






iii 
 

Table of Contents 

Table of Contents ............................................................................................................................ iii 

Table of Figures ................................................................................. Error! Bookmark not defined. 

CHAPTER 1: INTRODUCTION ............................................................................................................ 1 

1.1 Background ............................................................................................................................ 1 

1.2 Motivation of Thesis .............................................................................................................. 2 

1.3 Objectives of Thesis ............................................................................................................... 4 

1.4 Scope of Thesis ....................................................................................................................... 5 

1.6 Structure of the Thesis ........................................................................................................... 6 

CHAPTER 2: VALUATION METHODS ................................................................................................. 8 

2.1 Introduction to Valuation ...................................................................................................... 8 

2.2 Valuation Methods ................................................................................................................ 9 

2.2.1 Profitability Index (Benefit-Cost Ratio) ........................................................................... 9 

2.2.2 Internal Rate of Return ................................................................................................. 10 

2.2.3 Net Present Value ......................................................................................................... 10 

2.2.4 Decision Tree Analysis ................................................................................................... 12 

CHAPTER 3: REAL OPTIONS ANALYSIS ........................................................................................... 16 

3.1 Options ................................................................................................................................. 16 

3.2 Real Options ......................................................................................................................... 17 

3.3 Real Option Techniques ....................................................................................................... 23 

3.3.1 Black-Scholes ................................................................................................................. 24 

3.3.2 Binomial Option Pricing Model ..................................................................................... 26 

3.3.3 Simulation ..................................................................................................................... 27 

CHAPTER 4: INTRODUCTION TO THE BDROP MODEL .................................................................... 29 

4.1 BDROP Model Summary ...................................................................................................... 33 

CHAPTER 5: BDROP AND BLACK-SCHOLES MODEL COMPARISON ................................................ 35 

5.1 Mathematical Comparison................................................................................................... 35 

5.2 Statistical Comparison ......................................................................................................... 36 

5.2.1 Methodology ................................................................................................................. 36 

5.2.2 Results ........................................................................................................................... 37 

5.3 Analysis ................................................................................................................................ 38 





v 
 

TABLE OF FIGURES 

FIGURE 2.2.3-1: NET PRESENT VALUE EXAMPLE .............................................................. 11 

FIGURE 2.2.4-1: DECISION TREE ANALYSIS EXAMPLE ....................................................... 13 

FIGURE 3.2-1: PROCESS OF VALUATION METHODS ............................................................ 19 

TABLE 3.2-1: COMPARISON OF DECISION RULES FOR VALUATION METHODS ................... 20 

FIGURE 3.2-2: REAL OPTIONS ANALYSIS EXAMPLE ........................................................... 21 

TABLE 3.2-2: REAL OPTION CLASSIFICATIONS .................................................................. 22 

FIGURE 3.3-1: PROCESS OF REAL OPTION TECHNIQUES ..................................................... 23 

FIGURE 4-1: OLD AND NEW PROBABILITY DENSITY FUNCTIONS OF THE BETA 

DISTRIBUTION ............................................................................................................ 32 

TABLE 5.2.1-1: INPUT FACTORS - COMPARISON OF BDROP AND BLACK-SCHOLES 

TECHNIQUES ............................................................................................................... 37 

TABLE 5.2.2-1: TEST OF CORRELATION BETWEEN BDROP AND BLACK-SCHOLES 

TECHNIQUES ............................................................................................................... 38 

TABLE 5.2.2-2: TEST OF DIFFERENCE BETWEEN BDROP AND BLACK-SCHOLES 

TECHNIQUES ............................................................................................................... 38 

FIGURE 6.4-1: DOT PROJECT STAGES................................................................................ 45 

TABLE 6.4.1-1 BDROP MODEL PARAMETER VALUES ...................................................... 47 

TABLE 6.5-1: BDROP MODEL VALUES VERSUS NET PRESENT VALUES ........................... 50 

 

 



1 
 

CHAPTER 1: INTRODUCTION 

1.1 BACKGROUND 

Typically, valuation has been conducted using traditional methods such as the discounted 

payback method (DPM) which uses discounted cash flows to determine the time it takes 

to recoup the original investment; the internal rate of return (IRR) which uses the 

condition of when the present value is equal to zero to yield the corresponding discount 

factor or IRR; and the profitability index (PI), also known as the benefit-cost ratio (BCR), 

which determines the ratio of discounted benefit cash flows to the project‟s costs.  

Perhaps the most widely used traditional valuation method is NPV (NPV).  The NPV 

method takes expected future cash flows and discounts them to the current time period.  

Another valuation method known as decision tree analysis (DTA) uses NPV in its 

valuation, but also accounts for the details of events in a valuation period such as 

decisions that include cash flow scenarios.  The DTA method determines the expected 

values of outcomes based on their probability of occurrence given that certain decisions 

are made over time. 

Both the NPV and DTA methods have inherent limitations.  The NPV method assumes 

that decisions are fixed at the time of the valuation therefore reducing flexibility the 

project might have over its life.  The DTA method compensates for this lack of flexibility 

because of its ability to identify the possible decisions that can be made.  This creates 

strategic insight, but may not be suitable to describe the dynamic decision making 

possibilities. Due to these limitations, the real option analysis valuation method has 

become a complimentary tool for these valuation methods.  The real options analysis 
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method determines the value of this flexibility to dynamically make decisions and 

because of this provides a useful tool for valuation in strategic investments. 

1.2 MOTIVATION OF THESIS 

Currently, the challenges of real options analysis limit the widespread use of this 

methodology by practitioners.  One problem associated with real options analysis is 

constraints due to assumptions stemming from the original use of these models in the 

stock market for valuing stocks which was to value stocks.  Option pricing was originally 

developed to value stocks and traded securities.  Real options are therefore constrained to 

a system that may or may not follow an underlying asset (Steffens & Douglas, 2007). 

Real options use a portfolio of traded securities that replicate the variation over time 

(volatility) of the actual investment excluding any options.  The future value of this 

replicated portfolio is then modeled based on historic price movements.  This assumption 

constrains real options valuations to identify stocks that will replicate the unique behavior 

of the actual investment.  This can prove to be very difficult in many real world instances 

that do not have any direct correlation to the stock market.  For instance, the airline 

industry has been known to hedge using oil securities; however, a company researching 

new technology may not have a direct link to any existing stock market securities. 

In an attempt to overcome this constraint, Copeland & Antikrov [2001] apply a „Market 

Asset Disclaimer‟ (MAD), where the traditional NPV is used as the value of the 

underlying asset.  They contend that this value is the best unbiased estimator of the 

investment‟s value given that it is a value of the investment with no flexibility.  While 

this may help determine the value of the underlying asset, a problem still persists even 

with MAD.  The problem is that, even in this approach, the volatility is still allowed to be 
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modeled based on prices of relevant traded securities.  This again introduces the bias of 

an assumed relationship to the stock market. 

Another challenge of current real options analysis techniques is the conventional use of 

the Lognormal distribution to describe the investment‟s cash flows.  The problem here is 

that the Lognormal distribution may be limited in the number of different cash flow 

distributions it can effectively represent.  Other distributions, like the generalized Beta 

distribution, are more general and flexible than the Lognormal distribution 

(Chotikapanich, Roa, & Tang, 2007).  The Lognormal distribution was originally used to 

describe the never-negative nature of stock prices.  Real options cannot be constrained by 

this assumption because they inherently may have negative possibilities in their cash 

flows. 

Probably the most compelling problem in the use of real options analysis is the lack of 

upper management support due to options pricing being viewed as complicated 

instruments and hard for them to understand.  In a recent study, the number one reason 

for not using real options is the lack of top management support.  Further research 

indicated that top managers of many companies are hesitant to use techniques that they 

cannot follow step by step (Block, 2007).  Rogers [1995] suggests there five attributes of 

innovation that determine its rate of adoption: Superior Idea, Compatible, Low 

Complexity, Triability, and Observability.  In this case the underlying problem exists in 

real options analysis‟s complexity because upper management does not view it as easy to 

understand. 
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Industry is seeking to quantify the value of capital investments that contain the flexibility 

to dynamically make decisions.  Many research articles are citing NPV as inadequate to 

handle the flexibility of projects.  Net present value has been criticized due to its 

inadequacy dealing with the potential flexibility that comes with investment projects, 

resulting in changes in the original cash flow pattern (Reyck, Degraeve, & Vandenborre, 

2008).  Some relatively new real option analysis techniques aim to simplify existing or 

create a more intuitive methodology. 

Datar and Mathews of Boeing developed a new real options model using Monte Carlo 

simulation and packaged it as an add-on in spreadsheet software.  It is now commonly 

referred to as the Datar-Mathews method.  In this method they create an algorithm that 

contains real options thinking, but simplifies the complexity of its formulation.  It has 

been shown to converge to the traditional real options analysis solutions under specific 

assumptions (Mathews, 2009). 

1.3 OBJECTIVES OF THESIS 

This study seeks to provide a new model that addresses the challenges of real option 

analysis techniques.  The attributes of this new model encompasses unconstrained market 

assumptions, robust representation of the underlying asset, and uncomplicated 

methodology.  The new model should take into account market risks, but also should not 

be constrained to stock market assumptions used in traditional option pricing models.  

This allows a model that can be expanded to be applied to many more problems; for 

example, real options analysis using the uncertainty stemming from technological assets 

or systems.  Also, the new model should represent a more diverse group of capital 

investment distributions; namely, more diverse than the Lognormal distribution used as a 
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standard of current option pricing models.  Lastly, the new model should be easily 

adoptable by users.  The model should be simplified. 

Therefore the specific objectives of this research are: 

1) to create a new valuation method that addresses the current challenges of real option 

analysis techniques, 

2) to compare this new model against an existing real options analysis technique, and 

3) to apply the new model in a case study to demonstrate its applicability to industry. 

1.4 SCOPE OF THESIS 

Real options analysis valuation is a viable method to account for flexibility of future 

decisions by focusing on the evolution of a few complex factors over time that 

determines the value (Walters & Giles, 2000); however, this focus on “dynamic 

complexity” does not necessarily negate the DTA method.   Walters and Giles [2000] 

explain this by stating that, “it would be foolish to argue that [the] dynamic complexity 

[described using real options analysis] is generally more important than [the] detail 

complexity [described using DTA]…but real options can distil your strategic thinking 

into focusing on a few dynamic processes, where a decision-tree would overflow the 

largest boardroom whiteboard.”  The benefits of the real options analysis method are best 

served as a complimentary tool to the best practice NPV and DTA methods. 

The goal of this thesis is therefore to find a solution to the challenges facing valuation 

methods and demonstrate its applicability as a complimentary tool in the valuation of 

strategic investments in industry.  In the scope of this thesis, strategic investments are 
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defined as investments where managers have the flexibility to make decisions along the 

course of the investment period.  This study focuses on strategic investments such as 

those that might be undertaken by research and development departments.  

Generalizations to the model are suggested as future research in this work. 

1.6 STRUCTURE OF THE THESIS 

In Chapter One, a brief background on the state of valuation methods was discussed. 

In Chapter Two, valuation will be defined.  This includes terms that are used in this 

thesis.  Also, four different types of valuation methods: profitability index, internal rate of 

return, NPV, and DTA will be described.  An example is presented and used in the 

chapter to describe the methods. 

In Chapter Three, real options analysis is introduced.  The progression from general 

options to real options is analyzed and the taxonomy of these real options are identified.  

This chapter also describes three real option models:  Black-Scholes, Binomial Option 

Pricing, and the Datar-Mathews.  These models are illustrated using the example of 

chapter two and the challenges of them are discussed. 

In Chapter Four, an introduction of a solution to the challenges established in chapter 

three is presented.  The solution, a new model called the Beta Distribution Real Option 

Pricing, is derived and illustrated using the example of chapter two.  The new model‟s 

steps are summarized in the conclusion of the chapter. 

In Chapter Five, the new model is tested against the Black-Scholes model; a standard in 

real option pricing models.  First a hypothesis is formulated. Then a description of how 
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the new model would be tested is presented.  The results are given and an analysis 

conducted on them. 

In Chapter Six, a case study of a department of transportation is presented to show the 

applicability of the new model.  What is special about this study is it uses a reliability 

ranking method to describe the stochastic properties of the returns of different radio 

frequency identification systems.  The BDROP model uses these rankings by mapping 

them into monetary values and deriving the necessary model inputs parameters to value 

the systems.  The results are used in a decision model for choosing a system to use. 

Chapter Seven, includes a discussion of the met objectives of this thesis.  The new 

model‟s limitations and contributions to the body of knowledge will be examined.  

Possible future research is also explored at the conclusion of this chapter. 
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CHAPTER 2: VALUATION METHODS 

2.1 INTRODUCTION TO VALUATION 

Valuation plays an important role when assessing investments.  Merrian-Webster [2010] 

defines valuation as, “the estimated or determined market value of a[n] [investment].”  A 

number of evaluation methods have been created to determine the market value of an 

investment.  In order to appropriately describe these methods the following terminology 

must be defined: uncertainty, risk, and flexibility. 

In this thesis, the term “uncertainty” is defined as, “the lack of complete certainty...the 

existence of more than one [possibility; meaning,] the true…value is not known,” 

(Hubbard, 2007).  To measure uncertainty, certain probabilities are given to 

corresponding possibilities. To measure the uncertainty of the returns of an investment, 

for example, suppose the probability that an investment will yield a positive return is 

20%, the probability that an investment will yield a negative return is 30% percent, and 

the probability that an investment will yield no return is 50% percent. 

Hubbard [2007] goes on to define risk as, “a state of uncertainty where some of the 

possibilities involve a…undesirable outcome.”  In the context of this thesis, the 

“undesirable outcome” will be taken to mean negative returns on an investment.  

Measuring risk involves defining possibilities with quantified probabilities and quantified 

losses. For example, recall the aforementioned example of measuring the uncertainty of 

return from an investment. In this example, the measure of this risk is a 20% probability 

that the returns on an investment will negative with a value of -$3 million. 
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This thesis will make reference to two different sources of risk.  The first is market risk 

which refers to factors from the economy such as interest rates.  This source of risk is 

considered systematic because a company valuing the investment cannot affect it (Ollila, 

2000).  Ollila [2000] continues, contending that because market risk is fully diversifiable, 

investors are not willing to pay a premium for it.  Therefore, this thesis associates market 

risk with the risk-free rate of interest. 

The second source of risk referenced in this thesis is the project, or investment, risk.  This 

risk refers to factors not related to market risk such as uncertainty over costs of 

development and manufacturing or the actions of competitors (Ollila, 2000).  Project risk 

is therefore considered unsystematic.  This thesis associates the project risk with a 

company‟s overall required return on the firm as a whole; the weighted average cost of 

capital (WACC). 

This thesis defines flexibility to be the ability to make decisions about an investment 

during the course of a valuation of a possible investment opportunity.  The decisions can 

be made at any point during this valuation.  In the absence of flexibility, the decisions are 

made at a predetermined point in the valuation; typically, at the beginning of the 

valuation. 

2.2 VALUATION METHODS 

2.2.1 PROFITABILITY INDEX (BENEFIT-COST RATIO) 

The profitability index, commonly referred to as the benefit-cost ratio, is a common 

valuation method.  This method determines the ratio of after-tax discounted cash flows to 

the project‟s discounted costs.  The decision to invest is based on if the ratio of benefits to 
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cost is greater than 1; meaning that the present value of the future cash flows of the 

investment‟s returns exceeds the costs. 

2.2.2 INTERNAL RATE OF RETURN 

A valuation method commonly used is the internal rate of return.  The internal rate of 

return can be considered the discount rate the when the present value of future cash flows 

is equal to zero.  In this method, the decision to invest is based on when the discount 

factor, internal rate of return, is greater than the opportunity cost of capital; in many 

cases, this opportunity cost of capital will be the WACC. 

2.2.3 NET PRESENT VALUE 

Between the profitability index, internal rate of return, and NPV methods, the NPV 

method is considerably the most popular valuation method currently used.  Although 

taking over two decades to be widely accepted, the NPV method has become the single 

most widely used tool for large investments made by large corporations (Copeland & 

Anitkarov, 2001). 

Originally used to value bonds, the NPV method discounts the expected future cash flows 

of an investment‟s returns and subtracts the initial investment‟s costs.  This resulting 

value is called the NPV.  The decision to take on the investment is made based on the 

maximum value possible when comparing the NPV of the investment if it is undertaken 

and the NPV of the investment if it is not undertaken yielding a NPV of $0. 

To illustrate the NPV method, consider the following example.  Suppose an investment 

opportunity presents itself at t=t0 that costs $10 to launch at t=t1 and has an expected 

value of $15 at t=t2.  Figure 2.2.3-1 illustrates the cash flow diagram for this example. 
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Figure 2.2.3-1: Net Present Value Example 

To calculate the NPV, the future cash flows must be discounted to t=t0 at their 

appropriate rates to compensate for their associated risk.  The launch costs can be 

discounted at the risk-free rate because there is only market risk associated with it.  The 

expected value of the return, however, is associated with the project risk and therefore 

must be discounted at the WACC.  Given a risk-free annual rate of rf=5% and a WACC 

of 25% annually, both compounded continuously, the NPV can be calculated as: 

NPV = -$10e
-0.05*1

 + $15e
-0.25*2

 = -$0.41 

Since the NPV is less than $0, the decision will be to forego the investment opportunity. 

As illustrated in the example, the NPV method makes a decision at the beginning of the 

investment period.  The NPV method does not take into account the flexibility to make 

decisions in the future based on information that becomes apparent at those future times.  
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The NPV method may be only a partial view of the projects actual value because the 

decision is based only on values that are [given] at the time of the appraisal; therefore, 

excluding the flexibility of future decisions (Walters & Giles, 2000).  There is a need to 

map out these future decisions and quantify their value, but the NPV method is not a 

suitable tool for this form of value investigation. 

The NPV method also does not explicitly account for the details of uncertain future cash 

flows.  Recall the definition of uncertainty stated in Section 2.1.  The NPV method does 

readily account for more than one possible value for the same future cash flow.  The NPV 

method needs a complimentary tool to account for uncertainty of future cash flows. 

2.2.4 DECISION TREE ANALYSIS 

Decision tree analysis is another form of valuation method, but unlike the NPV method, 

DTA explicitly accounts for the details of uncertain future cash flows.  It assigns 

probabilities to the corresponding possible outcomes of future cash flows.  To analyze the 

decision tree, the alternative with the greatest value at each decision node is chosen.  An 

alternative‟s value is calculated using the probabilities of the possible outcomes and their 

associated value. 

The decision to take on the investment is made based on the alternative with the 

maximum value at the final decision node. At this node, the costs are subtracted from the 

expected value of the future cash flows of the investment‟s returns.  This value is then 

compared to the other alternatives at the same node and the decision is made to invest in 

the alternative that yields the greatest value. 
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To illustrate the DTA method, recall the example of 2.2.3.  Suppose at t=t2, the 

investment opportunity has uncertain future cash flows of 50% for the probability of a 

$20 value outcome and a 50% for the probability of a $10 value outcome.  Figure 2.2.4-1 

illustrates the decision tree for this example. 

 

Figure 2.2.4-1: Decision Tree Analysis Example 

To calculate the value of the decision tree, first the expected value at t=t2 must be 

calculated as: 

Expected Value (at t=t2) = 0.5x$20 + 0.5x$10 = $15 

Then, the resulting future cash flow and the future cash flow of the cost must be 

discounted to t=t0 at their appropriate rates to compensate for their associated risk.  
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Again, the launch costs can be discounted at the risk-free rate because there is only 

market risk associated with it and the expected value of the return, associated with the 

project risk, must be discounted at the WACC.  Given the same risk-free annual rate of 

rf=5% and a WACC of 25% annually and still both compounded continuously, the DTA 

value can be calculated as: 

NPV = -$10e
-0.05*1

 + $15e
-0.25*2

 = -$0.41 

Similar to the NPV method the decision will be to forego the investment opportunity with 

a value of $0 because it is the greatest alternative value of the decision tree final node. 

Contrary to the NPV method the DTA method maps out the possible decisions that can 

be made during the life of the investment.  Although the DTA method may account for 

the details of uncertain future cash flows, it still has other limitations.  The DTA method 

identifies the flexibility in great detail by mapping out every decision to be made during 

the valuation; however, the DTA method is still limited in that it does little to account for 

the dynamic complexity of that detail (Walters & Giles, 2000).  What this is suggesting is 

that at each decision it maps out, the DTA method can determine the best alternative; 

however, this presents a problem because the decision made at that time may change if 

the same decision is moved to a later time when more the future cash flows were less 

uncertain.  In the DTA method, the final decision to invest or not invest remains at the 

last node or in other words the beginning of the valuation.  The DTA method assumes 

decisions are static and does not account for the manager‟s flexibility in when to make 

the decision.  Simply put, the DTA method identifies the flexibility of managers but does 

not take into account the value of that flexibility. 
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CHAPTER 3: REAL OPTIONS ANALYSIS 

3.1 OPTIONS 

An option is the right, but not the obligation to trade an asset under specified terms 

(Luenberger, 1998).  As an example, consider an opportunity to buy a share of XYZ 

stock anytime within one year when the option expires (matures) after time=T for a strike 

price (X) of $20 regardless of when in that year it is purchased and regardless of how 

much the value of the stock has changed.  This opportunity would be considered an 

option, but not an obligation, to buy a share XYZ stock. 

The value of having this option is apparent in situations where the value of the stock 

increases over the year.  For example, suppose the current price (S) of the XYZ stock is 

$15 and increases to $25 at the end of the option year.  This means if the option was held 

until that time, XYZ stock could be purchased for the strike price of $20 and right away 

be sold for a profit of $5.  This $5 is the return of the option if exercised at maturity and 

its value is considered to be “in the money”.  On the other hand, if the value of stock 

XYZ is only $18 at the end of the year the return of the option if exercised is -$2 and 

considered to be “out of the money”. 

Recall the definition of an option; giving the right, but not the obligation, to exercise the 

option.  This means that if the return of the option is out of the money, then it should not 

be exercised.  The value of this option (C) at expiration is then calculated as: 

C = max (return if do not exercise, return if exercise) = max ($0, S – X) 

This algorithm states that the value of the option is the maximum value that can be 

obtained between not exercising the option when out of the money, which has a return of 
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$0, and exercising the option when in the money, which has a return of the value of the 

stock (S) minus strike price (X). 

Holders of an option are not certain of the future value of the stock.  As illustrated in the 

example, there is value in being able to wait until the value of the stock is less uncertain.  

Intuitively, the value of the option can be considered the value of the ability to wait to see 

if the stock value will be in the money and therefore purchase the stock (or exercise the 

option).  Given the definition of flexibility in this thesis, it is concluded that an option 

value is the value of flexibility. 

3.2 REAL OPTIONS 

Real options are options that value real assets other than stocks.  For example, the option 

to launch a new product can be considered a real option.  As previously concluded the 

option value is the value of flexibility.  In this case the flexibility would be when to 

decide if the new product should be launched. 

Like traditional options, real options have similar parameters to the stock value (S), the 

strike price (X), the time to maturity (T), and the option value (C).  In real options these 

parameters have a slightly different meaning.  The stock value in real options is the price 

of the asset.  In the example used in chapter 2, the asset value would be the present value 

of the returns from the investment.  Continuing with the same example, the real option 

strike price would be the cost of asset or the launch costs.  The time to maturity is how 

much time is allotted before a decision has to be made about whether to launch the 

project.  Together, these parameters determine the value of the real option, which is to 

wait on making the decision to launch. 
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The decision to launch is based on the present value of the returns from the investment 

minus the costs to launch.  If this value is in the money, meaning the present value of the 

returns is larger than the launch costs, then the decision is to launch.  If the value is out of 

the money, meaning the present value of returns is less than the launch costs, then the 

decision is to not launch.  The real option value is then calculated as: 

C = max (return if do not launch, return if launch) = max ($0, S – X). 

This algorithm is identical to the traditional option algorithm.  This is because this 

algorithm represents the real options thinking of the valuation process.  

All valuation methods have four general parts to their process: inputs, model, decision, 

and output.  The inputs are the parameters gathered for the particular valuation method 

and the outputs are the values resulting from using a particular valuation method.  The 

model is the part of the valuation process where the uncertainty of future cash flows is 

modeled to fit the valuation method.  The decision is the part of the valuation process that 

contains the algorithm that determines whether or not to take on the investment.  The 

process is depicted in Figure 3.2-1. 
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Figure 3.2-1: Process of Valuation Methods 

Compared to the NPV method, which is mathematically the maximum of expectations, 

the real options analysis method is the expectation of maximums (Copeland & Anitkarov, 

2001).  Intuitively this illustrates how the real options analysis method includes the 

manager‟s flexibility in decision making at a later time when more information is known.  

In the context of this thesis, the DTA method follows the same rule as the NPV method 

because DTA takes the maximum of alternatives that are calculated as expected values. 

The NPV and the real options analysis methods rules are listed in Table 3.2-1. 
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Table 3.2-1: Comparison of Decision Rules for Valuation Methods 

 
Source: (Copeland & Anitkarov, 2001) 

To illustrate the difference in algorithms, consider a reworked version of the example in 

Section 2.2.3.  In this original example, the decision is at t=t0; however, if the real options 

analysis method was used, this decision could be moved to t=t1. This would allow the 

manager to decide at that time whether to launch based on better information at that time 

versus at t=t0.  In the event that analysis at t=t1 suggests a value $0 or less (out of the 

money), then the manger would not invest in the project and accept a $0 dollar value.  On 

the other hand, if it is determined that a value greater than $0 is obtainable (in the 

money), then the manager would invest and obtain a value of St1-X.  This is illustrated in 

Figure 3.2-2. 
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Figure 3.2-2: Real Options Analysis Example 

This value of St1-X is not the true value of the option.  This is because there is risk 

associated with the value; specifically, a 50% probability that you will not obtain the $20.  

To compensate for this risk, the “in the money” values must be adjusted by their 

corresponding probabilities.  This is achieved by the expected value term in the real 

option formula. Given the same values as the original example, the real options value at 

time = t1 can then be calculated as: 

Ct1 = Et1 [ max ( St1 - X , $0 ) ] = .5*( $20e
-.25

 - $10 ) + .5*$0 = $2.13 
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Notice in the example that the decision of the real options method is made at maturity; 

whereas in the NPV method, the decision is made at t=0.  This demonstrates how the real 

options analysis method allows flexibility in decision making. The primary function of 

the real option analysis method is to quantify this value of flexibility to make future 

decisions; therefore aiding in dynamic strategic management.  This option to change 

course as information is accumulated is inherently valuable.  The real options analysis 

method is able to capture how much more valuable a project is due to management‟s 

ability to be flexible (Mathews, 2009).  Generally, these option values are classified by 

the primary type of flexibility they offer (Copeland & Anitkarov, 2001).  These types of 

flexibility are summarized in Table 3.2-2. 

Table 3.2-2: Real Option Classifications 

 
Source: (Copeland & Anitkarov, 2001) 
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3.3 REAL OPTION TECHNIQUES 

In this thesis, three basic techniques of the real options analysis method are discussed: the 

Black-Scholes, the Binomial Option Pricing Model, and the Simulation techniques.  In 

addition to these, this thesis derives one other technique and names it the Beta 

Distribution Real Option Pricing model.  Recall the valuation process of Figure 3.2-1.  

The process of each of the techniques in this thesis is the same, but assumes that the 

decision algorithm is based on real options thinking.  The difference of these techniques 

differs in the way they model uncertainty.  Figure 3.3-1 illustrates the process for these 

techniques. 

 

Figure 3.3-1: Process of Real Option Techniques 

 

 



24 
 

3.3.1 BLACK-SCHOLES 

A number of methods have been formulized to value options in the stock market.  Many 

methods used in real options analysis have been adapted from them.  One such method is 

the Black-Scholes equation.  Derivation of the Black-Scholes equation was motivated by 

prior warrant pricing research.  It has become arguably the most popular method for 

valuing European call options (Kremer & Roenfeldt, 1992).  Assuming that stock price 

follows a geometric Brownian motion, the starting point for the derivation of the Black-

Scholes partial derivative equation is: 

; 

where, µ is the expected return rate, σ is volatility, and dWt is the standard Brownian 

motion (Yang, Liu, & Wang, 2007).  Given Ito‟s lemma for two variables, 

, 

and a trading strategy where the return will be risk free, called a delta-hedge portfolio (П) 

given by 

- - , 

the Black-Scholes partial derivative equation can be derived as (Yang, Liu, & Wang, 

2007) 

- . 
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Its creators, Fischer Black and Myron Scholes, derived a differential equation that is 

related to any non-dividend paying stock derivative price (Yang, Liu, & Wang, 2007).  

The solution to this partial differential equation is stated in Equation (3.3.1-1). 

(3.3.1-1)  

 where,  
N = cumulative distribution, 

 , 

, 
rf = risk free rate, 
T = time to maturity, 
X = exercise price, 
S = price of underlying, and 
σ = volatility of underlying. 

 

The “N(d1)” and “N(d2)” terms are the probabilities that the option will expire in the 

money under the risk neutral probability measure.  The formula applies these 

probabilities to the underlying asset and strike price and then discounts the resulting 

values back to time zero using the risk free rate of return.  Originally formulated for 

options pricing, where it is not possible to realize negative values of the asset, the Black-

Scholes method assumes that cash flows follow a Lognormal distribution.  Due to these 

stock market assumptions, the Black-Scholes method may be limited in its ability to 

represent the stochastic properties of the asset‟s return. 

Another problem with this method is its complicated derivation.  This formula is derived 

using Ito calculus.  This is because of the assumption that the underlying follows a 

Brownian motion.  Again this assumption was made because of the behavior of stocks on 

the open market.  This particular assumption was made to describe how stocks fluctuate 
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in a manner that is not differentiable at any point causing traditional integration to be 

difficult.  To handle this, the methods of standard calculus must be extended; Ito calculus 

plays this role. 

3.3.2 BINOMIAL OPTION PRICING MODEL 

Unlike the Black-Scholes method that can only evaluate European options, the Binomial 

Option Pricing Model (BOPM) is primarily used to value American options.  Essentially, 

the BOPM maps out the potential intervals at which the option could be exercised before 

expiration.  The BOPM assumes that at each interval the underlying asset price will move 

up or down by an amount determined using the inputs of volatility and remaining time 

until expiration, producing a recombining tree of prices (also called a lattice).  Assuming 

that there are no dividends paid at these intervals, the BOPM tree created has been shown 

to approximate the Black-Scholes value when the lengths of these intervals approach the 

minimum limit. 

A number of different versions of the BOPM provide proof that their models converge to 

the Black-Scholes model.  In fact, one version suggests that any probability other than 

zero or one will lead to convergence (Chance, 2008).  The advantage of BOPM over the 

Black-Scholes model is that it allows for early exercise (American options), but valuing 

an American option with a large number of intervals creates a limitation for the model 

due to the time it would take to determine all the prices. 

Due to similarities of BOPM to DTA‟s lattice it makes for a more intuitive model to 

derive.  Despite this, BOPM suffers from other limitations shared with Black-Scholes 

method. 
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3.3.3 SIMULATION 

The Datar-Mathews method (DM method), a relatively new real option pricing model 

developed at Boeing, contends that it is algebraically equivalent to the Black-Scholes 

equation, but is simple and transparent (Mathews, Datar, & Johnson, 2007).  Based on 

real options thinking, this method is most easily understood as an extension of the NPV 

multi-scenario Monte Carlo model with an adjustment for risk-aversion and economic 

decision making (Mathews, 2009).  The most advantageous feature of this method is its 

ability to use information available from the standard NPV analysis that is normally used 

by companies (Datar & Mathews, 2004). 

Using the inputs normally used for NPV, this technique simulates possible outcomes that 

the NPV could take on given the uncertainty of the cash flows.  The real options thinking 

is that if a project is not profitable at maturity there is the option not to give the project 

the “green light” and therefore mitigate any losses.  Using this thinking, the D-M method 

creates a new distribution which chooses the maximum value between 0 and the NPV 

(operating costs – launch costs). This algorithm essentially means that at maturity only 

positive NPVs will remain and the rest of the scenarios will be considered $0 because if it 

is not positive, managers would choose not to proceed with the project and therefore 

collect a $0 NPV.  From this new distribution of $0 and positive NPVs, the mean value is 

calculated.  This value is then discounted with a rate that accounts for the risk associated 

with those cash flows. This risk is the probability of obtaining a NPV greater than $0.  

The discounted mean value is considered the value of the real option. 

The D-M method is based on simulation.  Using a simulation technique allows real 

option models to be able to represent different distributions other than the Lognormal 
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used in the Black-Scholes method.  Simulation can be used to solve complex problems 

because it can handle multiple sources of uncertainty; however, for less complex 

problems simulation may become the bottleneck of valuation as it can be very time 

consuming to use. 
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CHAPTER 4: INTRODUCTION TO THE BDROP MODEL 

The Beta Distribution Real Options Pricing (BDROP) model utilizes real options 

thinking in a similar manner to the D-M method.  It is based on the expected value of the 

maximums obtained from the cash flows of returns minus the investment costs.  The 

BDROP aims to simplify the process of the D-M method by using a specific distribution, 

namely the Beta distribution of cash flows.  The reason for doing this is to eliminate the 

need for simulation that may take too much time for certain applications.  Using the 

properties of the Beta distribution, a real option value may be realized in the same 

manner as the Black-Scholes technique in that the value can be calculated from an 

equation.  Unlike the Black-Scholes, the BDROP model using the Beta distribution 

allows for more flexibility in describing distributions of uncertainty in cash flows, 

moreover because it allows for negative values to be used; the Lognormal distribution of 

cash flows does not allow negative values.  The generalized probability density function 

of the Beta distribution is given in Equation 4-1. 

(4-1)  

 

where, 

B(α,β) = the Beta function, 

α & β = the Beta distribution shape parameters and 

a & b = the upper and lower bounds of the Beta distribution respectively. 

 

For adoptability of the model for practitioners and upper management, BDROP can use 

commonly used inputs of the popular NPV method such as multi-scenario approach‟s 

pessimistic, optimistic, and most likely values or the expected value and standard 

deviation.  These inputs are used to approximate a Beta distribution that represents the 
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cash flow distribution.  This is done by using parameter estimate equations derived from 

the Beta distribution.  For example, if given the cash flow distribution expected and 

standard deviation values, the parameters of the Beta distribution would be found using 

the estimate equations. 

Some assumptions are made in the creation of this model because of the use of the Beta 

distribution.  One assumption made is that the maximum and minimum limits bound the 

range of values that the cash flow can take on.  Also, shape parameters (α, β) are assumed 

to be greater than 1.  When this is true for those parameters the Beta distribution takes on 

a uni-modal shape.  This is important because, for instance, the inputs from the multi-

scenario approach only specify one most likely, or mode, value.  In addition to being 

greater than 1, the shape parameters are assumed to be integers.  This allows for simpler 

calculations of the moments for the distribution because of the use of the gamma 

distribution. 

The relationship between the shape parameters and the most likely value (mode) is given 

in Equation (4-2).  Given the mode and the range it is given within, the relationship 

between α and β can be pre-determined as a linear relationship.  This implicitly suggests 

that the three NPV (at t = T) inputs; pessimistic, optimistic, and most likely, can 

characterize the general shape of the Beta distribution.   This relationship is given in 

Equation (4-3). 

(4-2) modeBeta =  
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(4-3)  

 

Once the Beta distribution is created the real options value can be formulated.  The 

BDROP model uses the real options analysis rule to manipulate the Beta distribution.  All 

S-X values that are less than zero are given zero values and all positive S-X values are 

left the same.  This represents the flexibility of managers to exercise the right not to 

launch the project if the operating profits do not exceed the launch costs at the time of 

maturity.  An example of this change of distribution is depicted in Figure 4-1.  Using the 

new probability density function that includes only maximum payoffs, the real option 

value is understood to be the expected value of this distribution. 
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Figure 4-1: Old and New Probability Density Functions of the Beta Distribution 

The function describing the Beta distribution can be thought of as a function with four 

parameters: F(x; α, β, a, b).  The real option value given by the BDROP model is depicted 

in Equation (4-4).  Referring back to the real option rule,  

C = E0 [ max(ST – X, 0) ] 

where, the maximum of (ST – X) is represented by fROA(x) depicted in Figure 4-1.  E0 is 

the expected value of the distribution at time t=0.  This is just the expected value at t = T 

(ETadj) discounted at the risk-free rate (r); where ETadj is the expected value adjusted for 

the risk associated obtaining the positive payouts.  In terms of fROA(x), this value is: 

 

ETadj =  

Because fROA(x) is a piecewise function given by: 

fROA(x) =  

Therefore the risk adjusted expected value is simply: 

(4-4) ETadj = dx 

 

where, 

the integral is evaluated from launch cost (X), to the upper limit of the 

distribution (b); the maximum possible value in the distribution. 
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Given the risk adjusted expected value, the real option value (C) is then calculated with 

the formula given in Equation (4-5). 

(4-5) C = dx 

 
where, the  term represents the option value being discounted at the risk 

free rate over t = T. 

 

 

4.1 BDROP MODEL SUMMARY 

 

4 Step BDROP Model 

 Step Description 

1. Model the 

System 

Model the system‟s uncertainty using the Beta distribution.  For 

example, using multi scenario inputs (pessimistic, optimistic, and most 

likely), derive a pdf for a 4 parameter Beta distribution: 

f(x;α,β,a,b) 

2. Filter the 

Distribution 

Create a new modified pdf, fROA(x), by filtering the current pdf using 

the real options analysis rule: 

max(at t = T) [0, St - X] 

3. Evaluate 

the Filtered 

Distribution 

Use statistical software to evaluate the risk adjusted expected value of 

x at t=T: 

ETadj = dx. 

4. Discount 

Value to 

t=0 

Discount this value, using the risk free rate (r) over the time period t=0 

to t=T, to find the expected value at t=0:  

C = dx 

 

 

 

 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

CHAPTER 5: BDROP AND BLACK-SCHOLES MODEL COMPARISON 

The Black-Scholes technique is widely accepted as the standard of option pricing.  Real 

options follow the same premise when comparing a new or existing technique.  This is 

not to suggest that the Black-Scholes is the most accurate in the valuation of real options.  

Black-Scholes is regarded the standard benchmark because of its wide scale use to value 

options of financial derivatives and real assets or investments. 

5.1 MATHEMATICAL COMPARISON 

To begin the comparison of the BDROP model to the Black-Scholes, it is important to 

first compare the two techniques mathematically.  This yields an applicable starting point 

to investigate the possible statistical testing that is appropriate to compare the models.  

The mathematics of both the Black-Scholes and the BDROP techniques has been 

previously addressed.  This section serves as a subjective comparison leading to the more 

objective comparisons of the statistical comparisons in Section 5.2. 

From a macro perspective, these techniques have similar mathematical meaning.  They 

both use the real options thinking in their formulation of the real option value.  They both 

use a specific statistical distribution to model the uncertainty of future cash flows.  The 

choice of a distribution, however, is also where they diverge.  The Black-Scholes, as 

explained in Section 3.3.1, uses the Lognormal distribution of cash flows.  This is due to 

its original ties to pricing stock market derivatives that could never obtain a less than $0 

value.  The BDROP model uses the Beta distribution to model the uncertainty of future 

cash flows.  This is to aid the BDROP technique in its ability to model a more diverse 

population of possible distributions, including distributions that include negative values. 
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The use of different statistical distributions may cause some deviation between the values 

obtained by the two techniques.  Ricciardi, Pinder and Belitz [2005] state that the 

Lognormal distribution is generally heavy tailed.  This means that the Beta distribution is 

most likely converging to zero faster than the Lognormal and differences in values may 

arise in these tail areas of the two distributions even if they share the same inputs, such as 

the mean, that describes their shape.  Despite these differences, the Beta distribution is a 

viable alternative to the Lognormal distribution to characterize uncertainty (Ricciardi, 

Pinder, & Belitz, 2005). 

5.2 STATISTICAL COMPARISON 

5.2.1 METHODOLOGY 

In this Section, a more objective approach is used to compare the BDROP and the Black-

Scholes techniques.  This statistical study first establishes whether there is a statistical 

relationship between the output values the techniques would yield.  Then the study goes 

on to compare the means of these outputs, given the same inputs. 

There were five input factors varied to observe outputs from the different techniques: 

expected value of S (E[S]), volatility (v), time to maturity (T), risk-free rate (rf), and 

strike price (X).  These factors are the five input factors needed to evaluate the Black-

Scholes equation.  Table 5.2.1-1 describes the ranges of the input data. 
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Table 5.2.1-1: Input Factors - Comparison of BDROP and Black-Scholes 

Techniques 

Inputs Factors 

E[S] v rf X T 

Low: 4375 
Low: 1345 Low: 

5% 
0 to b 

By 

Increment: 

b\100 

0 to 10 

By 

Increment: 

1 

High: 13450 

High: 

43750 

Low: 13450 High: 

9% High: 134500 

 

5.2.2 RESULTS 

The first test conducted was to observe the strength (rho) of the two technique‟s 

relationship.  To conduct this test, Pearson‟s correlation coefficient was used.  If this 

coefficient is a 1, the models are perfectly positive correlated.  If the coefficient is a -1, 

the models have a perfectly negative correlation.  A value of 0 for this coefficient means 

there is no correlation between the models.  The level of confidence in this test was 95%.  

This test rejected the null hypothesis in favor of the alternative hypothesis that there is a 

statistically significant relationship between the two technique‟s output values.  Table 

5.2.2-1 summarizes the test results. 
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Table 5.2.2-1: Test of Correlation between BDROP and Black-Scholes 

Techniques 

Pearson Correlation of Black-Scholes and BDROP Option Values 

Hypothesis Statistic Value P-Value Conclusion 

H0: rho = 0 

 

H1: rho ~= 0 

rho = 0.859 p = 0.000 Reject H0 

 

The second test conducted was to observe the difference (D) between the two technique 

outputs.  To conduct this test, the t statistic was used.  The level of confidence in this test 

was 95%.  This test rejected the null hypothesis in favor of the alternative hypothesis that 

there is a difference in mean across the two techniques‟ output values.  Table 5.2.2-2 

summarizes the test results. 

Table 5.2.2-2: Test of Difference between BDROP and Black-Scholes Techniques 

Paired T-Test of Black-Scholes and BDROP Option Values 

Hypothesis Statistic Value P-Value Conclusion 

H0: D = 0 

 

H1: D ~= 0 

t = -24.40 p = 0.000 Reject H0 

 

 

5.3 ANALYSIS 

These results show a strong positive relationship between the Black-Scholes and the 

BDROP techniques.  This contends that with 95% confidence the two techniques are 
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Using these ranks for different environments the expected performance rankings was 

calculated as well as the standard deviation of the performance.  

Next these rankings must be converted into monetary values.  It is assumed in this study 

that each RFID system has a present value of $10,000 at the start of Phase 3.  In order to 

evaluate the value of the option, the units of the parameters must be the same.  The 

launch costs are in dollars; therefore, the rankings were converted to dollars as well.  To 

obtain their monetary value, each ranking were divided by 10 (to change their units to a 

percentage) and then multiplied by the $10,000 present value.  The adjusted present 

values (ST) are presented in Table 6.4.1-1. 

Table 6.4.1-1 BDROP Model Parameter Values 
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To create a Beta distribution from this data, the shape parameters need to be estimated.  

The shape parameter ratio can be estimated using the relationships in the following 

formulas: 

  and 

 

where,  ; µ is this case is sample mean.  In the formulas, v is estimated to be 

27% for all RFID systems being compared.  For example in the 3M RFID system case, 

µ=$8,100 and σ=27%.  The range [a, b] of the distribution is assumed to have a lower 

bound (a) of $0 and an upper bound (b) of $10,000.  Using the estimated shape 

parameters, the corresponding probability density function is created.   

6.4.2 STEP 2 - FILTER THE DISTRIBUTION 

During Phase 2, a trial period is to be completed with the system to determine the actual 

performance of the system under actual conditions.  It is in this stage that the 

uncertainties described by Phase 1 will become certain enough for managers to make an 

informed decision on whether to enter Phase 3, meaning, if they will implement the 

system.  The decision the managers will be making is based upon the returns accrued 

versus the costs to launch a full scale implementation.  Full scale implementation costs 

include the cost of the RFID reader and tags.  The costs (X) associated with launching 

each RFID system are also included in Table 6.4.1-1. 

To filter the probability density function to represent the new distribution, fROA(x), recall 

the real options rule; max [0, St-X].  In this project, ST represents the returns of the 
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more information.   The NPV method, however, will decide to forego all RFID systems.  

This is because the expected values of the returns for each system are less than the 

intended implementation costs.  Table 6.5-1 compares the option values to the NPVs (ST 

– X) using the same data. 

Table 6.5-1: BDROP Model Values versus Net Present Values 

 

6.6 CONCLUSIONS AND RECOMMENDATIONS 

In order to analyze real options, it is important to remember what its value means.  Its 

value is not a value of the system explicitly.  The real options value is the measure of 

how valuable waiting for more information is.  The four systems that have a real option 

value are the Confidex, Motorola, Smartmark, and the Intermec systems.  This means 

there is value in doing more research on these systems in the trial phase.  At the end of 

Phase 2 when the system‟s reliability is more certain, a decision can be made on whether 

to fully implement the system or scrap it.  Currently, the most valuable option is held by 

the Intermec system.  This system should be the one chosen to continue during the trial 

phase, if only one system is to be chosen. 
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APPENDIX A: BDROP MODEL CODE 

%BDROP MODEL compared to the Black Scholes Model 

  

  
%Building Model Comparison Tables 

  
modeltable = zeros(88,105); 

  
    modeltable(1:44,1) = 4375;      %low expected value 
    modeltable(45:88,1) = 43750;    %high expected value 

     
    modeltable(1:22,2) = 1345;      %low volatility 
    modeltable(23:44,2) = 13450;    %high volitility 
    modeltable(45:66,2) = 13450;    %low volitility 
    modeltable(67:88,2) = 134500;   %high volitility 

  
    modeltable(1:11,3) = 0.055;     %risk free rate = 5.5% 
    modeltable(12:22,3) = 0.09;     %risk free rate = 9.0%   
    modeltable(23:33,3) = 0.055;    %risk free rate = 5.5% 
    modeltable(34:44,3) = 0.09;     %risk free rate = 9.0% 
    modeltable(45:55,3) = 0.055;    %risk free rate = 5.5% 
    modeltable(56:66,3) = 0.09;     %risk free rate = 9.0% 
    modeltable(67:77,3) = 0.055;    %risk free rate = 5.5%   
    modeltable(78:88,3) = 0.09;     %risk free rate = 9.0% 

  
    %creates the time=T column from t=0 to t=10     
    for mt1 = 1:11:88 
        mt1a = mt1-1; 
        for mt2 = 1:1:11 
            ph1 = mt1+mt2-1; 
            modeltable(ph1,4) = mt2-1; 
        end 
    end 
    %End create the time=T column 

     
BDROPmodeltable = modeltable; 
BSmodeltable = modeltable; 
BSminusBDROPtable = modeltable; 
BDROPpercenterrtable = modeltable; 

     
%End Building Model Comparison Tables 

  

  
%Enter model results into table 
    %This loop completes the model table by iterating through the 

different 
    %inputs and returning the resulting BS and BDROP models and pluging 

them 
    %into the table. 

  
for step = 1:1:88 
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    timer = step 

     
    %Gernaral Input Variables (given from table) 

  
    exp_s = modeltable(step,1); %expected value input 

  
    vol_s = modeltable(step,2); %volatility value input 

  
    var_s = vol_s^2;            %variance value calculated input 

  
    r_r = modeltable(step,3);   %risk free rate of return input 

  
    tm = modeltable(step,4);    %time to maturity (t) input 
    %END General Inputs 

  

  
    %Calculates Model Values given changing Strike Price (X) (or c in 

this 
    %code) 

  
    accuracy = 10000;           %how many intervals to create. More 

intervals=More accuracy. default=10000. 

  
    a = 0;                      %lower bound of the Beta Distribution 

  
    b = 7.5*vol_s;              %upper bound of the Beta Distribution 

  
    wacc = r_r;                 %weighted average cost of capital or 

default to risk free rate of return 

  
    it = 0; 
    increment = b/100; 

  
    costx = zeros(1,101); 
    ROV_BS = zeros(1,101); 
    ROV_BDROPa = zeros(1,101); 
    %ROV_BDROP = zeros(1,100); 
    for xtest = 1:1:101 

  
        incr1 = xtest-1; 
        incr2 = incr1*increment; 

  
        c = floor(incr2); 
        it = 1+it; 
        costx(it) = c; 

  

  
        %-------------------------Black-Scholes Model------------------

-------- 

  
        %Black-Scholes Inputs 

  
        s_0 = exp_s*exp(-wacc*tm); 
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        theta2 = log( (var_s/(exp_s^2)) + 1 )/tm; 
        %theta2 = .134^2; 
        theta = sqrt(theta2); 
        %theta = .134; 
        %End Black-Scholes Inputs 

  
        %Equations for Black-Scholes Equation Terms  
            %Calculates the normal distribution cdf inputs d1 and d2 

  
        d1 = ( log(s_0/c) + (r_r + (theta2/2))*tm )/( theta*sqrt(tm) );  

  
        d2 = d1 - ( theta*sqrt(tm) ); 

  
            %Calculates the normal distribution cdf using matlab erfc 

function 
            %(see matlab function description for details of why these 

equations used) 

  
        n1 = .5*erfc(-d1/sqrt(2)); 

  
        n2 = .5*erfc(-d2/sqrt(2)); 
        %End Black Scholes Equation Terms 

  
        %Black-Scholes Equation 

  
        ROV_BS(it) = ( s_0*n1 ) - ( c*exp(-r_r*tm)*n2 ); 
        %End Black Scholes Equation 

  
        %-----------------------------------------------END Black-

Scholes Model 

  
        %%%%%      %%%%%      %%%%%      %%%%%     %%%%%      %%%%%      

%%%%% 
        %%%%%      %%%%%      %%%%%      %%%%%     %%%%%      %%%%%      

%%%%% 
        %%%%%      %%%%%      %%%%%      %%%%%     %%%%%      %%%%%      

%%%%%     

  
        %-----------------------------BDROP Model----------------------

-------- 

  
        %BDROP Inputs 

  
        %a = 0;                              %lower bound 

  
        %b = 7.5*vol_s;                      %upper bound 

  

  
        xbar = (exp_s - a)/(b - a);         %parameter estimators 

  
        vbar = var_s/((b-a)^2);             %parameter estimators 
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        mx = ( (xbar*(1-xbar)/vbar) - 1 );  %multiplier term for ease 

of coding 

  

  
        p = xbar*mx;                        %p: alpha beta-dist shape 

parameter 

  
        q = (1-xbar)*mx;                    %q: beta beta-dist shape 

parameter 
        %END BDROP Inputs 

  
        %Beta Distribution PDF 
            %Creates a standard Beta Distribution PDF on the range 0 to 

1. 

  
            betapdf = zeros(1,accuracy); 
        for r = 1:1:accuracy 

  
            x1 = (r-1)/accuracy; 
            x2 = x1^(p-1); 
            x3 = 1-x1; 
            x4 = x3^(q-1); 
            x5 = x2*x4; 
            x6 = beta(p,q); 
            x7 = x5/x6; 

  
            betapdf(r) = x7; 

  
        end 
        %END Beta Distribution PDF 

  

  
        %Beta Distribution Probability Values 
            %PDF's Y axis are in units of probability density, NOT 

probability. 
            %Therefore a conversion to find the approximate probability 

at that point 
            %is needed. The difference of the upper and lower segment 

of an interval 
            %range is multiplied by the density associated with the 

lower segment 
            %(the lower segment is arbitrarily chosen.)  This is 

approximate  
            %because it is most likely not constant over the interval. 

The limit is 
            %the integral of the curve on the interval. Or in this case 

as the  
            %intervals become infinitely small. 

  
        interval = 1/accuracy;     
        beta rob = zeros(1,accuracy); 
        for j = 1:1:accuracy 

  
            u1 = j-1; 
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            u2 = j; 
            u3 = u1*interval; 
            u4 = u2*interval; 
            u5 = interval;        %computing the difference of upper & 

lower interval 
            u6 = u5*betapdf(u2);  %multiplies it by the lower segment 

density value 

  
            betaprob(j) = u6; 

  
        end 
        %END Beta Distribution Probability Values     

  

  
        %PVt Distribution 
            %Dividing the range of PVs(@ time=t or maturity) into  

discrete intervals. 
            %As the interval decreases, the distribution reaches the 

integral 
            %limit. 

  
        range = b-a; 
        inc = (range/accuracy); 
        pvtdist = zeros(1,accuracy); 
        for t = 1:1:accuracy 

  
            v1 = t-1; 
            v2 = v1*inc; 
            v3 = v2+a; 

  
            pvtdist(t) = v3; 

  
        end 
        %END PVt Distribution 

  

  
        %Expected Value 
            %Calculates the expected value on the range of x to the 

upper limit b. 

  
            %this next loop identifies the pointer where npv > cost 
        mark = zeros(1,accuracy); 
        for e = 1:1:accuracy 
            %if pvtdist(e) > c 
            if pvtdist(e)*exp(-wacc*tm) > c*exp(-r_r*tm) 
                mark(e) = e; 
            else 
                mark(e) = 0; 
            end 
        end 
        adjmark = find(mark,1); 
            %End pointer identifier 

  
            %Exp Value Distribution Creator 
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                %This next loop first finds the NPV @ t=0 distribution. 

In the 
                %expected value formula E[X] = int[x*f(x)]dx, the NPV 

distribution 
                %is used for the "X" values.  Then multiplies this 

value by the 
                %probability of "X" occurring, given by betaprob 

derived from 
                %f(x). This probability represents the NPV adjusted for 

the 
                %risk associated with obtaining that value.  What 

results is a 
                %distribution of risk adjusted NPV distribution of pay-

offs. 
        %expvaldist = zeros(1,accuracy); 
        expvaldista = zeros(1,accuracy); 
        for i = adjmark:1:accuracy 

  
            %npv = pvtdist(i)-c;                                                                                                  
            npva = pvtdist(i)*exp(-wacc*tm)-c*exp(-r_r*tm);     

%finding the risk adjusted npv distribution 
            y2 = betaprob(i);                                    
            %y3 = npv*y2; 
            y3a = npva*y2;                                      

%multiplying it by the prob of occurrence 

  
            %expvaldist(i) = y3*exp(-wacc*tm); 
            expvaldista(i) = y3a; 

  
        end 
            %End Exp Value distribution creator 

  
            %expvalx = sum(expvaldist); 
            expvalxa = sum(expvaldista); 

  
            %ROV_BDROP(it) = expvalx; 
            ROV_BDROPa(it) = expvalxa; 
        %End Expected Value 

  
        %-------------------------------------------------------END 

BDROP Model 

  
    end 
    %End Calculations of Model Values given changing Strike Price (X) 

  
BDROPmodeltable(step,5:105) = ROV_BDROPa; 
BSmodeltable(step,5:105) = ROV_BS; 
BSminusBDROPtable(step,5:105) = ROV_BS - ROV_BDROPa; 
BDROPpercenterrtable(step,5:105) = (ROV_BS - ROV_BDROPa)./ROV_BS; 

  
end 
%END Enter Model Results into Table 
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