between process parame-
ters and system parameters or between system parameters and 
target parameters. This approach allows one to compare results 
obtained on the basis of more meaningful independent variables 
by eliminating the effects of operating conditions, materials proces-
sed, and extruder layout and geometry. In addition, the informa-
tion is particularly useful for the scale-up of extrusion processes. 
Building on that model, many researchers have studied the rela-
tionships between process and target parameters (Taranto et al 
1975; Olkku and Vainionpaa 1980; Antila et al 1983; Frazier et al 
1983; Launay and Lisch 1984; Olkku et al 1984; Owusu-Ansah et 
al 1984; Fletcher et al 1985; Bhattacharya and Hanna 1987; Chin-
naswamy and Hanna 1988). Only a limited number of studies 
have been reported on modeling system parameters from process 
parameters (Yacu 1985; Tayeb et al 1988) or building correlations 
between system parameters and target parameters (Guy and 
Horne 1988; Kirby et al 1988; Mueser et al 1987). 

Though regression techniques are commonly used, difficulties 
arise when dealing with the complex characteristics of some sys-
tems. Regression is usually limited to linear and static systems, 
and conventional nonlinear regression algorithms are clumsy when 
handling systems like the extrusion process with multiple inputs 
and outputs. One limitation to traditional mathematical modeling 
is that the mathematical relationships describing each process of 
the system must be closely approximated to obtain good results. 
Limitations in information introduce error in model predictions. 
Alternative techniques such as neural networks (NN) can reduce 
this difficulty (Batchelor et al 1997). 

For nonlinear problems, NN are a promising alternative tech-
nique (Borggard and Thodberg 1992). NN learn from examples 
through iteration, without requiring a priori knowledge of rela-
tionships between variables under investigation (Linko et al 1992; 
Erikaineen et al 1994). The advantage of NN over a rule-based 
model is that, if the process under analysis changes, new exam-
ples can be added and the NN can be retrained. This is easier than 
determining new models or rules. Moreover, no statistical assump-
tions are made on the behavior of the data. NN are not known for 
precision; if precision is less important than speed, NN may be 
useful. NN models have performed well even with noisy, incom-
plete, or inconsistent data (Bochereau et al 1991). Linko et al 
(1992) used NN with output feedback and time delays for the 
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control of specific mechanical energy on the basis of screw speed 
for flat bread production through a twin-screw extrusion cooker. 
As a food extruder is a multiple input and multiple output 
(MIMO) system, dynamic changes in torque, specific mechanical 
energy, and pressure were modeled and subsequently controlled 
using two independently trained feedforward artificial NN (Eeri-
kainen et al 1994). Linko (1998) presented a review on the poten-
tial of some novel tools in food process control. NN have great 
potential as software sensors for online, real-time state estimation, 
and prediction in complex process control applications. 

Taking into consideration the current status of extrusion model-
ing, the objective of this research was to model the extrusion of 
rice flour and rice starch with NN. The specific objectives were to 
develop more robust NN models for prediction of selected product 
properties from the input process variables individually for each 
property and to develop multiple input and multiple output models 
for simultaneous prediction of all product properties. 

MATERIALS AND METHODS 

Rice flour and rice starch were extruded at three levels of mois-
ture content, screw speed, and barrel temperature. Broken kernels 
of KDML 105 rice, as a by-product from the milling process, 
were obtained from the Siam Grain Company, Bangkok, Thailand. 
Rice flour was prepared by a wet-milling method and rice starch 
was prepared by an alkaline method (Hogan 1967). 

Extrusions 
Extrusions were conducted in a single-screw laboratory cook-

ing extruder (19 mm screw diameter; L/D ratio 20:1) (C.W. 
Brabender Instruments, NJ). Uniformly tapered screws with nomi-
nal compression ratio of 4:1 were used. The zone 3 (die section) 
barrel temperature was adjusted to the desired temperatures of 
140, 170, and 200°C, whereas zone 1 (the feed section) of the 
barrel was fixed at 125°C and zone 2 was fixed at 135°C. Screw 
speeds were 150, 200, and 250 rpm with fixed feed rate of 40 
g/min. The moisture contents of the samples used were 18 ± 2.0, 
23 ± 2.0, and 28 ± 2.0% (wb). There were two replicates of each 
test run. It was a complete randomized design with a full factorial 
arrangement of treatments. 

Desired moisture level was achieved by spraying distilled water 
as a fine mist onto the samples. Samples were then tempered for 
20 min in a blender and moisture content was determined at this 
point. These samples were sealed in plastic bags and refrigerated 
at 4°C for one day. Before extrusion, the samples were brought to 
about room temperature and mixed to assure even moisture 
distribution. Each extrusion run was brought to steady state as 

indicated by constant torque and melt temperatures before samp-
ling and data collection. The extrudates collected were cooled at 
room temperature for 2 hr and sealed in plastic bags for analyses 
(Martinez et al 1988). 

Analytical Methods 
Moisture contents of rice flour and rice starch were analyzed by 

AOAC methods (1984). Mean values were obtained from three 
measurements. Expansion ratio (ER) was measured as the ratio of 
cross-sectional area of extrudate to that of the die nozzle (Bhat-
tacharya and Choudhury 1994). Mean expansion ratio of each 
sample was determined from 10 observations. 

Modified procedures of Anderson et al (1969) were used to 
determine water absorption index (WAI) and water solubility index 
(WSI) of extrudates. For determination of WAI, 0.5 g of extruded 
and ground sample (100 mesh) were suspended in 15 mL of 
distilled water at 25°C with constant stirring for 30 min and then 
centrifuged at 3,000 rpm for 10 min. Supernatant liquid was 
poured into a tarred evaporating dish and dried at 100 ± 5°C for 4 
hr. Weight of the remaining gel was taken as WAI and expressed 
as g/g of dry sample. Amount of dried solids recovered by evapor-
ating the supernatant was taken as WSI and expressed as percentage 
of dry solids. Experiments were performed in triplicate. 

Degree of gelatinization (DG) is defined as the weight ratio of 
gelatinized flour or starch to total weight of dry sample. DG was 
determined using the method of Birch and Priestley (1973), which 
is based on formation of a blue iodine complex by amylose 
released during gelatinization. Percentage DG was calculated by 
the absorbance ratio of amylose-iodine complex for samples dis-
persed in 0.060M KOH compared with respective samples disper-
sed in 0.4M KOH. Reported results were averages of three 
replicate analyses. 

Initial peak viscosity (IPV) of extrudate samples was measured 
using a Rapid Visco Analyser (Series 4, RVA Newport Scientific 
Pty. Ltd., Australia) at 25°C just before heating. Measurement 
was based on the method of Guha et al (1998). Apparent viscosity 
and temperature profiles were recorded and monitored with a PC. 
Curves were analyzed for IPV. Three measurements were made on 
each sample and IPV was reported in rapid visco units (RVU). 

Statistical Analysis 
Multiple regression models (SPSS/PC v. 6) were used to ana-

lyze data. All possible procedures for variable reduction were used 
to determine the predictors for regression models (Neter et al 1990). 
Criteria for selection of a model were 1) the number of variables 
should be close to the number of parameters in the model, 2) R2 
should be close to 1, and 3) SE should be low. 

TABLE I 
Neural Network (NN) Models for Each Product Property for Rice Flour Extrusiona,b 

Output ER WAI WSI DG IPV 

R2 0.9565 0.9677 0.9146 0.9381 0.9831 
SE 0.0775 0.1265 1.6229 0.8114 1.0884 
Network 3 20 1 3 15 1 3 20 1 3 25 1 3 18 1 

a SE, standard error; ER, expansion ratio; WAI, water absorption index; WSI, water solubility index; DG, degree of gelatinization; IPV, initial peak viscosity. 
b LR, learning rate = 0.3; MO, momentum = 0.2; IW, initial weight = 0.3. 

TABLE II  
Neural Network (NN) Model for Prediction of All Five Product Properties (MIMO model) for Rice Flour Extrusiona,b 

Output ER WAI WSI DG IPV 

R2 0.9547 0.9459 0.9193 0.9191 0.9392 
SE 0.0894 0.1643 1.6577 2.4048 3.3211 
Network 3 15 5     

a MIMO, multiple input and multiple output; SE, standard error; ER, expansion ratio; WAI, water absorption index; WSI, water solubility index; DG, degree of
gelatinization; IPV, initial peak viscosity. 

b LR, learning rate = 0.3; MO, momentum = 0.2; IW, initial weight = 0.3. 
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Neural Network Modeling 
NN modeling was performed using commercial software (Neuro-

Shell 2, Ward Systems Group, Frederick, MD). A typical single 
layered neural network is shown in Fig. 1. The criteria used for 
the NN model evaluation were the R2 and standard error (SE). 
Data sets were divided randomly, 70% as training and 30% as 
testing sets. Three-layered feedforward networks were used with 
a backpropagation algorithm. The networks were trained rigorously 
varying the number of neurons in the hidden layer, learning rates, 
momentum, and initial weights to arrive at optimum values of all 
the parameters when the error was lowest. The best networks were 
saved. 

RESULTS AND DISCUSSION 

NN models were developed to predict individual product prop-
erties from the three input parameters. The models developed for 
individual product properties for both rice flour and rice starch are 
shown in Tables I and IV. The corresponding regression models 
are shown in Table VII. The NN models had almost the same 
architecture, with the only variation being in the number of 
neurons in the hidden layer. All the models performed well with 
the testing data with R2 values of greater than 0.91 and a majority 
of them greater than 0.95. The regression models also performed 
well, with R2 values greater than 0.88. The variables and their com-
binations were very different for the regression models. NN 
models had higher R2 values and lower standard error values of 
prediction than did the regression models. 

MIMO models were developed for the prediction of all product 
properties at one time from the input parameters. The NN models 
for rice flour and rice starch are shown in Tables II through V. 
Again it was found that the architecture of the models were very 
similar except for the number of neurons in the hidden layer. 
Another set of MIMO models was developed to predict three of 
the product properties (ER, WAI, and WSI, as these three prop-

erties would be sufficient to explain the product characteristics) 
from the input parameters. Interestingly, the models developed for 
both rice flour and rice starch were similar (Tables III and VI, 
respectively). So, it was possible to develop a general model for 
prediction of ER, WAI, and WSI for both rice flour and rice 
starch. It is not possible to handle the MIMO systems by 
regression. Thus, NN proved to be more powerful in modeling the 
extrusion of rice flour and starch. 

CONCLUSIONS 

Neural networks models, developed to predict expansion ratios, 
water absorption index, and water solubility index individually 
from moisture content, screw speed, and barrel temperature were 
better than regression models. The NN models developed for 
different raw materials were very much similar in their prediction 

TABLE IV
Neural Network (NN) Models for Each Product Property for Rice Starch Extrusiona,b 

Output ER DG WAI WSI IPV 

R2 0.9595 0.9583 0.9687 0.9491 0.9863 
SE 0.0775 1.7942 0.1183 0.9445 1.6084 
Network 3 5 1 3 7 1 3 12 1 3 20 1 3 25 1 

a SE, standard error; ER, expansion ratio; DG, degree of gelatinization; WAI, water absorption index; WSI, water solubility index; IPV, initial peak viscosity.  
b LR, learning rate = 0.3; MO, momentum = 0.2; IW, initial weight = 0.3. 

TABLE V  
Neural Network (NN) Model for Prediction of All Five Product Properties (MIMO model) for Rice Starch Extrusiona,b 

Output ER DG WAI WSI IPV 

R2 0.9455 0.9468 0.9622 0.9568 0.9807 
SE 0.0894 2.0445 0.1304 0.8741 1.8300 
Network 3 10 5     

a MIMO, multiple input and multiple output; SE, standard error; ER, expansion ratio; DG, degree of gelatinization; WAI, water absorption index; WSI, water
solubility index; IPV, initial peak viscosity. 

b LR, learning rate = 0.3; MO, momentum = 0.2; IW, initial weight = 0.3. 

TABLE VI  
Neural Network (NN) Model for Prediction of Three Product Properties 

(MIMO model) for Rice Starch Extrusiona,b 

Output ER WAI WSI 

R2 0.9547 0.9747 0.9712 
SE 0.0837 0.1048 0.7396 
Network 3 15 3   

a MIMO, multiple input and multiple output; SE, standard error; ER, expan-
sion ratio; WAI, water absorption index; WSI, water solubility index. 

b LR, learning rate = 0.3; MO, momentum = 0.2; IW, initial weight = 0.3. 

TABLE III  
Neural Network (NN) Model for Prediction of Three Product Properties 

(MIMO model) for Rice Flour Extrusiona,b 

Output ER WAI WSI 

R2 0.9491 0.9490 0.9128 
SE 0.0837 0.1643 1.7044 
Network 3 15 3   

a MIMO, multiple input and multiple output; SE, standard error; ER, expan-
sion ratio; WAI, water absorption index; WSI, water solubility index. 

b LR, learning rate = 0.3; MO, momentum = 0.2; IW, initial weight = 0.3. 

 

Fig. 1. Typical single-layered neural network (Ganjyal and Hanna 2001). 
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capabilities and with respect to the architecture of the networks 
(number of hidden layers, number of neurons in the hidden layers, 
activation functions used for the hidden and output layers, and the 
learning method used). 

Further, efficient multiple input multiple output (MIMO) models 
were developed. These MIMO models were very much similar for 
both rice flour and rice starch. MIMO models predicted the product 
properties of expansion ratio, water solubility index, and water 
absorption index for both rice flour and rice starch exactly the 
same. These analyses confirmed the capabilities of NN to model 
the extruded product properties efficiently. 
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